1
|
Zhang Q, Fan Y, Qian X, Zhang Y. Unraveling the role of microplastics in antibiotic resistance: Insights from long-read metagenomics on ARG mobility and host dynamics. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137804. [PMID: 40056523 DOI: 10.1016/j.jhazmat.2025.137804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
As two emerging pollutants, microplastics (MPs) potentially serve as vectors for antibiotic resistance genes (ARGs) in aquatic environments, but the mechanisms driving ARG enrichment remain unclear. This study used long-read metagenomics to investigate ARG mobility and hosts dynamics within the biofilms of MPs and rocks in different water environments. We identified distinct enrichment patterns for microbial communities and ARGs, highlighting the significant role of horizontal gene transfer in ARG enrichment. Specifically, plasmid-encoded ARGs varied significantly among MP biofilms, rock biofilms, and water samples, while chromosome-encoded ARGs remained consistent across these environments, emphasizing the impact of plasmids on ARG enrichment. Despite this, 55.1 % of ARGs were on chromosomes, indicating that host organisms also play a crucial role. The related mechanisms driving ARG enrichment included enhanced cell adhesion, increased transmembrane transporter activity, and responses to environmental stressors, which led to an increased presence of plasmid-encoded ARGs on MP biofilms, facilitating more frequent horizontal gene transfer. Additionally, the diversity of hosts on MPs was notably lower compared to the water column, with specific bacteria, including Herbaspirillu, Limnohabitans, Polaromonas, Variovorax, Rubrivivax, and Thauera significantly driving ARG enrichment. This study highlights key mechanisms and bacterial taxa involved in ARG dynamics on MPs.
Collapse
Affiliation(s)
- Qiji Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yifan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China.
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
2
|
Ourtirane R, Connil N, Bendali F. Evaluation of the virulence of enterococcal strains isolated from high touch surfaces in a hospital in Bejaia (Algeria). Microb Pathog 2025; 205:107736. [PMID: 40419202 DOI: 10.1016/j.micpath.2025.107736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 05/19/2025] [Accepted: 05/21/2025] [Indexed: 05/28/2025]
Abstract
Biofilms are key drivers of healthcare-associated infections (HAIs). Recently, the emergence of Enterococcus strains as major contributors to HAIs has been linked to their high antibiotic resistance and biofilm formation capabilities. In this study, we report for the first time the isolation and characterisation of Enterococcus strains (5 E. faecalis, 2 E. faecium and 1 E. hirae), from hospital surfaces in Algeria. We evaluated their biofilm-forming ability under different culture conditions, cytotoxicity on Caco-2/TC7 epithelial cells, antibiotic resistance profiles and the presence of key virulence genes (agg, gelE, vanA, vanB). Results showed that the biofilm formation capacity was enhanced in the presence of sucrose and all strains were slime-positive. They were non-hemolytic but cytotoxic on epithelial cells; 75 % and 62.5 % of the strains harbored the gelE and agg genes respectively. No strain carried vanA and vanB genes. Seven strains were resistant to cefotaxime and penicillin G, and all of them were resistant to ciprofloxacin but sensitive to ofloxacin. Importantly, we evaluated the anti-biofilm efficacy of benzalkonium chloride (BAK) against mature biofilms on stainless steel coupons, complete biofilm removal required BAK >1250 × MIC, highlighting the limitations of standard biocide use. This study provides one of the few comprehensive characterisations of environmental Enterococcus strains, including E. hirae, with a focus on their resistance, virulence and tolerance to biocides. Our findings highlight the importance of contamination control of inanimate surfaces and equipment in hospitals and inefficacy of commonly used biocides against biofilm-embedded cells, posing a threat for HAIs and call for improved disinfection strategies targeting biofilm-embedded bacteria.
Collapse
Affiliation(s)
- Roza Ourtirane
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Microbiologie Appliquée, Bejaia, 06000, Algeria
| | - Nathalie Connil
- Laboratoire Communication Bactérienne et Stratégies Anti-infectieuses (CBSA), Université de Rouen, Evreux, France.
| | - Farida Bendali
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Microbiologie Appliquée, Bejaia, 06000, Algeria.
| |
Collapse
|
3
|
Liu Y, Wang L, Wang J, Lu M, Liu N, Zhao J, Hu F, Han K, Liu J, Wang J, Qu Z. Epidemic trend of Salmonella from swines and broilers in China from 2014 to 2023 and genetic evolution analysis of ESBLs-producing strains. Front Microbiol 2025; 16:1510751. [PMID: 40028455 PMCID: PMC11868119 DOI: 10.3389/fmicb.2025.1510751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction In recent years, the epidemic trend and antimicrobial resistance of Salmonella from swines and broilers, especially the extended-spectrum β-lactamase (ESBLs)-producing Salmonella, pose a serious threat to human and animal health. Methods In this study, we employed serotype identification, drug sensitivity testing, detection of ESBL-producing strains, and whole genome sequencing to analyze the epidemiological trends and drug resistance of Salmonella isolates from swines and broilers, as well as the genetic evolutionary relationships of ESBL-producing strains in China from 2014 to 2023. Results The results showed that the most prevalent serotypes of Salmonella from swines and broilers in China in recent 10 years were S. Typhimurium (133/381, 34.91%) and S. Enteritidis (156/416, 37.50%), respectively. Overall, 80.58% strains from swines and 70.67% strains from broilers were multidrug resistant. The multidrug resistance rate (MDR) showed a downward trend. The types of drugs exhibiting an increasing trend in resistance rates among Salmonella from broilers (7) were significantly greater than those from swines (2). The detection rates of ESBLs-producing Salmonella from swines and broilers were 9.45 and 29.58%, respectively, with the former showing a downward trend and the latter showing an upward trend. The drug resistance phenotype of Salmonella produced in ESBLs from swines and broilers is consistent with the results of the resistance genes carried. Whole genome sequencing analysis revealed that 36 swine-derived ESBL-producing Salmonella strains contained 6 ST-types and 13 cgST-types, among which ST34 and ST17 were dominant ST-types; a total of 35 resistance genes across 11 classes, blaCTX-M-14, blaTEM-1B, and blaCTX-M-65 were the predominant subtypes of β-lactam resistance genes. 126 broiler-derived ESBL-producing Salmonella strains included 19 ST-types and 37 cgST-types, with ST17 and ST198 as the dominant ST-types; a total of 52 resistance genes belonging to 12 classes, blaCTX-M-55, blaCTX-M-65, blaTEM-1B, and blaOXA-1 identified as the major subtypes of β-lactam resistance genes. Discussion This suggests that we should thoroughly implement management policies aimed at reducing the use of veterinary antimicrobials. Additionally, we should enhance research on traceability technology and the abatement of resistance genes, thereby providing support for the effective prevention and control of the spread of Salmonella and its drug resistance.
Collapse
Affiliation(s)
- Yaopeng Liu
- China Animal Health and Epidemiology Center, Qingdao, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Lin Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Juan Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Mingzhe Lu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Na Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jianmei Zhao
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Fangyuan Hu
- China Animal Health and Epidemiology Center, Qingdao, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Keguang Han
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Junhui Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Junwei Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Zhina Qu
- China Animal Health and Epidemiology Center, Qingdao, China
| |
Collapse
|
4
|
Okamura S, Fukuda A, Usui M. Rapid detection of causative bacteria including multiple infections of bovine respiratory disease using 16S rRNA amplicon-based nanopore sequencing. Vet Res Commun 2024; 48:3873-3881. [PMID: 39331342 DOI: 10.1007/s11259-024-10556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Bovine respiratory disease (BRD) is a multifaceted condition that poses a primary challenge in calf rearing. Viruses and bacteria are etiological agents of BRD. Viral BRD is typically managed symptomatically, whereas bacterial BRD is predominantly managed through the empirical administration of antimicrobials. However, this empirical administration has raised concerns regarding the emergence of antimicrobial-resistant bacteria. Thus, rapid identification of pathogenic bacteria and judicious selection of antimicrobials are required. This study evaluated the usefulness of 16S rRNA analysis through nanopore sequencing for the rapid identification of BRD-causing bacteria. A comparative evaluation of nanopore sequencing and traditional culture method was performed on 100 calf samples detected with BRD. Nanopore sequencing facilitated the identification of bacteria at the species level in bovine nasal swabs, ear swabs, and lung tissue samples within approximately 6 h. Of the 92 samples in which BRD-causing bacteria were identified via nanopore sequencing, 82 (89%) were concordant with the results of culture isolation. In addition, the occurrence of multiple infections exceeded that of singular infections. These results suggest that 16S rRNA sequencing via nanopore technology is effective in reducing analysis time and accurately identifying BRD-causing bacteria. This method is particularly advantageous for the initial detectable screening of BRD.
Collapse
Affiliation(s)
- Shingo Okamura
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, 069- 8501, Hokkaido, Japan
- Dairy Technology Research Institute, National Federation of Dairy Co-operative Association, 5 Bunkyocho, Yabukimachi, Nishishirakawagun, 969-0223, Fukushima, Japan
| | - Akira Fukuda
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, 069- 8501, Hokkaido, Japan
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, 069- 8501, Hokkaido, Japan.
| |
Collapse
|
5
|
Dommann J, Kerbl-Knapp J, Albertos Torres D, Egli A, Keiser J, Schneeberger PHH. A novel barcoded nanopore sequencing workflow of high-quality, full-length bacterial 16S amplicons for taxonomic annotation of bacterial isolates and complex microbial communities. mSystems 2024; 9:e0085924. [PMID: 39254034 PMCID: PMC11494973 DOI: 10.1128/msystems.00859-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Due to recent improvements, Nanopore sequencing has become a promising method for experiments relying on amplicon sequencing. We describe a flexible workflow to generate and annotate high-quality, full-length 16S rDNA amplicons. We evaluated it for two applications, namely, (i) identification of bacterial isolates and (ii) species-level profiling of microbial communities. We assessed the identification of single bacterial isolates by sequencing, using a set of barcoded full-length 16S rRNA gene primer pairs (pair A), on 47 isolates encompassing multiple genera and compared those results with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based identification. Species-level community profiling was tested with two sets of barcoded full-length 16S primer pairs (A and B) and compared to the results obtained with shotgun Illumina sequencing using 27 stool samples. We developed a Nextflow pipeline to retain high-quality reads and taxonomically annotate them. We found high agreement between our workflow and MALDI-TOF data for isolate identification (positive predictive value = 0.90, Cramér's V = 0.857, and Theil's U = 0.316). For species-level community profiling, we found strong correlations (rs > 0.6) of alpha diversity indices between the two primer sets and Illumina sequencing. At the community level, we found significant but small differences when comparing sequencing techniques. Finally, we found a moderate to strong correlation when comparing the relative abundances of individual species (average rs = 0.6 and 0.533 for primers A and B). Despite identified shortcomings, the proposed workflow enabled accurate identification of single bacterial isolates and prominent features in microbial communities, making it a worthwhile alternative to MALDI-TOF MS and Illumina sequencing.IMPORTANCEA quick, robust, simple, and cost-effective method to identify bacterial isolates and communities in each sample is indispensable in the fields of microbiology and infection biology. Recent technological advances in Oxford Nanopore Technologies sequencing make this technique an attractive option considering the adaptability, portability, and cost-effectiveness of the platform, even with small sequencing batches. Here, we validated a flexible workflow to identify bacterial isolates and characterize bacterial communities using the Oxford Nanopore Technologies sequencing platform combined with the most recent v14 chemistry kits. For bacterial isolates, we compared our nanopore-based approach to matrix-assisted laser desorption ionization-time of flight mass spectrometry-based identification. For species-level profiling of complex bacterial communities, we compared our nanopore-based approach to Illumina shotgun sequencing. For reproducibility purposes, we wrapped the code used to process the sequencing data into a ready-to-use and self-contained Nextflow pipeline.
Collapse
Affiliation(s)
- Julian Dommann
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jakob Kerbl-Knapp
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Diana Albertos Torres
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Pierre H. H. Schneeberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Chang JJM, Ip YCA, Neo WL, Mowe MAD, Jaafar Z, Huang D. Primed and ready: nanopore metabarcoding can now recover highly accurate consensus barcodes that are generally indel-free. BMC Genomics 2024; 25:842. [PMID: 39251911 PMCID: PMC11382387 DOI: 10.1186/s12864-024-10767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND DNA metabarcoding applies high-throughput sequencing approaches to generate numerous DNA barcodes from mixed sample pools for mass species identification and community characterisation. To date, however, most metabarcoding studies employ second-generation sequencing platforms like Illumina, which are limited by short read lengths and longer turnaround times. While third-generation platforms such as the MinION (Oxford Nanopore Technologies) can sequence longer reads and even in real-time, application of these platforms for metabarcoding has remained limited possibly due to the relatively high read error rates as well as the paucity of specialised software for processing such reads. RESULTS We show that this is no longer the case by performing nanopore-based, cytochrome c oxidase subunit I (COI) metabarcoding on 34 zooplankton bulk samples, and benchmarking the results against conventional Illumina MiSeq sequencing. Nanopore R10.3 sequencing chemistry and super accurate (SUP) basecalling model reduced raw read error rates to ~ 4%, and consensus calling with amplicon_sorter (without further error correction) generated metabarcodes that were ≤ 1% erroneous. Although Illumina recovered a higher number of molecular operational taxonomic units (MOTUs) than nanopore sequencing (589 vs. 471), we found no significant differences in the zooplankton communities inferred between the sequencing platforms. Importantly, 406 of 444 (91.4%) shared MOTUs between Illumina and nanopore were also found to be free of indel errors, and 85% of the zooplankton richness could be recovered after just 12-15 h of sequencing. CONCLUSION Our results demonstrate that nanopore sequencing can generate metabarcodes with Illumina-like accuracy, and we are the first study to show that nanopore metabarcodes are almost always indel-free. We also show that nanopore metabarcoding is viable for characterising species-rich communities rapidly, and that the same ecological conclusions can be obtained regardless of the sequencing platform used. Collectively, our study inspires confidence in nanopore sequencing and paves the way for greater utilisation of nanopore technology in various metabarcoding applications.
