1
|
Chen Y, Zhang X, Liang J, Jiang Q, Peierdun M, Xu P, Takiff HE, Gao Q. Advantages of updated WHO mutation catalog combined with existing whole-genome sequencing-based approaches for Mycobacterium tuberculosis resistance prediction. Genome Med 2025; 17:31. [PMID: 40140944 PMCID: PMC11938600 DOI: 10.1186/s13073-025-01458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND The WHO recently released a second edition of the mutation catalog for predicting drug resistance in Mycobacterium tuberculosis (MTB). This study evaluated its effectiveness compared to existing whole-genome sequencing (WGS)-based prediction methods and proposes a novel approach for its optimization. METHODS We tested the accuracy of five tools-the WHO catalog, TB Profiler, SAM-TB, GenTB, and MD-CNN-for predicting drug susceptibility on a global dataset of 36,385 MTB isolates with high-quality phenotypic drug susceptibility testing (DST) and WGS data. By integrating the genotypic DST predictions of these five tools in an ensemble machine learning framework, we developed an improved computational model for MTB drug susceptibility prediction. We then validated the ensemble model on 860 MTB isolates with phenotypic and WGS data collected in Shenzhen, China (2013-2019) and Valencia, Spain (2014-2016). RESULTS Among the five genotypic DST tools for predicting susceptibility to ten drugs, MD-CNN exhibited the highest overall performance (AUC 92.1%; 95% CI 89.8-94.4%). The WHO catalog demonstrated the highest specificity of 97.3% (95% CI 95.8-98.4%), while TB Profiler had the best sensitivity at 79.5% (95% CI 71.8-86.2%). The ensemble machine learning model (AUC 93.4%; 95% CI 91.4-95.4%) outperformed all of the five individual tools, with a specificity of 95.4% (95% CI 93.0-97.6%) and a sensitivity of 84.1% (95% CI 78.8-88.8%), principally due to considerable improvements in second-line drug resistance predictions (AUC 91.8%; 95% CI 89.6-94.0%). CONCLUSIONS The second edition of the WHO MTB mutation catalog does not, by itself, perform better than existing tools for predicting MTB drug resistance. An integrative approach combining the WHO catalog with other genotypic DST methods significantly enhances prediction accuracy.
Collapse
Affiliation(s)
- Yiwang Chen
- National Clinical Research Center for Infectious Diseases, Shenzhen Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Xuecong Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| | - Jialei Liang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Qi Jiang
- School of Public Health, Public Health Research Institute of Renmin Hospital, Wuhan University, Wuhan, China
| | - Mijiti Peierdun
- Department of Epidemiology and Biostatistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Peng Xu
- National Clinical Research Center for Infectious Diseases, Shenzhen Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| | - Howard E Takiff
- Instituto Venezolano de Investigaciones Cientificas (IVIC), Caracas, Venezuela
| | - Qian Gao
- National Clinical Research Center for Infectious Diseases, Shenzhen Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China.
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Goig GA, Windels EM, Loiseau C, Stritt C, Biru L, Borrell S, Brites D, Gagneux S. Ecology, global diversity and evolutionary mechanisms in the Mycobacterium tuberculosis complex. Nat Rev Microbiol 2025:10.1038/s41579-025-01159-w. [PMID: 40133503 DOI: 10.1038/s41579-025-01159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 03/27/2025]
Abstract
With the COVID-19 pandemic receding, tuberculosis (TB) is again the number one cause of human death to a single infectious agent. TB is caused by bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Recent advances in genome sequencing have provided new insights into the ecology and evolution of the MTBC. This includes the discovery of new phylogenetic lineages within the MTBC, a deeper understanding of the host tropism among the various animal-adapted lineages, enhanced knowledge on the evolutionary dynamics of antimicrobial resistance and transmission, as well as a better grasp of the within-host MTBC diversity. Moreover, advances in long-read sequencing are increasingly highlighting the relevance of structural genomic variation in the MTBC. These findings not only shed new light on the biology and epidemiology of TB, but also give rise to new questions and research avenues. The purpose of this Review is to summarize these new insights and discuss their implications for global TB control.
