1
|
Pargett M, Ram AR, Murthy V, Davies AE. Live-Cell Sender-Receiver Co-cultures for Quantitative Measurement of Paracrine Signaling Dynamics, Gene Expression, and Drug Response. Methods Mol Biol 2023; 2634:285-314. [PMID: 37074584 DOI: 10.1007/978-1-0716-3008-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Paracrine signaling is a fundamental process regulating tissue development, repair, and pathogenesis of diseases such as cancer. Herein we describe a method for quantitatively measuring paracrine signaling dynamics, and resultant gene expression changes, in living cells using genetically encoded signaling reporters and fluorescently tagged gene loci. We discuss considerations for selecting paracrine "sender-receiver" cell pairs, appropriate reporters, the use of this system to ask diverse experimental questions and screen drugs blocking intracellular communication, data collection, and the use of computational approaches to model and interpret these experiments.
Collapse
Affiliation(s)
- Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Abhineet R Ram
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Vaibhav Murthy
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Knight Cancer Institute, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Alexander E Davies
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
- Knight Cancer Institute, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
2
|
Significance of Myoepithelial Cell Layer in Breast Ductal Carcinoma in situ with Papillary Architecture with and without Associated Invasive Carcinoma. Clin Breast Cancer 2022. [DOI: 10.1016/j.clbc.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Nazari M, Emamzadeh R, Jahanpanah M, Yazdani E, Radmanesh R. A recombinant affitoxin derived from a HER3 affibody and diphteria-toxin has potent and selective antitumor activity. Int J Biol Macromol 2022; 219:1122-1134. [PMID: 36041577 DOI: 10.1016/j.ijbiomac.2022.08.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
Abstract
High expression of receptor tyrosine-protein kinase erbB-3 (HER3) has been found in several malignancies such as breast cancer. In this study, we designed, produced and evaluated a new affitoxin consisting of a truncated form of diphtheria toxin and a HER3-binding affibody domains. The new affitoxin was expressed in Escherichia coli and purified by affinity chromatography. We evaluated the suitability of affitoxin to kill HER3 positive breast cancer cells with MTT and apoptosis assays. The protein synthesis inhibition was also evaluated. The IC50 value in HER3 negative cells is about 10 times more than HER3 positive cells in new design of affitoxin. The specificity of affitoxin for binding to HER3 positive cells was also investigated with binding assay with flow cytometry. The results show that, the new affitoxin is an anti-cancer molecule with specific binding to HER3 positive cells and may open a new window for the treatment of HER3-positive cancers.
Collapse
Affiliation(s)
- Mahboobeh Nazari
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran; Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.
| | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Maryam Jahanpanah
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Elnaz Yazdani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ramin Radmanesh
- Department of Pharmacoeconomics and Pharmaceutical Management, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Ruiz TFR, Leonel ECR, Colleta SJ, Bedolo CM, Pegorin de Campos SG, Taboga SR. Gestational and lactational xenoestrogen exposure disrupts morphology and inflammatory aspects in mammary gland of gerbil mothers during involution. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103785. [PMID: 34896274 DOI: 10.1016/j.etap.2021.103785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In the mammary gland (MG), the developmental window for gestational/lactational differentiation and growth is highly vulnerable to hormonal disruption. Here we describe that the MG involution process in female gerbil mothers is delayed by bisphenol A (BPA) exposure during gestation and lactation. The process is directly influenced by changes in expression of extracellular matrix proteases MMP-2, MMP-9, and FAP, and the incidence of collagen and elastin is reduced after 7 and 14 days of weaning. A pro-inflammatory environment in the late involution process was confirmed by higher expression of TNF-α, COX-2 and phospho-STAT3 n the MG stroma, allied to increases in the incidence of macrophages and mast cells. These aspects impacted the proliferative pattern of epithelial cells, which decreased on the 14th post-weaning day. These data confirm that the milk production window of susceptibility is vulnerable to the impact of BPA, which promotes a suggestive pro-tumoral microenvironment during mammary involution.