Collapse
Affiliation(s)
- Jia Jin Marc Chang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| | - Yin Cheong Aden Ip
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
- School of Marine and Environmental Affairs, University of Washington, 3707 Brooklyn Ave NE, Seattle, Washington, 98105, USA
| | - Wan Lin Neo
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Maxine A D Mowe
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Zeehan Jaafar
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore, 117377, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119227, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore, 117377, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119227, Singapore
- Centre for Nature-based Climate Solutions, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
| |
Collapse
|
7
|
Chaves M, Hashish A, Osemeke O, Sato Y, Suarez DL, El-Gazzar M. Evaluation of Commercial RNA Extraction Protocols for Avian Influenza Virus Using Nanopore Metagenomic Sequencing. Viruses 2024; 16:1429. [PMID: 39339905 PMCID: PMC11437427 DOI: 10.3390/v16091429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Avian influenza virus (AIV) is a significant threat to the poultry industry, necessitating rapid and accurate diagnosis. The current AIV diagnostic process relies on virus identification via real-time reverse transcription-polymerase chain reaction (rRT-PCR). Subsequently, the virus is further characterized using genome sequencing. This two-step diagnostic process takes days to weeks, but it can be expedited by using novel sequencing technologies. We aim to optimize and validate nucleic acid extraction as the first step to establishing Oxford Nanopore Technologies (ONT) as a rapid diagnostic tool for identifying and characterizing AIV from clinical samples. This study compared four commercially available RNA extraction protocols using AIV-known-positive clinical samples. The extracted RNA was evaluated using total RNA concentration, viral copies as measured by rRT-PCR, and purity as measured by a 260/280 absorbance ratio. After NGS testing, the number of total and influenza-specific reads and quality scores of the generated sequences were assessed. The results showed that no protocol outperformed the others on all parameters measured; however, the magnetic particle-based method was the most consistent regarding CT value, purity, total yield, and AIV reads, and it was less error-prone. This study highlights how different RNA extraction protocols influence ONT sequencing performance.
Collapse
Affiliation(s)
- Maria Chaves
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (M.C.); (A.H.); (O.O.); (Y.S.)
| | - Amro Hashish
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (M.C.); (A.H.); (O.O.); (Y.S.)
- National Laboratory for Veterinary Quality Control on Poultry Production, Giza 12618, Egypt
| | - Onyekachukwu Osemeke
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (M.C.); (A.H.); (O.O.); (Y.S.)
| | - Yuko Sato
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (M.C.); (A.H.); (O.O.); (Y.S.)
| | - David L. Suarez
- US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, Athens, GA 30605, USA;
| | - Mohamed El-Gazzar
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (M.C.); (A.H.); (O.O.); (Y.S.)
| |
Collapse
|
8
|
Teng C, Guo S, Li Y, Ren G. Transcriptome Analysis Reveals the Mechanism of Quinoa Polysaccharides Inhibiting 3T3-L1 Preadipocyte Proliferation. Foods 2024; 13:2311. [PMID: 39123503 PMCID: PMC11311824 DOI: 10.3390/foods13152311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Quinoa is a highly nutritious and biologically active crop. Prior studies have demonstrated that quinoa polysaccharides exhibit anti-obesity activity. This investigation confirmed that quinoa polysaccharides have the ability to inhibit the growth of 3T3-L1 preadipocytes. The objective of transcriptome research was to investigate the mechanism of quinoa water-extracted polysaccharides and quinoa alkaline-extracted polysaccharides that hinder the growth of 3T3-L1 preadipocytes. There were 2194 genes that showed differential expression between untreated cells and those treated with high concentrations of quinoa water-extracted polysaccharides (QWPHs). There were 1774 genes that showed differential expression between untreated cells and those treated with high concentrations of quinoa alkaline-extracted polysaccharides (QAPHs). Through gene ontology and KEGG pathway analysis, 20 characteristic pathways are found significantly enriched between the untreated group and the QAPH and QWPH groups. These pathways include the NOD-like receptor, Hepatitis C, and the PI3K-Akt signaling pathway. Atp13A4 and Gbgt1 have been identified as genes that are upregulated and downregulated in both the untreated group and the QWPH group, as well as in the untreated group and the QAPH group. These findings establish a theoretical foundation for exploring quinoa polysaccharides as an anti-obesity agent.
Collapse
Affiliation(s)
- Cong Teng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Shengyuan Guo
- College of Food and Bioengineering, Chengdu University, Chengdu 610106, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ying Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Guixing Ren
- College of Food and Bioengineering, Chengdu University, Chengdu 610106, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
9
|
Wiswedel R, Bui ATN, Kim J, Lee MK. Beta-Barrel Nanopores as Diagnostic Sensors: An Engineering Perspective. BIOSENSORS 2024; 14:345. [PMID: 39056622 PMCID: PMC11274599 DOI: 10.3390/bios14070345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Biological nanopores are ultrasensitive and highly attractive platforms for disease diagnostics, including the sequencing of viral and microbial genes and the detection of biomarkers and pathogens. To utilize biological nanopores as diagnostic sensors, they have been engineered through various methods resulting in the accurate and highly sensitive detection of biomarkers and disease-related biomolecules. Among diverse biological nanopores, the β-barrel-containing nanopores have advantages in nanopore engineering because of their robust structure, making them well-suited for modifications. In this review, we highlight the engineering approaches for β-barrel-containing nanopores used in single-molecule sensing for applications in early diagnosis and prognosis. In the highlighted studies, β-barrel nanopores can be modified by genetic mutation to change the structure; alter charge distributions; or add enzymes, aptamers, and protein probes to enhance sensitivity and accuracy. Furthermore, this review discusses challenges and future perspectives for advancing nanopore-based diagnostic sensors.
Collapse
Affiliation(s)
- Rani Wiswedel
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (R.W.); (A.T.N.B.); (J.K.)
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Anh Thi Ngoc Bui
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (R.W.); (A.T.N.B.); (J.K.)
| | - Jinhyung Kim
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (R.W.); (A.T.N.B.); (J.K.)
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Mi-Kyung Lee
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (R.W.); (A.T.N.B.); (J.K.)
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
10
|
Sonntag M, Elgeti VK, Vainshtein Y, Jenner L, Mueller J, Brenner T, Decker SO, Sohn K. Suppression PCR-Based Selective Enrichment Sequencing for Pathogen and Antimicrobial Resistance Detection on Cell-Free DNA in Sepsis-A Targeted, Blood Culture-Independent Approach for Rapid Pathogen and Resistance Diagnostics in Septic Patients. Int J Mol Sci 2024; 25:5463. [PMID: 38791501 PMCID: PMC11121775 DOI: 10.3390/ijms25105463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Sepsis is a life-threatening syndrome triggered by infection and accompanied by high mortality, with antimicrobial resistances (AMRs) further escalating clinical challenges. The rapid and reliable detection of causative pathogens and AMRs are key factors for fast and appropriate treatment, in order to improve outcomes in septic patients. However, current sepsis diagnostics based on blood culture is limited by low sensitivity and specificity while current molecular approaches fail to enter clinical routine. Therefore, we developed a suppression PCR-based selective enrichment sequencing approach (SUPSETS), providing a molecular method combining multiplex suppression PCR with Nanopore sequencing to identify most common sepsis-causative pathogens and AMRs using plasma cell-free DNA. Applying only 1 mL of plasma, we targeted eight pathogens across three kingdoms and ten AMRs in a proof-of-concept study. SUPSETS was successfully tested in an experimental research study on the first ten clinical samples and revealed comparable results to clinical metagenomics while clearly outperforming blood culture. Several clinically relevant AMRs could be additionally detected. Furthermore, SUPSETS provided first pathogen and AMR-specific sequencing reads within minutes of starting sequencing, thereby potentially decreasing time-to-results to 11-13 h and suggesting diagnostic potential in sepsis.
Collapse
Affiliation(s)
- Mirko Sonntag
- Innovation Field In-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany; (M.S.)
- Interfaculty Graduate School of Infection Biology and Microbiology (IGIM), Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Vanessa K. Elgeti
- Innovation Field In-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany; (M.S.)
- Faculty of Medicine, Greifswald University Medicine, Fleischmannstr. 8, 17475 Greifswald, Germany
| | - Yevhen Vainshtein
- Innovation Field In-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany; (M.S.)
| | - Lucca Jenner
- Innovation Field In-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany; (M.S.)
| | - Jan Mueller
- Innovation Field In-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany; (M.S.)
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna Biocenter 5, 1030 Vienna, Austria
- Max Perutz Labs, Department of Structural and Computational Biology, University of Vienna, CIBIV Vienna Biocenter 5, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030 Vienna, Austria
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Sebastian O. Decker
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Kai Sohn
- Innovation Field In-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany; (M.S.)
| |
Collapse
|
11
|
Ali J, Johansen W, Ahmad R. Short turnaround time of seven to nine hours from sample collection until informed decision for sepsis treatment using nanopore sequencing. Sci Rep 2024; 14:6534. [PMID: 38503770 PMCID: PMC10951244 DOI: 10.1038/s41598-024-55635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Bloodstream infections (BSIs) and sepsis are major health problems, annually claiming millions of lives. Traditional blood culture techniques, employed to identify sepsis-causing pathogens and assess antibiotic susceptibility, usually take 2-4 days. Early and accurate antibiotic prescription is vital in sepsis to mitigate mortality and antibiotic resistance. This study aimed to reduce the wait time for sepsis diagnosis by employing shorter blood culture incubation times for BD BACTEC™ bottles using standard laboratory incubators, followed by real-time nanopore sequencing and data analysis. The method was tested on nine blood samples spiked with clinical isolates from the six most prevalent sepsis-causing pathogens. The results showed that pathogen identification was possible at as low as 102-104 CFU/mL, achieved after just 2 h of incubation and within 40 min of nanopore sequencing. Moreover, all the antimicrobial resistance genes were identified at 103-107 CFU/mL, achieved after incubation for 5 h and only 10 min to 3 h of sequencing. Therefore, the total turnaround time from sample collection to the information required for an informed decision on the right antibiotic treatment was between 7 and 9 h. These results hold significant promise for better clinical management of sepsis compared with current culture-based methods.
Collapse
Affiliation(s)
- Jawad Ali
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 22, 2317, Hamar, Norway
| | - Wenche Johansen
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 22, 2317, Hamar, Norway
| | - Rafi Ahmad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 22, 2317, Hamar, Norway.
- Institute of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Hansine Hansens Veg 18, 9019, Tromsø, Norway.
| |
Collapse
|
12
|
Sandås K, Lewerentz J, Karlsson E, Karlsson L, Sundell D, Simonyté-Sjödin K, Sjödin A. Nanometa Live: a user-friendly application for real-time metagenomic data analysis and pathogen identification. Bioinformatics 2024; 40:btae108. [PMID: 38407280 PMCID: PMC10924712 DOI: 10.1093/bioinformatics/btae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/24/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024] Open
Abstract
SUMMARY Nanometa Live presents a user-friendly interface designed for real-time metagenomic data analysis and pathogen identification utilizing Oxford Nanopore Technologies' MinION and Flongle flow cells. It offers an efficient workflow and graphical interface for the visualization and interpretation of metagenomic data as it is being generated. Key features include automated BLAST validation, streamlined handling of custom Kraken2 databases, and a simplified graphical user interface for enhanced user experience. Nanometa Live is particularly notable for its capability to run without constant internet or server access once installed, setting it apart from similar tools. It provides a comprehensive view of taxonomic composition and facilitates the detection of user-defined pathogens or other species of interest, catering to both researchers and clinicians. AVAILABILITY AND IMPLEMENTATION Nanometa Live has been implemented as a local web application using the Dash framework with Snakemake handling the data processing. The source code is freely accessible on the GitHub repository at https://github.com/FOI-Bioinformatics/nanometa_live and it is easily installable using Bioconda. It includes containerization support via Docker and Singularity, ensuring ease of use, reproducibility, and portability.
Collapse
Affiliation(s)
- Kristofer Sandås
- Division of CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå 906 21, Sweden
| | - Jacob Lewerentz
- Division of CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå 906 21, Sweden
| | - Edvin Karlsson
- Division of CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå 906 21, Sweden
| | - Linda Karlsson
- Division of CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå 906 21, Sweden
| | - David Sundell
- Division of CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå 906 21, Sweden
| | | | - Andreas Sjödin
- Division of CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå 906 21, Sweden
| |
Collapse
|
13
|
Holzschuh A, Lerch A, Fakih BS, Aliy SM, Ali MH, Ali MA, Bruzzese DJ, Yukich J, Hetzel MW, Koepfli C. Using a mobile nanopore sequencing lab for end-to-end genomic surveillance of Plasmodium falciparum: A feasibility study. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002743. [PMID: 38300956 PMCID: PMC10833559 DOI: 10.1371/journal.pgph.0002743] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
Genomic epidemiology holds promise for malaria control and elimination efforts, for example by informing on Plasmodium falciparum genetic diversity and prevalence of mutations conferring anti-malarial drug resistance. Limited sequencing infrastructure in many malaria-endemic areas prevents the rapid generation of genomic data. To address these issues, we developed and validated assays for P. falciparum nanopore sequencing in endemic sites using a mobile laboratory, targeting key antimalarial drug resistance markers and microhaplotypes. Using two multiplexed PCR reactions, we amplified six highly polymorphic microhaplotypes and ten drug resistance markers. We developed a bioinformatics workflow that allows genotyping of polyclonal malaria infections, including minority clones. We validated the panels on mock dried blood spot (DBS) and rapid diagnostic test (RDT) samples and archived DBS, demonstrating even, high read coverage across amplicons (range: 580x to 3,212x median coverage), high haplotype calling accuracy, and the ability to explore within-sample diversity of polyclonal infections. We field-tested the feasibility of rapid genotyping in Zanzibar in close collaboration with the local malaria elimination program using DBS and routinely collected RDTs as sample inputs. Our assay identified haplotypes known to confer resistance to known antimalarials in the dhfr, dhps and mdr1 genes, but no evidence of artemisinin partial resistance. Most infections (60%) were polyclonal, with high microhaplotype diversity (median HE = 0.94). In conclusion, our assays generated actionable data within a few days, and we identified current challenges for implementing nanopore sequencing in endemic countries to accelerate malaria control and elimination.