Collapse
Affiliation(s)
- Galo A Goig
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Etthel M Windels
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Chloé Loiseau
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Christoph Stritt
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Loza Biru
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Shepherd MJ, Fu T, Harrington NE, Kottara A, Cagney K, Chalmers JD, Paterson S, Fothergill JL, Brockhurst MA. Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance. Nat Rev Microbiol 2024; 22:650-665. [PMID: 38689039 DOI: 10.1038/s41579-024-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
The ecological and evolutionary mechanisms of antimicrobial resistance (AMR) emergence within patients and how these vary across bacterial infections are poorly understood. Increasingly widespread use of pathogen genome sequencing in the clinic enables a deeper understanding of these processes. In this Review, we explore the clinical evidence to support four major mechanisms of within-patient AMR emergence in bacteria: spontaneous resistance mutations; in situ horizontal gene transfer of resistance genes; selection of pre-existing resistance; and immigration of resistant lineages. Within-patient AMR emergence occurs across a wide range of host niches and bacterial species, but the importance of each mechanism varies between bacterial species and infection sites within the body. We identify potential drivers of such differences and discuss how ecological and evolutionary analysis could be embedded within clinical trials of antimicrobials, which are powerful but underused tools for understanding why these mechanisms vary between pathogens, infections and individuals. Ultimately, improving understanding of how host niche, bacterial species and antibiotic mode of action combine to govern the ecological and evolutionary mechanism of AMR emergence in patients will enable more predictive and personalized diagnosis and antimicrobial therapies.
Collapse
Affiliation(s)
- Matthew J Shepherd
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| | - Taoran Fu
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Niamh E Harrington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Anastasia Kottara
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Kendall Cagney
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Steve Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joanne L Fothergill
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Ko EM, Min J, Kim H, Jeong JA, Lee S, Kim S. Molecular characteristics of drug-susceptible Mycobacterium tuberculosis clinical isolates based on treatment duration. Osong Public Health Res Perspect 2024; 15:385-394. [PMID: 39511960 PMCID: PMC11563727 DOI: 10.24171/j.phrp.2024.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/16/2024] [Accepted: 08/18/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND In this study, we performed comparative genomic and transcriptomic analysis of clinical isolates of Mycobacterium tuberculosis collected from patients with drug-susceptible tuberculosis (DS-TB). The clinical isolates were categorized based on treatment duration: standard 6 months or >6 months. METHODS Study participants were recruited from a 2016 to 2018 tuberculosis cohort, and clinical M. tuberculosis isolates were collected from the sputum of patients with tuberculosis. We analyzed the genome and transcriptome of the isolated M. tuberculosis. RESULTS Genomic analysis revealed a specific non-synonymous single-nucleotide polymorphism in pe_pgrs9 and ppe34, exclusive to the group treated for >6 months. Transcriptomic analysis revealed increased expression of various virulence-associated protein family genes and decreased expression of ribosomal protein genes and ppe38 genes in the group treated for >6 months. CONCLUSION The identified genetic variation and gene expression patterns may influence treatment outcomes by modulating host immune responses, increasing virulence, and potentially contributing to persister cell formation in M. tuberculosis. This study provides insights into the genetic and transcriptomic factors associated with prolonged DS-TB treatment. However, our study identified molecular characteristics using a small sample size, and further detailed studies are warranted.