Collapse
Affiliation(s)
- Thalles Fernando Rocha Ruiz
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| | - Ellen Cristina Rivas Leonel
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil; Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Avenida Esperança, s/n, Câmpus Samambaia, 74690-900 Goiânia, Goiás, Brazil.
| | - Simone Jacovaci Colleta
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Carolina Marques Bedolo
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin de Campos
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
5
|
Ruiz TFR, Taboga SR, Leonel ECR. Molecular mechanisms of mammary gland remodeling: A review of the homeostatic versus bisphenol a disrupted microenvironment. Reprod Toxicol 2021; 105:1-16. [PMID: 34343637 DOI: 10.1016/j.reprotox.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022]
Abstract
Mammary gland (MG) undergoes critical points of structural changes throughout a woman's life. During the perinatal and pubertal stages, MG develops through growth and differentiation to establish a pre-mature feature. If pregnancy and lactation occur, the epithelial compartment branches and differentiates to create a specialized structure for milk secretion and nurturing of the newborn. However, the ultimate MG modification consists of a regression process aiming to reestablish the smaller and less energy demanding structure until another production cycle happens. The unraveling of these fascinating physiologic cycles has helped the scientific community elucidate aspects of molecular regulation of proliferative and apoptotic events and remodeling of the stromal compartment. However, greater understanding of the hormonal pathways involved in MG developmental stages led to concern that endocrine disruptors such as bisphenol A (BPA), may influence these specific development/involution stages, called "windows of susceptibility". Since it is used in the manufacture of polycarbonate plastics and epoxy resins, BPA is a ubiquitous chemical present in human everyday life, exerting an estrogenic effect. Thus, descriptions of its deleterious effects on the MG, especially in terms of serum hormone concentrations, hormonal receptor expression, molecular pathways, and epigenetic alterations, have been widely published. Therefore, allied to a didactic description of the main physiological mechanisms involved in different critical points of MG development, the current review provides a summary of key mechanisms by which the endocrine disruptor BPA impacts MG homeostasis at different windows of susceptibility, causing short- and long-term effects.
Collapse
Affiliation(s)
- Thalles Fernando Rocha Ruiz
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil.
| | - Sebastião Roberto Taboga
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil.
| | - Ellen Cristina Rivas Leonel
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil; Federal University of Goiás (UFG), Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Goiânia, Brazil.
| |
Collapse
|
6
|
Wang L, Xu C, Liu X, Yang Y, Cao L, Xiang G, Liu F, Wang S, Liu J, Meng Q, Jiao J, Niu Y. TGF-β1 stimulates epithelial-mesenchymal transition and cancer-associated myoepithelial cell during the progression from in situ to invasive breast cancer. Cancer Cell Int 2019; 19:343. [PMID: 31889895 PMCID: PMC6923856 DOI: 10.1186/s12935-019-1068-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/12/2019] [Indexed: 12/28/2022] Open
Abstract
Background The progression of ductal carcinoma in situ (DCIS) into invasive ductal carcinoma (IDC) is prevented by normal breast myoepithelial cells. Studies have suggested that EMT-associated genes were enriched in IDC in contrast to DCIS. This paper explored the relationship and potential mechanism between myoepithelial cells and EMT-associated genes in facilitating the transformation from DCIS to breast cancer. Methods EMT markers and myoepithelial phenotypic markers in IDC, DCIS, and healthy breast tissue were characterized using immunohistochemical assay. Both in vivo and in vitro models were created to mimic the various cell–cell interactions in the development of invasive breast cancer. Results We found that EMT markers were more abundant in invasive carcinomas than DCIS and adjacent normal breast tissue. Meanwhile, TGF-β1 regulated the morphology of MCF-7 (epithelial cells substitute) migration and EMT markers during the transformation from DCIS to invasive breast cancer. Additionally, TGF-β1 also regulated invasion, migration and cytokines secretion of MDA-MB-231 (myoepithelial cells substitute) and epithelial cells when co-cultured with MCF-7 both in vitro and in vivo. Conclusions In conclusion, these findings demonstrated that both EMT phenotypes and cancer-associated myoepithelial cells may have an impact on the development of invasive breast cancer.