Collapse
Affiliation(s)
- Aurel Holzschuh
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Anita Lerch
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Bakar S. Fakih
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Safia Mohammed Aliy
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Mohamed Haji Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Mohamed Ali Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Daniel J. Bruzzese
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Joshua Yukich
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, United States of America
| | - Manuel W. Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Cristian Koepfli
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
14
|
Patiño LH, Ballesteros N, Muñoz M, Jaimes J, Castillo-Castañeda AC, Madigan R, Paniz-Mondolfi A, Ramírez JD. Validation of Oxford nanopore sequencing for improved New World Leishmania species identification via analysis of 70-kDA heat shock protein. Parasit Vectors 2023; 16:458. [PMID: 38111024 PMCID: PMC10726620 DOI: 10.1186/s13071-023-06073-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Leishmaniasis is a parasitic disease caused by obligate intracellular protozoa of the genus Leishmania. This infection is characterized by a wide range of clinical manifestations, with symptoms greatly dependent on the causal parasitic species. Here we present the design and application of a new 70-kDa heat shock protein gene (hsp70)-based marker of 771 bp (HSP70-Long). We evaluated its sensitivity, specificity and diagnostic performance employing an amplicon-based MinION™ DNA sequencing assay to identify different Leishmania species in clinical samples from humans and reservoirs with cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL). We also conducted a comparative analysis between our novel marker and a previously published HSP70 marker known as HSP70-Short, which spans 330 bp. METHODS A dataset of 27 samples from Colombia, Venezuela and the USA was assembled, of which 26 samples were collected from humans, dogs and cats affected by CL and one sample was collected from a dog with VL in the USA (but originally from Greece). DNA was extracted from each sample and underwent conventional PCR amplification utilizing two distinct HSP70 markers: HSP70-Short and HSP70-Long. The subsequent products were then sequenced using the MinION™ sequencing platform. RESULTS The results highlight the distinct characteristics of the newly devised HSP70-Long primer, showcasing the notable specificity of this primer, although its sensitivity is lower than that of the HSP70-Short marker. Notably, both markers demonstrated strong discriminatory capabilities, not only in distinguishing between different species within the Leishmania genus but also in identifying instances of coinfection. CONCLUSIONS This study underscores the outstanding specificity and effectiveness of HSP70-based MinION™ sequencing, in successfully discriminating between diverse Leishmania species and identifying coinfection events within samples sourced from leishmaniasis cases.
Collapse
Affiliation(s)
- Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Jesús Jaimes
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Adriana C Castillo-Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Roy Madigan
- Animal Hospital of Smithson Valley, 286 Singing Oaks, Ste 113, Spring Branch, TX, 78070, USA
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
15
|
Braley LE, Jewell JB, Figueroa J, Humann JL, Main D, Mora-Romero GA, Moroz N, Woodhall JW, White RA, Tanaka K. Nanopore Sequencing with GraphMap for Comprehensive Pathogen Detection in Potato Field Soil. PLANT DISEASE 2023; 107:2288-2295. [PMID: 36724099 DOI: 10.1094/pdis-01-23-0052-sr] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Early detection of causal pathogens is important to prevent crop loss from diseases. However, some diseases, such as soilborne diseases, are difficult to diagnose due to the absence of visible or characteristic symptoms. In the present study, the use of the Oxford Nanopore MinION sequencer as a molecular diagnostic tool was assessed due to its long-read sequencing capabilities and portability. Nucleotide samples (DNA or RNA) from potato field soils were sequenced and analyzed using a locally curated pathogen database, followed by identification via sequence mapping. We performed computational speed tests of three commonly used mapping/annotation tools (BLAST, BWA-BLAST, and BWA-GraphMap) and found BWA-GraphMap to be the fastest tool for local searching against our curated pathogen database. The data collected demonstrate the high potential of Nanopore sequencing as a minimally biased diagnostic tool for comprehensive pathogen detection in soil from potato fields. Our GraphMap-based MinION sequencing method could be useful as a predictive approach for disease management by identifying pathogens present in field soil prior to planting. Although this method still needs further experimentation with a larger sample size for practical use, the data analysis pipeline presented can be applied to other cropping systems and diagnostics for detecting multiple pathogens.
Collapse
Affiliation(s)
- Lauren E Braley
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - Jeremy B Jewell
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - Jose Figueroa
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, U.S.A
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Kannapolis, NC 28081, U.S.A
| | - Jodi L Humann
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, U.S.A
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, U.S.A
| | - Guadalupe A Mora-Romero
- Unidad de Investigación en Ambiente y Salud, Universidad Autónoma de Occidente, Los Mochis, Sinaloa 81223, México
| | - Natalia Moroz
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - James W Woodhall
- Parma Research and Extension Center, University of Idaho, Parma, ID 83660-6699, U.S.A
| | - Richard Allen White
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, U.S.A
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Kannapolis, NC 28081, U.S.A
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| |
Collapse
|
16
|
Elton L, Kasaragod S, Donoghue H, Safar HA, Amankwah P, Zumla A, Witney AA, McHugh TD. Mapping the phylogeny and lineage history of geographically distinct BCG vaccine strains. Microb Genom 2023; 9:mgen001077. [PMID: 37526642 PMCID: PMC10483423 DOI: 10.1099/mgen.0.001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/05/2023] [Indexed: 08/02/2023] Open
Abstract
The bacillus Calmette-Guérin (BCG) vaccine has been in use for prevention of tuberculosis for over a century. It remains the only widely available tuberculosis vaccine and its protective efficacy has varied across geographical regions. Since it was developed, the BCG vaccine strain has been shared across different laboratories around the world, where use of differing culture methods has resulted in genetically distinct strains over time. Whilst differing BCG vaccine efficacy around the world is well documented, and the reasons for this may be multifactorial, it has been hypothesized that genetic differences in BCG vaccine strains contribute to this variation. Isolates from an historic archive of lyophilized BCG strains were regrown, DNA was extracted and then whole-genome sequenced using Oxford Nanopore Technologies. The resulting whole-genome data were plotted on a phylogenetic tree and analysed to identify the presence or absence of regions of difference (RDs) and single-nucleotide polymorphisms (SNPs) relating to virulence, growth and cell wall structure. Of 50 strains available, 36 were revived in culture and 39 were sequenced. Morphology differed between the strains distributed before and after 1934. There was phylogenetic association amongst certain geographically classified strains, most notably BCG-Russia, BCG-Japan and BCG-Danish. RD2, RD171 and RD713 deletions were associated with late strains (seeded after 1927). When mapped to BCG-Pasteur 1172, the SNPs in sigK, plaA, mmaA3 and eccC5 were associated with early strains. Whilst BCG-Russia, BCG-Japan and BCG-Danish showed strong geographical isolate clustering, the late strains, including BCG-Pasteur, showed more variation. A wide range of SNPs were seen within geographically classified strains, and as much intra-strain variation as between-strain variation was seen. The date of distribution from the original Pasteur laboratory (early pre-1927 or late post-1927) gave the strongest association with genetic differences in regions of difference and virulence-related SNPs, which agrees with the previous literature.
Collapse
Affiliation(s)
- Linzy Elton
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
| | - Sandeep Kasaragod
- Institute of Infection and Immunity, St George’s, University of London, London, UK
| | - Helen Donoghue
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
| | - Hussain A. Safar
- Genomics, Proteomics and Cellomics Sciences Research Unit (OMICSRU), Research Core Facility, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
| | - Priscilla Amankwah
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
| | - Alimuddin Zumla
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
- National Institute for Health and Care Research Biomedical Research Centre, University College London, London, UK
| | - Adam A. Witney
- Institute of Infection and Immunity, St George’s, University of London, London, UK
| | - Timothy D. McHugh
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
17
|
Behera DU, Dixit S, Gaur M, Mishra R, Sahoo RK, Sahoo M, Behera BK, Subudhi BB, Bharat SS, Subudhi E. Sequencing and Characterization of M. morganii Strain UM869: A Comprehensive Comparative Genomic Analysis of Virulence, Antibiotic Resistance, and Functional Pathways. Genes (Basel) 2023; 14:1279. [PMID: 37372459 DOI: 10.3390/genes14061279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Morganella morganii is a Gram-negative opportunistic Enterobacteriaceae pathogen inherently resistant to colistin. This species causes various clinical and community-acquired infections. This study investigated the virulence factors, resistance mechanisms, functional pathways, and comparative genomic analysis of M. morganii strain UM869 with 79 publicly available genomes. The multidrug resistance strain UM869 harbored 65 genes associated with 30 virulence factors, including efflux pump, hemolysin, urease, adherence, toxin, and endotoxin. Additionally, this strain contained 11 genes related to target alteration, antibiotic inactivation, and efflux resistance mechanisms. Further, the comparative genomic study revealed a high genetic relatedness (98.37%) among the genomes, possibly due to the dissemination of genes between adjoining countries. The core proteome of 79 genomes contains the 2692 core, including 2447 single-copy orthologues. Among them, six were associated with resistance to major antibiotic classes manifested through antibiotic target alteration (PBP3, gyrB) and antibiotic efflux (kpnH, rsmA, qacG; rsmA; CRP). Similarly, 47 core orthologues were annotated to 27 virulence factors. Moreover, mostly core orthologues were mapped to transporters (n = 576), two-component systems (n = 148), transcription factors (n = 117), ribosomes (n = 114), and quorum sensing (n = 77). The presence of diversity in serotypes (type 2, 3, 6, 8, and 11) and variation in gene content adds to the pathogenicity, making them more difficult to treat. This study highlights the genetic similarity among the genomes of M. morganii and their restricted emergence, mostly in Asian countries, in addition to their growing pathogenicity and resistance. However, steps must be taken to undertake large-scale molecular surveillance and to direct suitable therapeutic interventions.
Collapse
Affiliation(s)
- Dibyajyoti Uttameswar Behera
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Sangita Dixit
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Mahendra Gaur
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
- Department of Biotechnology & Food Technology, Punjabi University, Patiala 147002, Punjab, India
| | - Rukmini Mishra
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 761211, Odisha, India
| | - Rajesh Kumar Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Maheswata Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Bijay Kumar Behera
- College of Fisheries, Rani Lakshmi Bai Central Agricultural University, Gwalior Road, Jhansi 284003, Uttar Pradesh, India
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Sutar Suhas Bharat
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 761211, Odisha, India
| | - Enketeswara Subudhi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| |
Collapse
|
18
|
Usui M, Akiyoshi M, Fukuda A, Iwano H, Kato T. 16S rRNA nanopore sequencing for rapid diagnosis of causative bacteria in bovine mastitis. Res Vet Sci 2023; 161:45-49. [PMID: 37321010 DOI: 10.1016/j.rvsc.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
The rapid identification of specific bacterial pathogens in bovine mastitis is crucial for appropriate antimicrobial treatment. Sequencing of 16S rRNA gene amplicons is a proven, useful strategy for diagnosing bacterial infections. In this study, the use of 16S rRNA analysis with nanopore sequencer for the rapid identification of causative bacteria in bovine mastitis, was evaluated. DNA was extracted from 122 milk samples from cattle with suspected mastitis based on clinical symptoms. 16S rRNA gene amplicon sequencing was conducted using a nanopore sequencer. The efficacy of bacterial identification was verified by comparison with conventional culture methods. Nanopore sequencing identified the causative bacteria with high accuracy within approximately 6 h from the time of sample collection. When the major causative bacteria of bovine mastitis (Escherichia coli, Streptcoccus uberis, Klebsiella pneumoniae, and Staphylococcus aureus) were detected by nanopore sequencing, 98.3% of the results were consistent with identification through conventional culturing methods. 16S rRNA gene analysis using a nanopore sequencer enabled the rapid and accurate identification of bacterial species in bovine mastitis.
Collapse
Affiliation(s)
- Masaru Usui
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan.
| | - Misaki Akiyoshi
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan; Department of Large Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Akira Fukuda
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Hidetomo Iwano
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Toshihide Kato
- Department of Large Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
19
|
Koskela von Sydow A, Lindqvist CM, Asghar N, Johansson M, Sundqvist M, Mölling P, Stenmark B. Comparison of SARS-CoV-2 whole genome sequencing using tiled amplicon enrichment and bait hybridization. Sci Rep 2023; 13:6461. [PMID: 37081087 PMCID: PMC10116481 DOI: 10.1038/s41598-023-33168-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/07/2023] [Indexed: 04/22/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) pandemic has led to extensive virological monitoring by whole genome sequencing (WGS). Investigating the advantages and limitations of different protocols is key when conducting population-level WGS. SARS-CoV-2 positive samples with Ct values of 14-30 were run using three different protocols: the Twist Bioscience SARS‑CoV‑2 protocol with bait hybridization enrichment sequenced with Illumina, and two tiled amplicon enrichment protocols, ARTIC V3 and Midnight, sequenced with Illumina and Oxford Nanopore Technologies, respectively. Twist resulted in better coverage uniformity and coverage of the entire genome, but has several drawbacks: high human contamination, laborious workflow, high cost, and variation between batches. The ARTIC and Midnight protocol produced an even coverage across samples, and almost all reads were mapped to the SARS-CoV-2 reference. ARTIC and Midnight represent robust, cost-effective, and highly scalable methods that are appropriate in a clinical environment. Lineage designations were uniform across methods, representing the dominant lineages in Sweden during the period of collection. This study provides insights into methodological differences in SARS‑CoV‑2 sequencing and guidance in selecting suitable methods for various purposes.
