1
|
Jalil Y, Damiani LF, García-Valdés P, Basoalto R, Gallastegui J, Gutierrez-Arias R. Myokine Secretion Dynamics and Their Role in Critically Ill Patients: A Scoping Review. J Clin Med 2025; 14:2892. [PMID: 40363924 PMCID: PMC12072662 DOI: 10.3390/jcm14092892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 05/10/2025] Open
Abstract
Background/Objectives: Myokines can modulate organ function and metabolism, offering a protective profile against ICU complications beyond preventing local muscle wasting. This scoping review aims to explore and summarize the evidence regarding the secretion of myokines and their potential local or systemic effects in critically ill patients. Methods: A scoping review following Joana Briggs Institute recommendations was conducted. A systematic search of MEDLINE (Ovid), Embase (Ovid), CENTRAL, CINAHL (EBSCOhost), WoS, and Scopus was conducted from inception to February 2023. We included primary studies evaluating myokine secretion/concentration in critically ill adults undergoing physical rehabilitation interventions. Two independent reviewers performed study selection and data extraction. Results: Seventeen studies published between 2012 and 2023 were included. Most were randomized clinical trials (47%). Physical rehabilitation interventions included electrical muscle stimulation, as well as passive and active mobilization, delivered alone or combined, in single or daily sessions lasting 20-60 min. Twelve studies (70%) evaluated interleukin-6, while interleukin-10, tumour necrosis factor-α, Interleukin-8, and myostatin were also commonly studied. Thirteen studies (76%) reported changes in myokine secretion or gene expression, although no clear concentration change pattern emerged. Myokines involved in muscle protein synthesis and breakdown may protect against muscle waste and weakness. Conclusions: The study of myokine dynamics in critically ill patients highlights the systemic impact of physical rehabilitation. This emerging field has grown in interest over the past decade, offering significant research potential. However, challenges such as study design, small sample sizes, and variability in physical therapy protocols hinder a comprehensive understanding of myokine responses.
Collapse
Affiliation(s)
- Yorschua Jalil
- Escuela de Ciencias de la Salud, Departamento de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 1270709, Chile; (Y.J.); (L.F.D.); (P.G.-V.); (J.G.)
- CardioREspirAtory Research Laboratory, Departamento Ciencias de la Salud, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
- Department of Intensive Care Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 1270709, Chile
| | - L. Felipe Damiani
- Escuela de Ciencias de la Salud, Departamento de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 1270709, Chile; (Y.J.); (L.F.D.); (P.G.-V.); (J.G.)
- CardioREspirAtory Research Laboratory, Departamento Ciencias de la Salud, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
- Department of Intensive Care Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 1270709, Chile
| | - Patricio García-Valdés
- Escuela de Ciencias de la Salud, Departamento de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 1270709, Chile; (Y.J.); (L.F.D.); (P.G.-V.); (J.G.)
- CardioREspirAtory Research Laboratory, Departamento Ciencias de la Salud, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Roque Basoalto
- CardioREspirAtory Research Laboratory, Departamento Ciencias de la Salud, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
- Department of Intensive Care Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 1270709, Chile
| | - Julen Gallastegui
- Escuela de Ciencias de la Salud, Departamento de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 1270709, Chile; (Y.J.); (L.F.D.); (P.G.-V.); (J.G.)
| | - Ruvistay Gutierrez-Arias
- Departamento de Apoyo en Rehabilitación Cardiopulmonar Integral, Instituto Nacional del Tórax, Santiago 8320000, Chile
- INTRehab Research Group, Instituto Nacional del Tórax, Santiago 8320000, Chile
- Faculty of Rehabilitation Sciences, Exercise and Rehabilitation Sciences Institute, Universidad Andres Bello, Santiago 7591538, Chile
| |
Collapse
|
2
|
Morel J, Pignard AS, Castells J, Allibert V, Hatimi L, Buhot B, Velarde M, Durieux AC, Freyssenet D. Myostatin gene invalidation does not prevent skeletal muscle mass loss during experimental sepsis in mice. J Physiol 2024; 602:2839-2854. [PMID: 38748517 DOI: 10.1113/jp284973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/26/2024] [Indexed: 06/15/2024] Open
Abstract
Loss of muscle mass and function induced by sepsis contributes to physical inactivity and disability in intensive care unit patients. Limiting skeletal muscle deconditioning may thus be helpful in reducing the long-term effect of muscle wasting in patients. We tested the hypothesis that invalidation of the myostatin gene, which encodes a powerful negative regulator of skeletal muscle mass, could prevent or attenuate skeletal muscle wasting and improve survival of septic mice. Sepsis was induced by caecal ligature and puncture (CLP) in 13-week-old C57BL/6J wild-type and myostatin knock-out male mice. Survival rates were similar in wild-type and myostatin knock-out mice seven days after CLP. Loss in muscle mass was also similar in wild-type and myostatin knock-out mice 4 and 7 days after CLP. The loss in muscle mass was molecularly supported by an increase in the transcript level of E3-ubiquitin ligases and autophagy-lysosome markers. This transcriptional response was blunted in myostatin knock-out mice. No change was observed in the protein level of markers of the anabolic insulin/IGF1-Akt-mTOR pathway. Muscle strength was similarly decreased in wild-type and myostatin knock-out mice 4 and 7 days after CLP. This was associated with a modified expression of genes involved in ion homeostasis and excitation-contraction coupling, suggesting that a long-term functional recovery following experimental sepsis may be impaired by a dysregulated expression of molecular determinants of ion homeostasis and excitation-contraction coupling. In conclusion, myostatin gene invalidation does not provide any benefit in preventing skeletal muscle mass loss and strength in response to experimental sepsis. KEY POINTS: Survival rates are similar in wild-type and myostatin knock-out mice seven days after the induction of sepsis. Loss in muscle mass and muscle strength are similar in wild-type and myostatin knock-out mice 4 and 7 days after the induction of an experimental sepsis. Despite evidence of a transcriptional regulation, the protein level of markers of the anabolic insulin/IGF1-Akt-mTOR pathway remained unchanged. RT-qPCR analysis of autophagy-lysosome pathway markers indicates that activity of the pathway may be altered by experimental sepsis in wild-type and myostatin knock-out mice. Experimental sepsis induces greater variations in the mRNA levels of wild-type mice than those of myostatin knock-out mice, without providing any significant catabolic resistance or functional benefits.