Collapse
Affiliation(s)
- Li Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,2The Second Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Cong Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Xia Liu
- 5Department of Oncology, General Hospital of Tianjin Medical University, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Yang Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Lu Cao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Guomin Xiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Fang Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Shuling Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,4Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Jing Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Qingxiang Meng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Jiao Jiao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Yun Niu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| |
Collapse
|
7
|
Amphiregulin deletion strongly attenuates the development of estrogen receptor-positive tumors in p53 mutant mice. Breast Cancer Res Treat 2019; 179:653-660. [PMID: 31838731 DOI: 10.1007/s10549-019-05507-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/07/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE The epidermal growth factor receptor ligand, Amphiregulin, is a transcriptional target of estrogen receptor alpha and is required for pubertal mammary gland development. Previous studies using immortalized human breast cancer cell line xenografts have suggested that Amphiregulin may be an important effector of estrogen receptor alpha during breast cancer development, at least in immune-compromised animals. Here, we evaluate the requirement for Amphiregulin in an immune-competent mouse model which is prone to developing estrogen receptor-positive tumors. METHODS We have intercrossed mice with mammary-specific mutation of p53 with mice deficient in Amphiregulin in order to assess the requirement for Amphiregulin in the initiation and progression of both estrogen receptor-positive and estrogen receptor-negative mammary tumors. RESULTS Deletion of Amphiregulin significantly delayed the onset of palpable mammary tumors and also strongly reduced the proportion of estrogen receptor alpha-positive tumors formed. Upon necropsy, no substantial differences in the prevalence of non-palpable lesions were observed between cohorts, suggesting that the importance of Amphiregulin in mammary tumorigenesis is limited to the post-initiation phase. CONCLUSIONS This study underlines the importance of the EGFR ligand, Amphiregulin, as a key mediator of estrogen receptor action in breast cancer.
Collapse
|
8
|
Xiang G, Liu F, Liu J, Meng Q, Li N, Niu Y. Prognostic role of Amphiregulin and the correlation with androgen receptor in invasive breast cancer. Pathol Res Pract 2019; 215:152414. [PMID: 31040043 DOI: 10.1016/j.prp.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/24/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND In androgen-sensitive prostate cancer, androgenic stimulation induces the synthesis of amphiregulin (AREG). Research is lacking on the role of AREG in invasive breast cancer and the co-expression with androgen receptor (AR) status. MATERIALS AND METHODS The present study investigated the prognostic role of AREG in invasive breast cancer cases (N = 298) and the co-expression with the AR status as analysed by immunohistochemistry (IHC). RESULTS The samples were divided into groups according to AREG expression levels: low/no expression (AREGlow/no) and high expression (AREGhigh). As shown by cytoplasmic immunostaining, 46.0% (137/298) of invasive breast cancers were AREGhigh, and 54.0% (161/298) of cases were AREGlow/no. Co-expression of the AR and AREG accounted for 62.4% (186/298) of cases. A Kaplan-Meier analysis revealed that AREGhigh and AR+/AREGhigh decreased patients' overall survival (OS) (P = 0.002 and P = 0.006, respectively) and disease-free survival (DFS) (P < 0.001 and P < 0.001, respectively). In Cox models, AR+/AREGhigh remained an independent prognostic indicator of OS and DFS in invasive breast cancer (hazard ratio [HR], 0.591, 95% confidence interval [CI], 0.407-0.859, P = 0.006; HR, 0.449, 95% CI, 0.236-0.853, P = 0.014, respectively). AREGhigh remained an independent prognostic indicator of OS and DFS in estrogen receptor (ER)-negative tumours (P < 0.05). CONCLUSIONS This study suggested that AREG and the AR were co-expressed in invasive breast cancer. Thus, AREG and the AR may be valuable prognostic biomarkers in invasive breast cancer and promising therapeutic targets, especially in ER-negative breast cancer.
Collapse
Affiliation(s)
- Guomin Xiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Fang Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Jing Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Qingxiang Meng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Nannan Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Yun Niu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.
| |
Collapse
|