Collapse
Affiliation(s)
- Anita Koskela von Sydow
- Department of Laboratory Medicine, Clinical Pathology and Genetics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
- Clinical Genomics, Science for Life Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Carl Mårten Lindqvist
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Clinical Genomics, Science for Life Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Naveed Asghar
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Johansson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Martin Sundqvist
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Paula Mölling
- Clinical Genomics, Science for Life Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Bianca Stenmark
- Department of Laboratory Medicine, Clinical Pathology and Genetics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Clinical Genomics, Science for Life Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
20
|
Chapman R, Jones L, D'Angelo A, Suliman A, Anwar M, Bagby S. Nanopore-Based Metagenomic Sequencing in Respiratory Tract Infection: A Developing Diagnostic Platform. Lung 2023; 201:171-179. [PMID: 37009923 PMCID: PMC10067523 DOI: 10.1007/s00408-023-00612-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 04/04/2023]
Abstract
Respiratory tract infection (RTI) remains a significant cause of morbidity and mortality across the globe. The optimal management of RTI relies upon timely pathogen identification via evaluation of respiratory samples, a process which utilises traditional culture-based methods to identify offending microorganisms. This process can be slow and often prolongs the use of broad-spectrum antimicrobial therapy, whilst also delaying the introduction of targeted therapy as a result. Nanopore sequencing (NPS) of respiratory samples has recently emerged as a potential diagnostic tool in RTI. NPS can identify pathogens and antimicrobial resistance profiles with greater speed and efficiency than traditional sputum culture-based methods. Increased speed to pathogen identification can improve antimicrobial stewardship by reducing the use of broad-spectrum antibiotic therapy, as well as improving overall clinical outcomes. This new technology is becoming more affordable and accessible, with some NPS platforms requiring minimal sample preparation and laboratory infrastructure. However, questions regarding clinical utility and how best to implement NPS technology within RTI diagnostic pathways remain unanswered. In this review, we introduce NPS as a technology and as a diagnostic tool in RTI in various settings, before discussing the advantages and limitations of NPS, and finally what the future might hold for NPS platforms in RTI diagnostics.
Collapse
Affiliation(s)
- Robert Chapman
- Princess Alexandra Hospital, Hamstel Road, Harlow, CM20 1QX, UK.
| | - Luke Jones
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Alberto D'Angelo
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Ahmed Suliman
- Princess Alexandra Hospital, Hamstel Road, Harlow, CM20 1QX, UK
| | - Muhammad Anwar
- Princess Alexandra Hospital, Hamstel Road, Harlow, CM20 1QX, UK
| | - Stefan Bagby
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
21
|
Xia Y, Li X, Wu Z, Nie C, Cheng Z, Sun Y, Liu L, Zhang T. Strategies and tools in illumina and nanopore-integrated metagenomic analysis of microbiome data. IMETA 2023; 2:e72. [PMID: 38868337 PMCID: PMC10989838 DOI: 10.1002/imt2.72] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 06/14/2024]
Abstract
Metagenomic strategy serves as the foundation for the ecological exploration of novel bioresources (e.g., industrial enzymes and bioactive molecules) and biohazards (e.g., pathogens and antibiotic resistance genes) in natural and engineered microbial systems across multiple disciplines. Recent advancements in sequencing technology have fostered rapid development in the field of microbiome research where an increasing number of studies have applied both illumina short reads (SRs) and nanopore long reads (LRs) sequencing in their metagenomic workflow. However, given the high complexity of an environmental microbiome data set and the bioinformatic challenges caused by the unique features of these sequencing technologies, integrating SRs and LRs is not as straightforward as one might assume. The fast renewal of existing tools and growing diversity of new algorithms make access to this field even more difficult. Therefore, here we systematically summarized the complete workflow from DNA extraction to data processing strategies for applying illumina and nanopore-integrated metagenomics in the investigation in environmental microbiomes. Overall, this review aims to provide a timely knowledge framework for researchers that are interested in or are struggling with the SRs and LRs integration in their metagenomic analysis. The discussions presented will facilitate improved ecological understanding of community functionalities and assembly of natural, engineered, and human microbiomes, benefiting researchers from multiple disciplines.
Collapse
Affiliation(s)
- Yu Xia
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
- State Environmental Protection Key Laboratory of Integrated Surface Water‐Groundwater Pollution Control, School of Environmental Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Xiang Li
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Ziqi Wu
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Cailong Nie
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Yuhong Sun
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology LaboratoryThe University of Hong KongHong Kong SARChina
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology LaboratoryThe University of Hong KongHong Kong SARChina
| |
Collapse
|
22
|
Park DG, Ha ES, Kang B, Choi I, Kwak JE, Choi J, Park J, Lee W, Kim SH, Kim SH, Lee JH. Development and Evaluation of a Next-Generation Sequencing Panel for the Multiple Detection and Identification of Pathogens in Fermented Foods. J Microbiol Biotechnol 2023; 33:83-95. [PMID: 36457187 PMCID: PMC9895999 DOI: 10.4014/jmb.2211.11009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022]
Abstract
These days, bacterial detection methods have some limitations in sensitivity, specificity, and multiple detection. To overcome these, novel detection and identification method is necessary to be developed. Recently, NGS panel method has been suggested to screen, detect, and even identify specific foodborne pathogens in one reaction. In this study, new NGS panel primer sets were developed to target 13 specific virulence factor genes from five types of pathogenic Escherichia coli, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium, respectively. Evaluation of the primer sets using singleplex PCR, crosscheck PCR and multiplex PCR revealed high specificity and selectivity without interference of primers or genomic DNAs. Subsequent NGS panel analysis with six artificially contaminated food samples using those primer sets showed that all target genes were multi-detected in one reaction at 108-105 CFU of target strains. However, a few false-positive results were shown at 106-105 CFU. To validate this NGS panel analysis, three sets of qPCR analyses were independently performed with the same contaminated food samples, showing the similar specificity and selectivity for detection and identification. While this NGS panel still has some issues for detection and identification of specific foodborne pathogens, it has much more advantages, especially multiple detection and identification in one reaction, and it could be improved by further optimized NGS panel primer sets and even by application of a new real-time NGS sequencing technology. Therefore, this study suggests the efficiency and usability of NGS panel for rapid determination of origin strain in various foodborne outbreaks in one reaction.
Collapse
Affiliation(s)
- Dong-Geun Park
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Su Ha
- Research and Development Center, Sanigen Co., Ltd, Anyang 14059, Republic of Korea
| | - Byungcheol Kang
- Research and Development Center, Sanigen Co., Ltd, Anyang 14059, Republic of Korea
| | - Iseul Choi
- Research and Development Center, Sanigen Co., Ltd, Anyang 14059, Republic of Korea
| | - Jeong-Eun Kwak
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinho Choi
- Research and Development Center, Sanigen Co., Ltd, Anyang 14059, Republic of Korea
| | - Jeongwoong Park
- Research and Development Center, Sanigen Co., Ltd, Anyang 14059, Republic of Korea
| | - Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Seung Hwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Soon Han Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea,Corresponding author Phone: +82-2-880-4854 Fax: +82-2-873-5095 E-mail:
| |
Collapse
|
23
|
Huggins LG, Koehler AV, Gasser RB, Traub RJ. Advanced approaches for the diagnosis and chemoprevention of canine vector-borne pathogens and parasites-Implications for the Asia-Pacific region and beyond. ADVANCES IN PARASITOLOGY 2023; 120:1-85. [PMID: 36948727 DOI: 10.1016/bs.apar.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Vector-borne pathogens (VBPs) of canines are a diverse range of infectious agents, including viruses, bacteria, protozoa and multicellular parasites, that are pernicious and potentially lethal to their hosts. Dogs across the globe are afflicted by canine VBPs, but the range of different ectoparasites and the VBPs that they transmit predominate in tropical regions. Countries within the Asia-Pacific have had limited prior research dedicated to exploring the epidemiology of canine VBPs, whilst the few studies that have been conducted show VBP prevalence to be high, with significant impacts on dog health. Moreover, such impacts are not restricted to dogs, as some canine VBPs are zoonotic. We reviewed the status of canine VBPs in the Asia-Pacific, with particular focus on nations in the tropics, whilst also investigating the history of VBP diagnosis and examining recent progress in the field, including advanced molecular methods, such as next-generation sequencing (NGS). These tools are rapidly changing the way parasites are detected and discovered, demonstrating a sensitivity equal to, or exceeding that of, conventional molecular diagnostics. We also provide a background to the armoury of chemopreventive products available for protecting dogs from VBP. Here, field-based research within high VBP pressure environments has underscored the importance of ectoparasiticide mode of action on their overall efficacy. The future of canine VBP diagnosis and prevention at a global level is also explored, highlighting how evolving portable sequencing technologies may permit diagnosis at point-of-care, whilst further research into chemopreventives will be essential if VBP transmission is to be effectively controlled.
Collapse
Affiliation(s)
- Lucas G Huggins
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia.
| | - Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Rebecca J Traub
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
24
|
Courtot É, Boisseau M, Dhorne-Pollet S, Serreau D, Gesbert A, Reigner F, Basiaga M, Kuzmina T, Lluch J, Annonay G, Kuchly C, Diekmann I, Krücken J, von Samson-Himmelstjerna G, Mach N, Sallé G. Comparison of two molecular barcodes for the study of equine strongylid communities with amplicon sequencing. PeerJ 2023; 11:e15124. [PMID: 37070089 PMCID: PMC10105562 DOI: 10.7717/peerj.15124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/03/2023] [Indexed: 04/19/2023] Open
Abstract
Basic knowledge on the biology and epidemiology of equine strongylid species still needs to be improved to contribute to the design of better parasite control strategies. Nemabiome metabarcoding is a convenient tool to quantify and identify species in bulk samples that could overcome the hurdle that cyathostomin morphological identification represents. To date, this approach has relied on the internal transcribed spacer 2 (ITS-2) of the ribosomal RNA gene, with a limited investigation of its predictive performance for cyathostomin communities. Using DNA pools of single cyathostomin worms, this study aimed to provide the first elements to compare performances of the ITS-2 and a cytochrome c oxidase subunit I (COI) barcode newly developed in this study. Barcode predictive abilities were compared across various mock community compositions of two, five and 11 individuals from distinct species. The amplification bias of each barcode was estimated. Results were also compared between various types of biological samples, i.e., eggs, infective larvae or adults. Bioinformatic parameters were chosen to yield the closest representation of the cyathostomin community for each barcode, underscoring the need for communities of known composition for metabarcoding purposes. Overall, the proposed COI barcode was suboptimal relative to the ITS-2 rDNA region, because of PCR amplification biases, reduced sensitivity and higher divergence from the expected community composition. Metabarcoding yielded consistent community composition across the three sample types. However, imperfect correlations were found between relative abundances from infective larvae and other life-stages for Cylicostephanus species using the ITS-2 barcode. While the results remain limited by the considered biological material, they suggest that additional improvements are needed for both the ITS-2 and COI barcodes.
Collapse
Affiliation(s)
- Élise Courtot
- Animal Health, UMR1282 Infectiologie et Santé Publique, INRAE, Nouzilly, France
| | - Michel Boisseau
- Animal Health, UMR1282 Infectiologie et Santé Publique, INRAE, Nouzilly, France
- Animal Health, UMR1225 IHAP, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Toulouse, France
| | | | - Delphine Serreau
- Animal Health, UMR1282 Infectiologie et Santé Publique, INRAE, Nouzilly, France
| | - Amandine Gesbert
- Animal Physiology, UEPAO, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Nouzilly, France
| | - Fabrice Reigner
- Animal Physiology, UEPAO, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Nouzilly, France
| | | | - Tetiana Kuzmina
- Schmalhausen Institute of Zoology NAS of Ukraine, Kyiv, Ukraine
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Jérôme Lluch
- GeT-PlaGe, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Toulouse, France
| | - Gwenolah Annonay
- GeT-PlaGe, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Toulouse, France
| | - Claire Kuchly
- GeT-PlaGe, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Toulouse, France
| | - Irina Diekmann
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Nuria Mach
- Animal Health, UMR1225 IHAP, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Toulouse, France
| | - Guillaume Sallé
- Animal Health, UMR1282 Infectiologie et Santé Publique, INRAE, Nouzilly, France
| |
Collapse
|
25
|
Cheng H, Sun Y, Yang Q, Deng M, Yu Z, Zhu G, Qu J, Liu L, Yang L, Xia Y. A rapid bacterial pathogen and antimicrobial resistance diagnosis workflow using Oxford nanopore adaptive sequencing method. Brief Bioinform 2022; 23:6762743. [PMID: 36259361 DOI: 10.1093/bib/bbac453] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022] Open
Abstract
Metagenomic sequencing analysis (mNGS) has been implemented as an alternative approach for pathogen diagnosis in recent years, which is independent of cultivation and is able to identify all potential antibiotic resistance genes (ARGs). However, current mNGS methods have to deal with low amounts of prokaryotic deoxyribonucleic acid (DNA) and high amounts of host DNA in clinical samples, which significantly decrease the overall microbial detection resolution. The recently released nanopore adaptive sampling (NAS) technology facilitates immediate mapping of individual nucleotides to a given reference as each molecule is sequenced. User-defined thresholds allow for the retention or rejection of specific molecules, informed by the real-time reference mapping results, as they are physically passing through a given sequencing nanopore. We developed a metagenomics workflow for ultra-sensitive diagnosis of bacterial pathogens and ARGs from clinical samples, which is based on the efficient selective 'human host depletion' NAS sequencing, real-time species identification and species-specific resistance gene prediction. Our method increased the microbial sequence yield at least 8-fold in all 21 sequenced clinical Bronchoalveolar Lavage Fluid (BALF) samples (4.5 h from sample to result) and accurately detected the ARGs at species level. The species-level positive percent agreement between metagenomic sequencing and laboratory culturing was 100% (16/16) and negative percent agreement was 100% (5/5) in our approach. Further work is required for a more robust validation of our approach with large sample size to allow its application to other infection types.