Collapse
Affiliation(s)
- Jérome Morel
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint Etienne, Lyon 1, Université Savoie Mont-Blanc, Saint Etienne, France
- Département d'anesthésie et réanimation, Centre Hospitalier Universitaire de Saint Etienne, Saint Etienne, France
| | - Anne Sophie Pignard
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint Etienne, Lyon 1, Université Savoie Mont-Blanc, Saint Etienne, France
- Département d'anesthésie et réanimation, Centre Hospitalier Universitaire de Saint Etienne, Saint Etienne, France
| | - Josiane Castells
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint Etienne, Lyon 1, Université Savoie Mont-Blanc, Saint Etienne, France
| | - Valentine Allibert
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint Etienne, Lyon 1, Université Savoie Mont-Blanc, Saint Etienne, France
| | - Lahcène Hatimi
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint Etienne, Lyon 1, Université Savoie Mont-Blanc, Saint Etienne, France
| | - Benjamin Buhot
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint Etienne, Lyon 1, Université Savoie Mont-Blanc, Saint Etienne, France
| | - Mathias Velarde
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint Etienne, Lyon 1, Université Savoie Mont-Blanc, Saint Etienne, France
| | - Anne Cécile Durieux
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint Etienne, Lyon 1, Université Savoie Mont-Blanc, Saint Etienne, France
| | - Damien Freyssenet
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint Etienne, Lyon 1, Université Savoie Mont-Blanc, Saint Etienne, France
| |
Collapse
|
3
|
Mińko A, Turoń-Skrzypińska A, Rył A, Mańkowska K, Cymbaluk-Płoska A, Rotter I. The Significance of Selected Myokines in Predicting the Length of Rehabilitation of Patients after COVID-19 Infection. Biomedicines 2024; 12:836. [PMID: 38672190 PMCID: PMC11047941 DOI: 10.3390/biomedicines12040836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
In the context of the global COVID-19 pandemic, understanding the intricate mechanisms of the body's response to infection and inflammation has become a priority for the medical and research communities. It has been proven that during COVID-19 infection, molecules are secreted-namely organokines, which may directly or indirectly play a role in the pathophysiology of COVID-19. The objective of this study was to scrutinize the potential correlation between the levels of selected myokines (myostatin, agrin, irisin, and myonectin) and the duration of rehabilitation in post-COVID-19 patients. Additionally, the study aimed to investigate whether there is a correlation between the levels of these myokines and the length of hospitalization during COVID-19 treatment. The study was conducted at the Rehabilitation Hospital in Szczecin (Poland). Patients in the study participated in a comprehensive rehabilitation program following COVID-19 treatment. In order to assess the effectiveness of rehabilitation, the following tests were performed: a 6 min walk test with an assessment of exercise tolerance (Borg scale), an assessment of dyspnea severity (mMRC scale), a spirometric assessment of respiratory function, a measurement of arm strength, and an assessment of fatigue using the Fatigue Assessment Scale (FAS). Myokine levels were measured using commercially available enzyme-linked immunosorbent assays (ELISA) according to the manufacturer's instructions. Statistical analysis was performed using Statistica 13.1 software. Lower concentrations of irisin and myonectin and higher concentrations of myostatin correlated with longer rehabilitation time. Baseline levels of specific myokines in post-COVID-19 patients could play a crucial role in anticipating the duration of rehabilitation. The duration of hospitalization for the infection may influence myokine levels in patients recovering from COVID-19.
Collapse
Affiliation(s)
- Alicja Mińko
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, 71-210 Szczecin, Poland; (A.T.-S.); (A.R.); (I.R.)
| | - Agnieszka Turoń-Skrzypińska
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, 71-210 Szczecin, Poland; (A.T.-S.); (A.R.); (I.R.)
| | - Aleksandra Rył
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, 71-210 Szczecin, Poland; (A.T.-S.); (A.R.); (I.R.)
| | - Katarzyna Mańkowska
- Department of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Aneta Cymbaluk-Płoska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Iwona Rotter
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, 71-210 Szczecin, Poland; (A.T.-S.); (A.R.); (I.R.)
| |
Collapse
|