Collapse
Affiliation(s)
- Eon-Min Ko
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jinsoo Min
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyungjun Kim
- Division of Infectious Disease Control, Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Ji-A Jeong
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Sungkyoung Lee
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Seonghan Kim
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| |
Collapse
|
5
|
Vijay S, Bao NLH, Vinh DN, Nhat LTH, Thu DDA, Quang NL, Trieu LPT, Nhung HN, Ha VTN, Thai PVK, Ha DTM, Lan NH, Caws M, Thwaites GE, Javid B, Thuong NT. Rifampicin tolerance and growth fitness among isoniazid-resistant clinical Mycobacterium tuberculosis isolates from a longitudinal study. eLife 2024; 13:RP93243. [PMID: 39250422 PMCID: PMC11383526 DOI: 10.7554/elife.93243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Antibiotic tolerance in Mycobacterium tuberculosis reduces bacterial killing, worsens treatment outcomes, and contributes to resistance. We studied rifampicin tolerance in isolates with or without isoniazid resistance (IR). Using a minimum duration of killing assay, we measured rifampicin survival in isoniazid-susceptible (IS, n=119) and resistant (IR, n=84) isolates, correlating tolerance with bacterial growth, rifampicin minimum inhibitory concentrations (MICs), and isoniazid-resistant mutations. Longitudinal IR isolates were analyzed for changes in rifampicin tolerance and genetic variant emergence. The median time for rifampicin to reduce the bacterial population by 90% (MDK90) increased from 1.23 days (IS) and 1.31 days (IR) to 2.55 days (IS) and 1.98 days (IR) over 15-60 days of incubation, indicating fast and slow-growing tolerant sub-populations. A 6 log10-fold survival fraction classified tolerance as low, medium, or high, showing that IR is linked to increased tolerance and faster growth (OR = 2.68 for low vs. medium, OR = 4.42 for low vs. high, p-trend = 0.0003). High tolerance in IR isolates was associated with rifampicin treatment in patients and genetic microvariants. These findings suggest that IR tuberculosis should be assessed for high rifampicin tolerance to optimize treatment and prevent the development of multi-drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Srinivasan Vijay
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | | | - Dao Nguyen Vinh
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
| | | | - Do Dang Anh Thu
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
| | - Nguyen Le Quang
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
| | | | | | - Vu Thi Ngoc Ha
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
| | | | | | | | - Maxine Caws
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Babak Javid
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, United States
| | - Nguyen Thuy Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Deng MZ, Liu Q, Cui SJ, Wang YX, Zhu G, Fu H, Gan M, Xu YY, Cai X, Wang S, Sha W, Zhao GP, Fortune SM, Lyu LD. An additional proofreader contributes to DNA replication fidelity in mycobacteria. Proc Natl Acad Sci U S A 2024; 121:e2322938121. [PMID: 39141351 PMCID: PMC11348249 DOI: 10.1073/pnas.2322938121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
The removal of mis-incorporated nucleotides by proofreading activity ensures DNA replication fidelity. Whereas the ε-exonuclease DnaQ is a well-established proofreader in the model organism Escherichia coli, it has been shown that proofreading in a majority of bacteria relies on the polymerase and histidinol phosphatase (PHP) domain of replicative polymerase, despite the presence of a DnaQ homolog that is structurally and functionally distinct from E. coli DnaQ. However, the biological functions of this type of noncanonical DnaQ remain unclear. Here, we provide independent evidence that noncanonical DnaQ functions as an additional proofreader for mycobacteria. Using the mutation accumulation assay in combination with whole-genome sequencing, we showed that depletion of DnaQ in Mycolicibacterium smegmatis leads to an increased mutation rate, resulting in AT-biased mutagenesis and increased insertions/deletions in the homopolymer tract. Our results showed that mycobacterial DnaQ binds to the β clamp and functions synergistically with the PHP domain proofreader to correct replication errors. Furthermore, the loss of dnaQ results in replication fork dysfunction, leading to attenuated growth and increased mutagenesis on subinhibitory fluoroquinolones potentially due to increased vulnerability to fork collapse. By analyzing the sequence polymorphism of dnaQ in clinical isolates of Mycobacterium tuberculosis (Mtb), we demonstrated that a naturally evolved DnaQ variant prevalent in Mtb lineage 4.3 may enable hypermutability and is associated with drug resistance. These results establish a coproofreading model and suggest a division of labor between DnaQ and PHP domain proofreader. This study also provides real-world evidence that a mutator-driven evolutionary pathway may exist during the adaptation of Mtb.