Collapse
Affiliation(s)
- Hang Cheng
- School of Medicine, Southern University of Science and Technology of China, Shenzhen 518055, China
| | - Yuhong Sun
- School of Environmental Science & Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China
| | - Qing Yang
- School of Environmental Science & Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China
| | - Minggui Deng
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518055, China
| | - Zhijian Yu
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518055, China
| | - Gang Zhu
- Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiuxin Qu
- Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Liu
- Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518055, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology of China, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science & Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China
| |
Collapse
|
26
|
Rodríguez-Pérez H, Ciuffreda L, Flores C. NanoRTax, a real-time pipeline for taxonomic and diversity analysis of nanopore 16S rRNA amplicon sequencing data. Comput Struct Biotechnol J 2022; 20:5350-5354. [PMID: 36212537 PMCID: PMC9522874 DOI: 10.1016/j.csbj.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
Background The study of microbial communities and their applications have been leveraged by advances in sequencing techniques and bioinformatics tools. The Oxford Nanopore Technologies long-read sequencing by nanopores provides a portable and cost-efficient platform for sequencing assays. While this opens the possibility of sequencing applications outside specialized environments and real-time analysis of data, complementing the existing efficient library preparation protocols with streamlined bioinformatic workflows is required. Results Here we present NanoRTax, a Nextflow pipeline for nanopore 16S rRNA gene amplicon data that features state-of-the-art taxonomic classification tools and real-time capability. The pipeline is paired with a web-based visual interface to enable user-friendly inspections of the experiment in progress. NanoRTax workflow and a simulated real-time analysis were used to validate the prediction of adult Intensive Care Unit patient mortality based on full-length 16S rRNA sequencing data from respiratory microbiome samples. Conclusions This constitutes a proof-of-concept simulation study of how real-time bioinformatic workflows could be used to shorten the turnaround times in critical care settings and provides an instrument for future research on early-response strategies for sepsis.
Collapse
Affiliation(s)
- Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife 38010, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife 38010, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife 38010, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid 28029, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Granadilla, Santa Cruz de Tenerife, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
27
|
Lang J. NanoCoV19: An analytical pipeline for rapid detection of severe acute respiratory syndrome coronavirus 2. Front Genet 2022; 13:1008792. [PMID: 36186464 PMCID: PMC9520466 DOI: 10.3389/fgene.2022.1008792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Nanopore sequencing technology (NST) has become a rapid and cost-effective method for the diagnosis and epidemiological surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the coronavirus disease 2019 (COVID-19) pandemic. Compared with short-read sequencing platforms (e.g., Illumina's), nanopore long-read sequencing platforms effectively shorten the time required to complete the detection process. However, due to the principles and data characteristics of NST, the accuracy of sequencing data has been reduced, thereby limiting monitoring and lineage analysis of SARS-CoV-2. In this study, we developed an analytical pipeline for SARS-CoV-2 rapid detection and lineage identification that integrates phylogenetic-tree and hotspot mutation analysis, which we have named NanoCoV19. This method not only can distinguish and trace the lineages contained in the alpha, beta, delta, gamma, lambda, and omicron variants of SARS-CoV-2 but is also rapid and efficient, completing overall analysis within 1 h. We hope that NanoCoV19 can be used as an auxiliary tool for rapid subtyping and lineage analysis of SARS-CoV-2 and, more importantly, that it can promote further applications of NST in public-health and -safety plans similar to those formulated to address the COVID-19 outbreak.
Collapse
Affiliation(s)
- Jidong Lang
- Department of Bioinformatics, Qitan Technology (Beijing) Co., Ltd., Beijing, China
| |
Collapse
|
28
|
Mori M, Ode H, Kubota M, Nakata Y, Kasahara T, Shigemi U, Okazaki R, Matsuda M, Matsuoka K, Sugimoto A, Hachiya A, Imahashi M, Yokomaku Y, Iwatani Y. Nanopore Sequencing for Characterization of HIV-1 Recombinant Forms. Microbiol Spectr 2022; 10:e0150722. [PMID: 35894615 PMCID: PMC9431566 DOI: 10.1128/spectrum.01507-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
High genetic diversity, including the emergence of recombinant forms (RFs), is one of the most prominent features of human immunodeficiency virus type 1 (HIV-1). Conventional detection of HIV-1 RFs requires pretreatments, i.e., cloning or single-genome amplification, to distinguish them from dual- or multiple-infection variants. However, these processes are time-consuming and labor-intensive. Here, we constructed a new nanopore sequencing-based platform that enables us to obtain distinctive genetic information for intersubtype RFs and dual-infection HIV-1 variants by using amplicons of HIV-1 near-full-length genomes or two overlapping half-length genome fragments. Repeated benchmark tests of HIV-1 proviral DNA revealed consensus sequence inference with a reduced error rate, allowing us to obtain sufficiently accurate sequence data. In addition, we applied the platform for sequence analyses of 9 clinical samples with suspected HIV-1 RF infection or dual infection according to Sanger sequencing-based genotyping tests for HIV-1 drug resistance. For each RF infection case, replicated analyses involving our nanopore sequencing-based platform consistently produced long consecutive analogous consensus sequences with mosaic genomic structures consisting of two different subtypes. In contrast, we detected multiple heterologous sequences in each dual-infection case. These results demonstrate that our new nanopore sequencing platform is applicable to identify the full-length HIV-1 genome structure of intersubtype RFs as well as dual-infection heterologous HIV-1. Since the genetic diversity of HIV-1 continues to gradually increase, this system will help accelerate full-length genome analysis and molecular epidemiological surveillance for HIV-1. IMPORTANCE HIV-1 is characterized by large genetic differences, including HIV-1 recombinant forms (RFs). Conventional genetic analyses require time-consuming pretreatments, i.e., cloning or single-genome amplification, to distinguish RFs from dual- or multiple-infection cases. In this study, we developed a new analytical system for HIV-1 sequence data obtained by nanopore sequencing. The error rate of this method was reduced to ~0.06%. We applied this system for sequence analyses of 9 clinical samples with suspected HIV-1 RF infection or dual infection, which were extracted from 373 cases of HIV patients based on our retrospective analysis of HIV-1 drug resistance genotyping test results. We found that our new nanopore sequencing platform is applicable to identify the full-length HIV-1 genome structure of intersubtype RFs as well as dual-infection heterologous HIV-1. Our protocol will be useful for epidemiological surveillance to examine HIV-1 transmission as well as for genotypic tests of HIV-1 drug resistance in clinical settings.
Collapse
Affiliation(s)
- Mikiko Mori
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Mai Kubota
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yoshihiro Nakata
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaaki Kasahara
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Urara Shigemi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Reiko Okazaki
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masakazu Matsuda
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kazuhiro Matsuoka
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Atsuko Sugimoto
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Atsuko Hachiya
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Mayumi Imahashi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yoshiyuki Yokomaku
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
29
|
PathoLive—Real-Time Pathogen Identification from Metagenomic Illumina Datasets. Life (Basel) 2022; 12:life12091345. [PMID: 36143382 PMCID: PMC9505849 DOI: 10.3390/life12091345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Over the past years, NGS has become a crucial workhorse for open-view pathogen diagnostics. Yet, long turnaround times result from using massively parallel high-throughput technologies as the analysis can only be performed after sequencing has finished. The interpretation of results can further be challenged by contaminations, clinically irrelevant sequences, and the sheer amount and complexity of the data. We implemented PathoLive, a real-time diagnostics pipeline for the detection of pathogens from clinical samples hours before sequencing has finished. Based on real-time alignment with HiLive2, mappings are scored with respect to common contaminations, low-entropy areas, and sequences of widespread, non-pathogenic organisms. The results are visualized using an interactive taxonomic tree that provides an easily interpretable overview of the relevance of hits. For a human plasma sample that was spiked in vitro with six pathogenic viruses, all agents were clearly detected after only 40 of 200 sequencing cycles. For a real-world sample from Sudan, the results correctly indicated the presence of Crimean-Congo hemorrhagic fever virus. In a second real-world dataset from the 2019 SARS-CoV-2 outbreak in Wuhan, we found the presence of a SARS coronavirus as the most relevant hit without the novel virus reference genome being included in the database. For all samples, clinically irrelevant hits were correctly de-emphasized. Our approach is valuable to obtain fast and accurate NGS-based pathogen identifications and correctly prioritize and visualize them based on their clinical significance: PathoLive is open source and available on GitLab and BioConda.
Collapse
|
30
|
The Notable Achievements and the Prospects of Bacterial Pathogen Genomics. Microorganisms 2022; 10:microorganisms10051040. [PMID: 35630482 PMCID: PMC9148168 DOI: 10.3390/microorganisms10051040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Throughout the entirety of human history, bacterial pathogens have played an important role and even shaped the fate of civilizations. The application of genomics within the last 27 years has radically changed the way we understand the biology and evolution of these pathogens. In this review, we discuss how the short- (Illumina) and long-read (PacBio, Oxford Nanopore) sequencing technologies have shaped the discipline of bacterial pathogen genomics, in terms of fundamental research (i.e., evolution of pathogenicity), forensics, food safety, and routine clinical microbiology. We have mined and discuss some of the most prominent data/bioinformatics resources such as NCBI pathogens, PATRIC, and Pathogenwatch. Based on this mining, we present some of the most popular sequencing technologies, hybrid approaches, assemblers, and annotation pipelines. A small number of bacterial pathogens are of very high importance, and we also present the wealth of the genomic data for these species (i.e., which ones they are, the number of antimicrobial resistance genes per genome, the number of virulence factors). Finally, we discuss how this discipline will probably be transformed in the near future, especially by transitioning into metagenome-assembled genomes (MAGs), thanks to long-read sequencing.
Collapse
|
31
|
Lin Y, Yang L, Qiu S, Yang C, Wang K, Li J, Jia L, Li P, Song H. Rapid Identification and Source Tracing of a Salmonella Typhimurium Outbreak in China by Metagenomic and Whole-Genome Sequencing. Foodborne Pathog Dis 2022; 19:259-265. [PMID: 35420907 DOI: 10.1089/fpd.2021.0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Salmonella spp. are among the most prevalent foodborne pathogens. Rapid identification of etiologic agents during foodborne outbreaks is of great importance. In this study, we report a traceback investigation of a Salmonella outbreak in China. Metagenomic sequencing of suspected food samples was performed on MinION and MiSeq platforms. Real-time nanopore sequencing analysis identified reads belonging to the Enterobacteriaceae family. MiSeq sequencing identified 63 reads specifically mapped to Salmonella. Conventional methods including quantitative-PCR and culture-based isolation confirmed as Salmonella enterica serovar Typhimurium. The foodborne outbreak of Salmonella Typhimurium was further recognized by whole-genome sequencing and pulsed-field gel electrophoresis analysis. Our study demonstrates the ability of metagenomic sequencing to rapidly identify enteric pathogens directly from food samples. These results highlight the capacity of metagenomic sequencing to deliver actionable information rapidly and to expedite the tracing and identification of etiologic agents during foodborne outbreaks.
Collapse
Affiliation(s)
- Yanfeng Lin
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Lang Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shaofu Qiu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chaojie Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Kaiying Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jinhui Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Leili Jia
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Peng Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
32
|
van der Putten BCL, Huijsmans NAH, Mende DR, Schultsz C. Benchmarking the topological accuracy of bacterial phylogenomic workflows using in silico evolution. Microb Genom 2022; 8. [PMID: 35290758 PMCID: PMC9176278 DOI: 10.1099/mgen.0.000799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic analyses are widely used in microbiological research, for example to trace the progression of bacterial outbreaks based on whole-genome sequencing data. In practice, multiple analysis steps such as de novo assembly, alignment and phylogenetic inference are combined to form phylogenetic workflows. Comprehensive benchmarking of the accuracy of complete phylogenetic workflows is lacking. To benchmark different phylogenetic workflows, we simulated bacterial evolution under a wide range of evolutionary models, varying the relative rates of substitution, insertion, deletion, gene duplication, gene loss and lateral gene transfer events. The generated datasets corresponded to a genetic diversity usually observed within bacterial species (≥95 % average nucleotide identity). We replicated each simulation three times to assess replicability. In total, we benchmarked 19 distinct phylogenetic workflows using 8 different simulated datasets. We found that recently developed k-mer alignment methods such as kSNP and ska achieve similar accuracy as reference mapping. The high accuracy of k-mer alignment methods can be explained by the large fractions of genomes these methods can align, relative to other approaches. We also found that the choice of de novo assembly algorithm influences the accuracy of phylogenetic reconstruction, with workflows employing SPAdes or skesa outperforming those employing Velvet. Finally, we found that the results of phylogenetic benchmarking are highly variable between replicates. We conclude that for phylogenomic reconstruction, k-mer alignment methods are relevant alternatives to reference mapping at the species level, especially in the absence of suitable reference genomes. We show de novo genome assembly accuracy to be an underappreciated parameter required for accurate phylogenomic reconstruction.
Collapse
Affiliation(s)
- Boas C L van der Putten
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Niek A H Huijsmans
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel R Mende
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Constance Schultsz
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Yonkus JA, Whittle E, Alva-Ruiz R, Abdelrahman AM, Horsman SE, Suh GA, Cunningham SA, Nelson H, Grotz TE, Smoot RL, Cleary SP, Nagorney DM, Kendrick ML, Patel R, Truty MJ, Chia N. "Answers in hours": A prospective clinical study using nanopore sequencing for bile duct cultures. Surgery 2022; 171:693-702. [PMID: 34973809 DOI: 10.1016/j.surg.2021.09.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Surgical site infection is a major source of morbidity in patients undergoing pancreatic head resection and is often from organisms in intraoperative bile duct cultures. As such, many institutions use prolonged prophylactic antibiotics and tailor based on bile duct cultures. However, standard cultures take days, leaving many patients unnecessarily on prolonged antibiotics. Nanopore sequencing can provide data in hours and, thus, has the potential to improve antibiotic stewardship. The present study investigates the feasibility of nanopore sequencing in intraoperative bile samples. METHODS Patients undergoing pancreatic head resection were included. Intra-operative bile microbial profiles were determined with standard cultures and nanopore sequencing. Antibiotic recommendations were generated, and time-to-results determined for both methods. Organism yields, resistance patterns, antibiotic recommendations, and costs were compared. RESULTS Out of 42 patients, 22 (52%) had samples resulting in positive standard cultures. All positive standard cultures had microbes detected using nanopore sequencing. All 20 patients with negative standard cultures had negative nanopore sequencing. Nanopore sequencing detected more bacterial species compared to standard cultures (10.5 vs 4.4, p < 0.05) and more resistance genotypes (10.3 vs 2.7, p < 0.05). Antimicrobial recommendations based on nanopore sequencing provided coverage for standard cultures in 27 out of 44 (61%) samples, with broader coverage recommended by nanopore sequencing in 13 out of 27 (48%) of these samples. Nanopore sequencing results were faster (8 vs 98 hours) than standard cultures but had higher associated costs ($165 vs $38.49). CONCLUSION Rapid microbial profiling with nanopore sequencing is feasible with broader organism and resistance profiling compared to standard cultures. Nanopore sequencing has perfect negative predictive value and can potentially improve antibiotic stewardship; thus, a randomized control trial is under development.
Collapse
Affiliation(s)
- Jennifer A Yonkus
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Emma Whittle
- Division of Surgical Research, Department of Surgery; Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Roberto Alva-Ruiz
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Amro M Abdelrahman
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Susan E Horsman
- Department of Pharmacy, College of Medicine, Mayo Clinic, Rochester, MN
| | - Gina A Suh
- Division of Infectious Disease, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Scott A Cunningham
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Heidi Nelson
- Division of Research and Optimal Patient Care, Cancer Programs, American College of Surgeons, Rochester, MN
| | - Travis E Grotz
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Rory L Smoot
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Sean P Cleary
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - David M Nagorney
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Michael L Kendrick
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Robin Patel
- Division of Infectious Disease, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Mark J Truty
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Nicholas Chia
- Division of Surgical Research, Department of Surgery; Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
34
|
Whittle E, Yonkus JA, Jeraldo P, Alva-Ruiz R, Nelson H, Kendrick ML, Grys TE, Patel R, Truty MJ, Chia N. Optimizing Nanopore Sequencing for Rapid Detection of Microbial Species and Antimicrobial Resistance in Patients at Risk of Surgical Site Infections. mSphere 2022; 7:e0096421. [PMID: 35171692 PMCID: PMC8849348 DOI: 10.1128/msphere.00964-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Surgical site infections (SSI) are a significant burden to patients and health care systems. We evaluated the use of Nanopore sequencing (NS) to rapidly detect microbial species and antimicrobial resistance (AMR) genes present in intraoperative bile aspirates. Bile aspirates from 42 patients undergoing pancreatic head resection were included. Three methods of DNA extraction using mechanical cell lysis or protease cell lysis were compared to determine the optimum method of DNA extraction. The impact of host DNA depletion, sequence run duration, and use of different AMR gene databases was also assessed. To determine clinical value, NS results were compared to standard culture (SC) results. NS identified microbial species in all culture positive samples. Mechanical lysis improved NS detection of cultured species from 60% to 76%, enabled detection of fungal species, and increased AMR predictions. Host DNA depletion improved detection of streptococcal species and AMR correlation with SC. Selection of AMR database influenced the number of AMR hits and resistance profile of 13 antibiotics. AMR prediction using CARD and ResFinder 4.1 correctly predicted 79% and 81% of the bile antibiogram, respectively. Sequence run duration positively correlated with detection of AMR genes. A minimum of 6 h was required to characterize the biliary microbes, resulting in a turnaround time of 14 h. Rapid identification of microbial species and AMR genes can be achieved by NS. NS results correlated with SC, suggesting that NS may be useful in guiding early antimicrobial therapy postsurgery. IMPORTANCE Surgical site infections (SSI) are a significant burden to patients and health care systems. They increase mortality rates, length of hospital stays, and associated health care costs. To reduce the risk of SSI, surgical patients are administered broad-spectrum antibiotics that are later adapted to target microbial species detected at the site of surgical incision. Use of broad-spectrum antibiotics can be harmful to the patient. We wanted to develop a rapid method of detecting microbial species and their antimicrobial resistance phenotypes. We developed a method of detecting microbial species and predicting resistance phenotypes using Nanopore sequencing. Results generated using Nanopore sequencing were similar to current methods of detection but were obtained in a significantly shorter amount of time. This suggests that Nanopore sequencing could be used to tailor antibiotics in surgical patients and reduce use of broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Emma Whittle
- Division of Surgical Research, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Jennifer A. Yonkus
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Patricio Jeraldo
- Division of Surgical Research, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Roberto Alva-Ruiz
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Heidi Nelson
- Division of Research and Optimal Patient Care, Cancer Programs, American College of Surgeonsgrid.417954.a, Chicago, Illinois, USA
| | - Michael L. Kendrick
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Thomas E. Grys
- Department of Laboratory Medicine and Pathology, Mayo Clinicgrid.66875.3a, Phoenix, Arizona, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Mark J. Truty
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Nicholas Chia
- Division of Surgical Research, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| |
Collapse
|
35
|
Marcolungo L, Passera A, Maestri S, Segala E, Alfano M, Gaffuri F, Marturano G, Casati P, Bianco PA, Delledonne M. Real-Time On-Site Diagnosis of Quarantine Pathogens in Plant Tissues by Nanopore-Based Sequencing. Pathogens 2022; 11:pathogens11020199. [PMID: 35215142 PMCID: PMC8876587 DOI: 10.3390/pathogens11020199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/29/2022] [Indexed: 12/31/2022] Open
Abstract
Rapid and sensitive assays for the identification of plant pathogens are necessary for the effective management of crop diseases. The main limitation of current diagnostic testing is the inability to combine broad and sensitive pathogen detection with the identification of key strains, pathovars, and subspecies. Such discrimination is necessary for quarantine pathogens, whose management is strictly dependent on genotype identification. To address these needs, we have established and evaluated a novel all-in-one diagnostic assay based on nanopore sequencing for the detection and simultaneous characterization of quarantine pathogens, using Xylella fastidiosa as a case study. The assay proved to be at least as sensitive as standard diagnostic tests and the quantitative results agreed closely with qPCR-based analysis. The same sequencing results also allowed discrimination between subspecies when present either individually or in combination. Pathogen detection and typing were achieved within 13 min of sequencing owing to the use of an internal control that allowed to stop sequencing when sufficient data had accumulated. These advantages, combined with the use of portable equipment, will facilitate the development of next-generation diagnostic assays for the efficient monitoring of other plant pathogens.
Collapse
Affiliation(s)
- Luca Marcolungo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Alessandro Passera
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milano, Via Celoria 2, 20133 Milan, Italy; (A.P.); (P.C.); (P.A.B.)
| | - Simone Maestri
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Elena Segala
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Massimiliano Alfano
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Francesca Gaffuri
- Servizio Fitosanitario Regione Lombardia Laboratorio Fitopatologico c/o Fondazione Minoprio, 22100 Minoprio, Italy;
| | - Giovanni Marturano
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Paola Casati
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milano, Via Celoria 2, 20133 Milan, Italy; (A.P.); (P.C.); (P.A.B.)
| | - Piero Attilio Bianco
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milano, Via Celoria 2, 20133 Milan, Italy; (A.P.); (P.C.); (P.A.B.)
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce, 73, 10135 Turin, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
- Genartis S.r.l., Via P. Mascagni 98, 37060 Castel D’Azzano, Italy
- Correspondence: ; Tel.: +39-045-802-7962
| |
Collapse
|
36
|
Chukamnerd A, Singkhamanan K, Chongsuvivatwong V, Palittapongarnpim P, Doi Y, Pomwised R, Sakunrang C, Jeenkeawpiam K, Yingkajorn M, Chusri S, Surachat K. Whole-genome analysis of carbapenem-resistant Acinetobacter baumannii from clinical isolates in Southern Thailand. Comput Struct Biotechnol J 2022; 20:545-558. [PMID: 36284706 PMCID: PMC9582705 DOI: 10.1016/j.csbj.2021.12.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022] Open
Abstract
The worldwide spread of carbapenem-resistant Acinetobacter baumannii (CRAB) has become a healthcare challenge for some decades. To understand its molecular epidemiology in Southern Thailand, we conducted whole-genome sequencing (WGS) of 221 CRAB clinical isolates. A comprehensive bioinformatics analysis was performed using several tools to assemble, annotate, and identify sequence types (STs), antimicrobial resistance (AMR) genes, mobile genetic elements (MGEs), and virulence genes. ST2 was the most prevalent ST in the CRAB isolates. For the detection of AMR genes, almost all CRAB isolates carried the blaOXA-23 gene, while certain isolates harbored the blaNDM-1 or blaIMP-14 genes. Also, various AMR genes were observed in these CRAB isolates, particularly aminoglycoside resistance genes (e.g., armA, aph(6)-Id, and aph(3″)-Ib), fosfomycin resistance gene (abaF), and tetracycline resistance genes (tet(B) and tet(39)). For plasmid replicon typing, RepAci1 and RepAci7 were the predominant replicons found in the CRAB isolates. Many genes encoding for virulence factors such as the ompA, adeF, pgaA, lpxA, and bfmR genes were also identified in all CRAB isolates. In conclusion, most CRAB isolates contained a mixture of AMR genes, MGEs, and virulence genes. This study provides significant information about the genetic determinants of CRAB clinical isolates that could assist the development of strategies for improved control and treatment of these infections.
Collapse
Affiliation(s)
- Arnon Chukamnerd
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology, Fujita Health University, Aichi, Japan
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Chanida Sakunrang
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Kongpop Jeenkeawpiam
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Mingkwan Yingkajorn
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sarunyou Chusri
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Corresponding authors at: Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand and Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| | - Komwit Surachat
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Corresponding authors at: Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand and Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
37
|
Greninger AL, Zerr DM. NGSocomial Infections: High-Resolution Views of Hospital-Acquired Infections Through Genomic Epidemiology. J Pediatric Infect Dis Soc 2021; 10:S88-S95. [PMID: 34951469 PMCID: PMC8755322 DOI: 10.1093/jpids/piab074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hospital outbreak investigations are high-stakes epidemiology. Contacts between staff and patients are numerous; environmental and community exposures are plentiful; and patients are highly vulnerable. Having the best data is paramount to understanding an outbreak in order to stop ongoing transmission and prevent future outbreaks. In the past 5 years, the high-resolution view of transmission offered by analyzing pathogen whole-genome sequencing (WGS) is increasingly part of hospital outbreak investigations. Concerns over speed and actionability, assay validation, liability, cost, and payment models lead to further opportunities for work in this area. Now accelerated by funding for COVID-19, the use of genomics in hospital outbreak investigations has firmly moved from the academic literature to more quotidian operations, with associated concerns involving regulatory affairs, data integration, and clinical interpretation. This review details past uses of WGS data in hospital-acquired infection outbreaks as well as future opportunities to increase its utility and growth in hospital infection prevention.