Collapse
Affiliation(s)
- Ming-Zhi Deng
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Shu-Jun Cui
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai200433, China
| | - Yi-Xin Wang
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai200433, China
| | - Guoliang Zhu
- Shanghai Zelixir Biotech Company Ltd., Shanghai200030, China
| | - Han Fu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Chinese Academy of Sciences Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai200032, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Mingyu Gan
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai201102, China
| | - Yuan-Yuan Xu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Xia Cai
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai200030, China
| | - Wei Sha
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Shanghai200433, China
| | - Guo-Ping Zhao
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai200433, China
- Chinese Academy of Sciences Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai200032, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Liang-Dong Lyu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Shanghai200433, China
| |
Collapse
|
7
|
Osugi A, Tamaru A, Yoshiyama T, Iwamoto T, Mitarai S, Murase Y. Mycobacterium tuberculosis is less likely to acquire pathogenic mutations during latent infection than during active disease. Microbiol Spectr 2024; 12:e0428923. [PMID: 38786200 PMCID: PMC11218478 DOI: 10.1128/spectrum.04289-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Most people infected with Mycobacterium tuberculosis (Mtb) are believed to be in a state of latent tuberculosis (TB) infection (LTBI). Although LTBI is asymptomatic and not infectious, there is a risk of developing active disease even decades after infection. Here, to characterize mutations acquired during LTBI, we collected and analyzed Mtb genomes from seven Japanese patient pairs, each pair consisting of two active TB patients whose starting dates of developing active disease were >3 years apart; one had a high suspicion of LTBI before developing active disease, whereas the other did not. Thereafter, we compared these genomes with those of longitudinal sample pairs within a host of chronic active TB infections combined with public data. The bacterial populations in patients with LTBI were genetically more homogeneous and accumulated single nucleotide polymorphisms (SNPs) slower than those from active disease. Moreover, the lower proportion of nonsynonymous SNPs indicated weaker selective pressures during LTBI than active disease. Finally, the different mutation spectrums indicated different mutators between LTBI and active disease. These results suggest that the likelihood of the acquisition of mutations responsible for antibiotic resistance and increased virulence was lower in the Mtb population from LTBI than active disease.IMPORTANCEControlling latent tuberculosis (TB) infection (LTBI) activation is an effective strategy for TB elimination, where understanding Mycobacterium tuberculosis (Mtb) dynamics within the host plays an important role. Previous studies on chronic active disease reported that Mtb accumulated genomic mutations within the host, possibly resulting in acquired drug resistance and increased virulence. However, several reports suggest that fewer mutations accumulate during LTBI than during the active disease, but the associated risk is largely unknown. Here, we analyzed the genomic dynamics of Mtb within the host during LTBI. Our results statistically suggest that Mtb accumulates mutations during LTBI, but most mutations are under low selective pressures, which induce mutations responsible for drug resistance and virulence. Thus, we propose that LTBI acts as a source for new TB disease rather than as a period for in-host genome evolution.
Collapse
Affiliation(s)
- Asami Osugi
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Aki Tamaru
- Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, Osaka, Japan
| | - Takashi Yoshiyama
- Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | | | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
- Basic Mycobacteriology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshiro Murase
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| |
Collapse
|
8
|
Vijay S, Bao NLH, Vinh DN, Nhat LTH, Thu DDA, Quang NL, Trieu LPT, Nhung HN, Ha VTN, Thai PVK, Ha DTM, Lan NH, Caws M, Thwaites GE, Javid B, Thuong NTT. Rifampicin tolerance and growth fitness among isoniazid-resistant clinical Mycobacterium tuberculosis isolates: an in-vitro longitudinal study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.22.568240. [PMID: 38045287 PMCID: PMC10690245 DOI: 10.1101/2023.11.22.568240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Antibiotic tolerance in Mycobacterium tuberculosis leads to less effective bacterial killing, poor treatment responses and resistant emergence. Therefore, we investigated the rifampicin tolerance of M. tuberculosis isolates, with or without pre-existing isoniazid-resistance. We determined the in-vitro rifampicin survival fraction by minimum duration of killing assay in isoniazid susceptible (IS, n=119) and resistant (IR, n=84) M. tuberculosis isolates. Then we correlated the rifampicin tolerance with bacterial growth, rifampicin minimum inhibitory concentrations (MICs) and isoniazid-resistant mutations. The longitudinal IR isolates collected from patients were analyzed for changes in rifampicin tolerance and associated emergence of genetic variants. The median duration of rifampicin exposure reducing the M. tuberculosis surviving fraction by 90% (minimum duration of killing-MDK90) increased from 1.23 (95%CI 1.11; 1.37) and 1.31 (95%CI 1.14; 1.48) to 2.55 (95%CI 2.04; 2.97) and 1.98 (95%CI 1.69; 2.56) days, for IS and IR respectively, during 15 to 60 days of incubation. This indicated the presence of fast and slow growing tolerant sub-populations. A range of 6 log 10 -fold survival fraction enabled classification of tolerance as low, medium or high and revealed IR association with increased tolerance with faster growth (OR=2.68 for low vs. medium, OR=4.42 for low vs. high, P -trend=0.0003). The high tolerance in IR isolates was specific to those collected during rifampicin treatment in patients and associated with bacterial genetic microvariants. Furthermore, the high rifampicin tolerant IR isolates have survival potential similar to multi-drug resistant isolates. These findings suggest that IR tuberculosis needs to be evaluated for high rifampicin tolerance to improve treatment regimen and prevent the risk of MDR-TB emergence.