Collapse
Affiliation(s)
- Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Corresponding Author: Alexander L. Greninger MD, PhD, MS, MPhil, 1616 Eastlake Ave East Suite 320, Seattle, WA 98102, USA. E-mail:
| | - Danielle M Zerr
- Department of Pediatrics, University of Washington Medical Center, Seattle, Washington, USA,Division of Infectious Diseases, Seattle Children’s Hospital, Seattle, Washington, USA
| |
Collapse
|
38
|
Zhang Y, Liu K, Zhang Z, Tian S, Liu M, Li X, Han Y, Zhu K, Liu H, Yang C, Liu H, Du X, Wang Q, Wang H, Yang M, Wang L, Song H, Yang H, Xiang Y, Qiu S. A Severe Gastroenteritis Outbreak of Salmonella enterica Serovar Enteritidis Linked to Contaminated Egg Fried Rice, China, 2021. Front Microbiol 2021; 12:779749. [PMID: 34880847 PMCID: PMC8645860 DOI: 10.3389/fmicb.2021.779749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/22/2021] [Indexed: 12/04/2022] Open
Abstract
Salmonella contamination of eggs and egg shells has been identified as a public health problem worldwide. Here, we reported an outbreak of severe gastrointestinal symptoms caused by Salmonella enterica serovar Enteritidis (S. enteritidis) in China. We evaluated the outbreak by using epidemiological surveys, routine laboratory testing methods, and whole genome sequencing (WGS). This outbreak occurred in a canteen in Beijing, during March 9–11, 2021, 225 of the 324 diners who have eaten at the canteen showed gastrointestinal symptoms. The outbreak had characteristical epidemiological and clinical features. It caused a very high attack rate (69.4%) in a short incubation time. All patients developed diarrhea and high fever, accompanied by abdominal pain (62.3%), nausea (50.4%), and vomiting (62.7%). The average frequency of diarrhea was 12.4 times/day, and the highest frequency of diarrhea was as high as 50 times/day. The average fever temperature was 39.4°C, and the highest fever temperature was 42°C. Twenty strains of S. enteritidis were recovered, including 19 from the patients samples, and one from remained egg fried rice. Antibiotic susceptibility test showed that the 20 outbreak strains all had the same resistance pattern. PFGE results demonstrated that all 20 strains bore completely identical bands. Phylogenetic analysis based on WGS revealed that all 20 outbreak strains were tightly clustered together. So the pathogenic source of this food poisoning incident may was contaminated egg fried rice. Resistance gene analysis showed that the outbreak strains are all multi-drug resistant strains. Virulence gene analysis indicated that these outbreak strains carried a large number of virulence genes, including 2 types of Salmonella pathogenicity islands (SPI-1 and SPI-2). Other important virulence genes were also carried by the outbreak strains, such as pefABCD, rck and shdA. And the shdA gene was not in other strains located in the same evolutionary branch as the outbreak strain. We speculated that this is a significant reason for the serious symptoms of gastroenteritis in this outbreak. This outbreak caused by S. enteritidis suggested government should strengthen monitoring of the prevalence of outbreak clone strains, and take measures to mitigate the public health threat posed by contaminated eggs.
Collapse
Affiliation(s)
- Yaowen Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Kangkang Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Zhenbiao Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Sai Tian
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Meiling Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xinge Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yiran Han
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Kunpeng Zhu
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hongbo Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chaojie Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbo Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xinying Du
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Qi Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hui Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Mingjuan Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ligui Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Haiyan Yang
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ying Xiang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shaofu Qiu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
39
|
Buytaers FE, Saltykova A, Denayer S, Verhaegen B, Vanneste K, Roosens NHC, Piérard D, Marchal K, De Keersmaecker SCJ. Towards Real-Time and Affordable Strain-Level Metagenomics-Based Foodborne Outbreak Investigations Using Oxford Nanopore Sequencing Technologies. Front Microbiol 2021; 12:738284. [PMID: 34803953 PMCID: PMC8602914 DOI: 10.3389/fmicb.2021.738284] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
The current routine laboratory practices to investigate food samples in case of foodborne outbreaks still rely on attempts to isolate the pathogen in order to characterize it. We present in this study a proof of concept using Shiga toxin-producing Escherichia coli spiked food samples for a strain-level metagenomics foodborne outbreak investigation method using the MinION and Flongle flow cells from Oxford Nanopore Technologies, and we compared this to Illumina short-read-based metagenomics. After 12 h of MinION sequencing, strain-level characterization could be achieved, linking the food containing a pathogen to the related human isolate of the affected patient, by means of a single-nucleotide polymorphism (SNP)-based phylogeny. The inferred strain harbored the same virulence genes as the spiked isolate and could be serotyped. This was achieved by applying a bioinformatics method on the long reads using reference-based classification. The same result could be obtained after 24-h sequencing on the more recent lower output Flongle flow cell, on an extract treated with eukaryotic host DNA removal. Moreover, an alternative approach based on in silico DNA walking allowed to obtain rapid confirmation of the presence of a putative pathogen in the food sample. The DNA fragment harboring characteristic virulence genes could be matched to the E. coli genus after sequencing only 1 h with the MinION, 1 h with the Flongle if using a host DNA removal extraction, or 5 h with the Flongle with a classical DNA extraction. This paves the way towards the use of metagenomics as a rapid, simple, one-step method for foodborne pathogen detection and for fast outbreak investigation that can be implemented in routine laboratories on samples prepared with the current standard practices.
Collapse
Affiliation(s)
- Florence E. Buytaers
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Assia Saltykova
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Sarah Denayer
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL STEC), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | - Bavo Verhaegen
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL STEC), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | - Denis Piérard
- National Reference Center for Shiga Toxin-Producing Escherichia coli (NRC STEC), Department of Microbiology and Infection Control, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Information Technology, IDlab, IMEC, Ghent University, Ghent, Belgium
| | | |
Collapse
|
40
|
Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol 2021; 39:1348-1365. [PMID: 34750572 PMCID: PMC8988251 DOI: 10.1038/s41587-021-01108-x] [Citation(s) in RCA: 804] [Impact Index Per Article: 201.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
Rapid advances in nanopore technologies for sequencing single long DNA and RNA molecules have led to substantial improvements in accuracy, read length and throughput. These breakthroughs have required extensive development of experimental and bioinformatics methods to fully exploit nanopore long reads for investigations of genomes, transcriptomes, epigenomes and epitranscriptomes. Nanopore sequencing is being applied in genome assembly, full-length transcript detection and base modification detection and in more specialized areas, such as rapid clinical diagnoses and outbreak surveillance. Many opportunities remain for improving data quality and analytical approaches through the development of new nanopores, base-calling methods and experimental protocols tailored to particular applications.
Collapse
Affiliation(s)
- Yunhao Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Biomedical Informatics Shared Resources, The Ohio State University, Columbus, OH, USA
| | - Audrey Bollas
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Yuru Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Kin Fai Au
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
- Biomedical Informatics Shared Resources, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
41
|
Bogaerts B, Winand R, Van Braekel J, Hoffman S, Roosens NHC, De Keersmaecker SCJ, Marchal K, Vanneste K. Evaluation of WGS performance for bacterial pathogen characterization with the Illumina technology optimized for time-critical situations. Microb Genom 2021; 7:000699. [PMID: 34739368 PMCID: PMC8743554 DOI: 10.1099/mgen.0.000699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
Whole genome sequencing (WGS) has become the reference standard for bacterial outbreak investigation and pathogen typing, providing a resolution unattainable with conventional molecular methods. Data generated with Illumina sequencers can however only be analysed after the sequencing run has finished, thereby losing valuable time during emergency situations. We evaluated both the effect of decreasing overall run time, and also a protocol to transfer and convert intermediary files generated by Illumina sequencers enabling real-time data analysis for multiple samples part of the same ongoing sequencing run, as soon as the forward reads have been sequenced. To facilitate implementation for laboratories operating under strict quality systems, extensive validation of several bioinformatics assays (16S rRNA species confirmation, gene detection against virulence factor and antimicrobial resistance databases, SNP-based antimicrobial resistance detection, serotype determination, and core genome multilocus sequence typing) for three bacterial pathogens (Mycobacterium tuberculosis , Neisseria meningitidis , and Shiga-toxin producing Escherichia coli ) was performed by evaluating performance in function of the two most critical sequencing parameters, i.e. read length and coverage. For the majority of evaluated bioinformatics assays, actionable results could be obtained between 14 and 22 h of sequencing, decreasing the overall sequencing-to-results time by more than half. This study aids in reducing the turn-around time of WGS analysis by facilitating a faster response in time-critical scenarios and provides recommendations for time-optimized WGS with respect to required read length and coverage to achieve a minimum level of performance for the considered bioinformatics assay(s), which can also be used to maximize the cost-effectiveness of routine surveillance sequencing when response time is not essential.
Collapse
Affiliation(s)
- Bert Bogaerts
- Transversal activities in Applied Genomics, Sciensano, Brussels (1050), Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent (9000), Belgium
| | - Raf Winand
- Transversal activities in Applied Genomics, Sciensano, Brussels (1050), Belgium
| | - Julien Van Braekel
- Transversal activities in Applied Genomics, Sciensano, Brussels (1050), Belgium
| | - Stefan Hoffman
- Transversal activities in Applied Genomics, Sciensano, Brussels (1050), Belgium
| | - Nancy H. C. Roosens
- Transversal activities in Applied Genomics, Sciensano, Brussels (1050), Belgium
| | | | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent (9000), Belgium
- Department of Information Technology, IDLab, imec, Ghent University, Ghent (9000), Belgium
- Department of Genetics, University of Pretoria, 0001 Pretoria, South Africa
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels (1050), Belgium
| |
Collapse
|
42
|
Lisotto P, Raangs EC, Couto N, Rosema S, Lokate M, Zhou X, Friedrich AW, Rossen JWA, Harmsen HJM, Bathoorn E, Chlebowicz-Fliss MA. Long-read sequencing-based in silico phage typing of vancomycin-resistant Enterococcus faecium. BMC Genomics 2021; 22:758. [PMID: 34688274 PMCID: PMC8542323 DOI: 10.1186/s12864-021-08080-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vancomycin-resistant enterococci (VRE) are successful nosocomial pathogens able to cause hospital outbreaks. In the Netherlands, core-genome MLST (cgMLST) based on short-read sequencing is often used for molecular typing. Long-read sequencing is more rapid and provides useful information about the genome's structural composition but lacks the precision required for SNP-based typing and cgMLST. Here we compared prophages among 50 complete E. faecium genomes belonging to different lineages to explore whether a phage signature would be usable for typing and identifying an outbreak caused by VRE. As a proof of principle, we investigated if long-read sequencing data would allow for identifying phage signatures and thereby outbreak-related isolates. RESULTS Analysis of complete genome sequences of publicly available isolates showed variation in phage content among different lineages defined by MLST. We identified phage present in multiple STs as well as phages uniquely detected within a single lineage. Next, in silico phage typing was applied to twelve MinION sequenced isolates belonging to two different genetic backgrounds, namely ST117/CT24 and ST80/CT16. Genomic comparisons of the long-read-based assemblies allowed us to correctly identify isolates of the same complex type based on global genome architecture and specific phage signature similarity. CONCLUSIONS For rapid identification of related VRE isolates, phage content analysis in long-read sequencing data is possible. This allows software development for real-time typing analysis of long-read sequencing data, which will generate results within several hours. Future studies are required to assess the discriminatory power of this method in the investigation of ongoing outbreaks over a longer time period.
Collapse
Affiliation(s)
- Paola Lisotto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erwin C Raangs
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Natacha Couto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Sigrid Rosema
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mariëtte Lokate
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Xuewei Zhou
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.,IDbyDNA Inc., Salt Lake City, UT, USA
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Monika A Chlebowicz-Fliss
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
43
|
Yan S, Zhang W, Li C, Liu X, Zhu L, Chen L, Yang B. Serotyping, MLST, and Core Genome MLST Analysis of Salmonella enterica From Different Sources in China During 2004-2019. Front Microbiol 2021; 12:688614. [PMID: 34603224 PMCID: PMC8481815 DOI: 10.3389/fmicb.2021.688614] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023] Open
Abstract
Salmonella enterica (S. enterica) is an important foodborne pathogen, causing food poisoning and human infection, and critically threatening food safety and public health. Salmonella typing is essential for bacterial identification, tracing, epidemiological investigation, and monitoring. Serotyping and multilocus sequence typing (MLST) analysis are standard bacterial typing methods despite the low resolution. Core genome MLST (cgMLST) is a high-resolution molecular typing method based on whole genomic sequencing for accurate bacterial tracing. We investigated 250 S. enterica isolates from poultry, livestock, food, and human sources in nine provinces of China from 2004 to 2019 using serotyping, MLST, and cgMLST analysis. All S. enterica isolates were divided into 36 serovars using slide agglutination. The major serovars in order were Enteritidis (31 isolates), Typhimurium (29 isolates), Mbandaka (23 isolates), and Indiana (22 isolates). All strains were assigned into 43 sequence types (STs) by MLST. Among them, ST11 (31 isolates) was the primary ST. Besides this, a novel ST, ST8016, was identified, and it was different from ST40 by position 317 C → T in dnaN. Furthermore, these 250 isolates were grouped into 185 cgMLST sequence types (cgSTs) by cgMLST. The major cgST was cgST235530 (11 isolates), and only three cgSTs contained isolates from human and other sources, indicating a possibility of cross-species infection. Phylogenetic analysis indicated that most of the same serovar strains were putatively homologous except Saintpaul and Derby due to their multilineage characteristics. In addition, serovar I 4,[5],12:i:- and Typhimurium isolates have similar genomic relatedness on the phylogenetic tree. In conclusion, we sorted out the phenotyping and genotyping diversity of S. enterica isolates in China during 2004-2019 and clarified the temporal and spatial distribution characteristics of Salmonella from different hosts in China in the recent 16 years. These results greatly supplement Salmonella strain resources, genetic information, and traceability typing data; facilitate the typing, traceability, identification, and genetic evolution analysis of Salmonella; and therefore, improve the level of analysis, monitoring, and controlling of foodborne microorganisms in China.
Collapse
Affiliation(s)
- Shigan Yan
- Shandong Provincial Key Laboratory of Bioengineering, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Wencheng Zhang
- Shandong Provincial Key Laboratory of Bioengineering, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chengyu Li
- Shandong Provincial Key Laboratory of Bioengineering, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xu Liu
- Shandong Provincial Key Laboratory of Bioengineering, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Liping Zhu
- Shandong Provincial Key Laboratory of Bioengineering, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Leilei Chen
- Institute of Agro-Food Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
44
|
Brackin AP, Hemmings SJ, Fisher MC, Rhodes J. Fungal Genomics in Respiratory Medicine: What, How and When? Mycopathologia 2021; 186:589-608. [PMID: 34490551 PMCID: PMC8421194 DOI: 10.1007/s11046-021-00573-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
Respiratory infections caused by fungal pathogens present a growing global health concern and are a major cause of death in immunocompromised patients. Worryingly, coronavirus disease-19 (COVID-19) resulting in acute respiratory distress syndrome has been shown to predispose some patients to airborne fungal co-infections. These include secondary pulmonary aspergillosis and mucormycosis. Aspergillosis is most commonly caused by the fungal pathogen Aspergillus fumigatus and primarily treated using the triazole drug group, however in recent years, this fungus has been rapidly gaining resistance against these antifungals. This is of serious clinical concern as multi-azole resistant forms of aspergillosis have a higher risk of mortality when compared against azole-susceptible infections. With the increasing numbers of COVID-19 and other classes of immunocompromised patients, early diagnosis of fungal infections is critical to ensuring patient survival. However, time-limited diagnosis is difficult to achieve with current culture-based methods. Advances within fungal genomics have enabled molecular diagnostic methods to become a fast, reproducible, and cost-effective alternative for diagnosis of respiratory fungal pathogens and detection of antifungal resistance. Here, we describe what techniques are currently available within molecular diagnostics, how they work and when they have been used.
Collapse
Affiliation(s)
- Amelie P. Brackin
- MRC Centre for Global Disease Analysis, Imperial College London, London, UK
| | - Sam J. Hemmings
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Matthew C. Fisher
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Johanna Rhodes
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| |
Collapse
|
45
|
Jahan NA, Lindsey LL, Kipp EJ, Reinschmidt A, Heins BJ, Runck AM, Larsen PA. Nanopore-Based Surveillance of Zoonotic Bacterial Pathogens in Farm-Dwelling Peridomestic Rodents. Pathogens 2021; 10:pathogens10091183. [PMID: 34578215 PMCID: PMC8471018 DOI: 10.3390/pathogens10091183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022] Open
Abstract
The effective control of rodent populations on farms is crucial for food safety, as rodents are reservoirs and vectors for several zoonotic pathogens. Clear links have been identified between rodents and farm-level outbreaks of pathogens throughout Europe and Asia; however, comparatively little research has been devoted to studying the rodent–agricultural interface in the USA. Here, we address this knowledge gap by metabarcoding bacterial communities of rodent pests collected from Minnesota and Wisconsin food animal farms. We leveraged the Oxford Nanopore MinION sequencer to provide a rapid real-time survey of putative zoonotic foodborne pathogens, among others. Rodents were live trapped (n = 90) from three dairy and mixed animal farms. DNA extraction was performed on 63 rodent colons along with 2 shrew colons included as outgroups in the study. Full-length 16S amplicon sequencing was performed. Our farm-level rodent-metabarcoding data indicate the presence of multiple foodborne pathogens, including Salmonella spp., Campylobacter spp., Staphylococcus aureus, and Clostridium spp., along with many mastitis pathogens circulating within five rodent species (Microtus pennsylvanicus, Mus musculus, Peromyscus leucopus, Peromyscus maniculatus, and Rattus norvegicus) and a shrew (Blarina brevicauda). Interestingly, we observed a higher abundance of enteric pathogens (e.g., Salmonella) in shrew feces compared to the rodents analyzed in our study. Knowledge gained from our research efforts will directly inform and improve farm-level biosecurity efforts and public health interventions to reduce future outbreaks of foodborne and zoonotic disease.
Collapse
Affiliation(s)
- Nusrat A. Jahan
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (N.A.J.); (L.L.L.); (E.J.K.); (A.R.)
| | - Laramie L. Lindsey
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (N.A.J.); (L.L.L.); (E.J.K.); (A.R.)
| | - Evan J. Kipp
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (N.A.J.); (L.L.L.); (E.J.K.); (A.R.)
| | - Adam Reinschmidt
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (N.A.J.); (L.L.L.); (E.J.K.); (A.R.)
| | - Bradley J. Heins
- Department of Animal Science, College of Food, Agricultural, and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA;
| | - Amy M. Runck
- Department of Biology, Winona State University, Winona, MN 55987, USA;
| | - Peter A. Larsen
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (N.A.J.); (L.L.L.); (E.J.K.); (A.R.)
- Correspondence:
| |
Collapse
|
46
|
Ruan Z, Yu Y, Feng Y. The global dissemination of bacterial infections necessitates the study of reverse genomic epidemiology. Brief Bioinform 2021; 21:741-750. [PMID: 30715167 DOI: 10.1093/bib/bbz010] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/17/2018] [Accepted: 01/06/2019] [Indexed: 01/29/2023] Open
Abstract
Whole genome sequencing (WGS) has revolutionized the genotyping of bacterial pathogens and is expected to become the new gold standard for tracing the transmissions of bacterial infectious diseases for public health purposes. Traditional genomic epidemiology often uses WGS as a verification tool, namely, when a common source or epidemiological link is suspected, the collected isolates are sequenced for the determination of clonal relationships. However, increasingly frequent international travel and food transportation, and the associated potential for the cross-border transmission of bacterial pathogens, often lead to an absence of information on bacterial transmission routes. Here we introduce the concept of 'reverse genomic epidemiology', i.e. when isolates are inspected by genome comparisons to be sufficiently similar to one another, they are assumed to be a consequence of infection from a common source. Through BacWGSTdb (http://bacdb.org/BacWGSTdb/), a database we have developed for bacterial genome typing and source tracking, we have found that almost the entire analyzed 20 bacterial species exhibit the phenomenon of cross-border clonal dissemination. Five networks were further identified in which isolates sharing nearly identical genomes were collected from at least five different countries. Three of these have been documented as real infectious disease outbreaks, therefore demonstrating the feasibility and authority of reverse genomic epidemiology. Our survey and proposed strategy would be of potential value in establishing a global surveillance system for tracing bacterial transmissions and outbreaks; the related database and techniques require urgent standardization.
Collapse
Affiliation(s)
- Zhi Ruan
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
47
|
Tedersoo L, Albertsen M, Anslan S, Callahan B. Perspectives and Benefits of High-Throughput Long-Read Sequencing in Microbial Ecology. Appl Environ Microbiol 2021; 87:e0062621. [PMID: 34132589 PMCID: PMC8357291 DOI: 10.1128/aem.00626-21] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Short-read, high-throughput sequencing (HTS) methods have yielded numerous important insights into microbial ecology and function. Yet, in many instances short-read HTS techniques are suboptimal, for example, by providing insufficient phylogenetic resolution or low integrity of assembled genomes. Single-molecule and synthetic long-read (SLR) HTS methods have successfully ameliorated these limitations. In addition, nanopore sequencing has generated a number of unique analysis opportunities, such as rapid molecular diagnostics and direct RNA sequencing, and both Pacific Biosciences (PacBio) and nanopore sequencing support detection of epigenetic modifications. Although initially suffering from relatively low sequence quality, recent advances have greatly improved the accuracy of long-read sequencing technologies. In spite of great technological progress in recent years, the long-read HTS methods (PacBio and nanopore sequencing) are still relatively costly, require large amounts of high-quality starting material, and commonly need specific solutions in various analysis steps. Despite these challenges, long-read sequencing technologies offer high-quality, cutting-edge alternatives for testing hypotheses about microbiome structure and functioning as well as assembly of eukaryote genomes from complex environmental DNA samples.
Collapse
Affiliation(s)
- Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Sten Anslan
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
- Braunschweig University of Technology, Zoological Institute, Braunschweig, Germany
| | - Benjamin Callahan
- Department of Population Health and Pathobiology, College of Veterinary Medicine and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
48
|
De Paoli-Iseppi R, Gleeson J, Clark MB. Isoform Age - Splice Isoform Profiling Using Long-Read Technologies. Front Mol Biosci 2021; 8:711733. [PMID: 34409069 PMCID: PMC8364947 DOI: 10.3389/fmolb.2021.711733] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/19/2021] [Indexed: 01/12/2023] Open
Abstract
Alternative splicing (AS) of RNA is a key mechanism that results in the expression of multiple transcript isoforms from single genes and leads to an increase in the complexity of both the transcriptome and proteome. Regulation of AS is critical for the correct functioning of many biological pathways, while disruption of AS can be directly pathogenic in diseases such as cancer or cause risk for complex disorders. Current short-read sequencing technologies achieve high read depth but are limited in their ability to resolve complex isoforms. In this review we examine how long-read sequencing (LRS) technologies can address this challenge by covering the entire RNA sequence in a single read and thereby distinguish isoform changes that could impact RNA regulation or protein function. Coupling LRS with technologies such as single cell sequencing, targeted sequencing and spatial transcriptomics is producing a rapidly expanding suite of technological approaches to profile alternative splicing at the isoform level with unprecedented detail. In addition, integrating LRS with genotype now allows the impact of genetic variation on isoform expression to be determined. Recent results demonstrate the potential of these techniques to elucidate the landscape of splicing, including in tissues such as the brain where AS is particularly prevalent. Finally, we also discuss how AS can impact protein function, potentially leading to novel therapeutic targets for a range of diseases.
Collapse
Affiliation(s)
| | | | - Michael B. Clark
- Centre for Stem Cell Systems, Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
49
|
Walker A, Houwaart T, Finzer P, Ehlkes L, Tyshaieva A, Damagnez M, Strelow D, Duplessis A, Nicolai J, Wienemann T, Tamayo T, Kohns Vasconcelos M, Hülse L, Hoffmann K, Lübke N, Hauka S, Andree M, Däumer MP, Thielen A, Kolbe-Busch S, Göbels K, Zotz R, Pfeffer K, Timm J, Dilthey AT. Characterization of SARS-CoV-2 infection clusters based on integrated genomic surveillance, outbreak analysis and contact tracing in an urban setting. Clin Infect Dis 2021; 74:1039-1046. [PMID: 34181711 PMCID: PMC8406867 DOI: 10.1093/cid/ciab588] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 01/02/2023] Open
Abstract
Background Tracing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission chains is still a major challenge for public health authorities, when incidental contacts are not recalled or are not perceived as potential risk contacts. Viral sequencing can address key questions about SARS-CoV-2 evolution and may support reconstruction of viral transmission networks by integration of molecular epidemiology into classical contact tracing. Methods In collaboration with local public health authorities, we set up an integrated system of genomic surveillance in an urban setting, combining a) viral surveillance sequencing, b) genetically based identification of infection clusters in the population, c) integration of public health authority contact tracing data, and d) a user-friendly dashboard application as a central data analysis platform. Results Application of the integrated system from August to December 2020 enabled a characterization of viral population structure, analysis of 4 outbreaks at a maximum care hospital, and genetically based identification of 5 putative population infection clusters, all of which were confirmed by contact tracing. The system contributed to the development of improved hospital infection control and prevention measures and enabled the identification of previously unrecognized transmission chains, involving a martial arts gym and establishing a link between the hospital to the local population. Conclusions Integrated systems of genomic surveillance could contribute to the monitoring and, potentially, improved management of SARS-CoV-2 transmission in the population.
Collapse
Affiliation(s)
- Andreas Walker
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Torsten Houwaart
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Finzer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Zotz
- Klimas, Düsseldorf, Germany
| | - Lutz Ehlkes
- Düsseldorf Health Department (Gesundheitsamt Düsseldorf), Düsseldorf, Germany
| | - Alona Tyshaieva
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maximilian Damagnez
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Strelow
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ashley Duplessis
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jessica Nicolai
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Wienemann
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Teresa Tamayo
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Malte Kohns Vasconcelos
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lisanna Hülse
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Nadine Lübke
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Hauka
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marcel Andree
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | - Susanne Kolbe-Busch
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Göbels
- Düsseldorf Health Department (Gesundheitsamt Düsseldorf), Düsseldorf, Germany
| | | | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jörg Timm
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexander T Dilthey
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | |
Collapse
|
50
|
Massaiu I, Songia P, Chiesa M, Valerio V, Moschetta D, Alfieri V, Myasoedova VA, Schmid M, Cassetta L, Colombo GI, D’Alessandra Y, Poggio P. Evaluation of Oxford Nanopore MinION RNA-Seq Performance for Human Primary Cells. Int J Mol Sci 2021; 22:ijms22126317. [PMID: 34204756 PMCID: PMC8231517 DOI: 10.3390/ijms22126317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Transcript sequencing is a crucial tool for gaining a deep understanding of biological processes in diagnostic and clinical medicine. Given their potential to study novel complex eukaryotic transcriptomes, long-read sequencing technologies are able to overcome some limitations of short-read RNA-Seq approaches. Oxford Nanopore Technologies (ONT) offers the ability to generate long-read sequencing data in real time via portable protein nanopore USB devices. This work aimed to provide the user with the number of reads that should be sequenced, through the ONT MinION platform, to reach the desired accuracy level for a human cell RNA study. We sequenced three cDNA libraries prepared from poly-adenosine RNA of human primary cardiac fibroblasts. Since the runs were comparable, they were combined in a total dataset of 48 million reads. Synthetic datasets with different sizes were generated starting from the total and analyzed in terms of the number of identified genes and their expression levels. As expected, an improved sensitivity was obtained, increasing the sequencing depth, particularly for the non-coding genes. The reliability of expression levels was assayed by (i) comparison with PCR quantifications of selected genes and (ii) by the implementation of a user-friendly multiplexing method in a single run.
Collapse
Affiliation(s)
- Ilaria Massaiu
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Paola Songia
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Mattia Chiesa
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Vincenza Valerio
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | - Donato Moschetta
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Valentina Alfieri
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Veronika A. Myasoedova
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Michael Schmid
- Genexa AG, Dienerstrasse 7, CH-8004 Zürich, Switzerland;
| | - Luca Cassetta
- The Queen’s Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK;
| | - Gualtiero I. Colombo
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Yuri D’Alessandra
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Paolo Poggio
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
- Correspondence:
| |
Collapse
|