Collapse
|
9
|
Zhang G, Sun X, Fleming J, Ran F, Luo J, Chen H, Ju H, Wang Z, Zhao H, Wang C, Zhang F, Dai X, Yang X, Li C, Liu Y, Wang Y, Zhang X, Jiang Y, Wu Z, Bi L, Zhang H. Genetic factors associated with acquired phenotypic drug resistance and its compensatory evolution during tuberculosis treatment. Clin Microbiol Infect 2024; 30:637-645. [PMID: 38286176 DOI: 10.1016/j.cmi.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
OBJECTIVES We elucidated the factors, evolution, and compensation of antimicrobial resistance (AMR) in Mycobacterium tuberculosis (MTB) isolates under dual pressure from the intra-host environment and anti-tuberculosis (anti-TB) drugs. METHODS This retrospective case-control study included 337 patients with pulmonary tuberculosis from 15 clinics in Tianjin, China, with phenotypic drug susceptibility testing results available for at least two time points between January 1, 2009 and December 31, 2016. Patients in the case group exhibited acquired AMR to isoniazid (INH) or rifampicin (RIF), while those in the control group lacked acquired AMR. The whole-genome sequencing (WGS) was conducted on 149 serial longitudinal MTB isolates from 46 patients who acquired or reversed phenotypic INH/RIF-resistance during treatment. The genetic basis, associated factors, and intra-host evolution of acquired phenotypic INH/RIF-resistance were elucidated using a combined analysis. RESULTS Anti-TB interruption duration of ≥30 days showed association with acquired phenotypic INH/RIF resistance (aOR = 2·2, 95% CI, 1·0-5·1) and new rpoB mutations (p = 0·024). The MTB evolution was 1·2 (95% CI, 1·02-1·38) single nucleotide polymorphisms per genome per year under dual pressure from the intra-host environment and anti-TB drugs. AMR-associated mutations occurred before phenotypic AMR appearance in cases with acquired phenotypic INH (10 of 16) and RIF (9 of 22) resistances. DISCUSSION Compensatory evolution may promote the fixation of INH/RIF-resistance mutations and affect phenotypic AMR. The TB treatment should be adjusted based on gene sequencing results, especially in persistent culture positivity during treatment, which highlights the clinical importance of WGS in identifying reinfection and AMR acquisition before phenotypic drug susceptibility testing.
Collapse
Affiliation(s)
- Guoqin Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Tianjin Center for Tuberculosis Control, Tianjin, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xianhui Sun
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Joy Fleming
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fanlei Ran
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jianjun Luo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hong Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hanfang Ju
- Tianjin Center for Tuberculosis Control, Tianjin, China
| | - Zhirui Wang
- Tianjin Center for Tuberculosis Control, Tianjin, China
| | - Hui Zhao
- Tianjin Center for Tuberculosis Control, Tianjin, China
| | - Chunhua Wang
- Tianjin Center for Tuberculosis Control, Tianjin, China
| | - Fan Zhang
- Tianjin Center for Tuberculosis Control, Tianjin, China
| | - Xiaowei Dai
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Xinyu Yang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Chuanyou Li
- Biobank of Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumour Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yi Liu
- Biobank of Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumour Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | | | - Xilin Zhang
- Foshan Fourth People's Hospital, Foshan, China
| | - Yuan Jiang
- Shanghai Municipal Center for Disease Prevention and Control, Beijing, China
| | - Zhilong Wu
- Foshan Fourth People's Hospital, Foshan, China
| | - Lijun Bi
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Guangzhou National Laboratory, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hongtai Zhang
- Beijing Center for Disease Prevention and Control, Beijing, China.
| |
Collapse
|
10
|
Tafess K, Ng TTL, Tam KKG, Leung KSS, Leung JSL, Lee LK, Lao HY, Chan CTM, Yam WC, Wong SSY, Lau TCK, Siu GKH. Genetic mechanisms of co-emergence of INH-resistant Mycobacterium tuberculosis strains during the standard course of antituberculosis therapy. Microbiol Spectr 2024; 12:e0213323. [PMID: 38466098 PMCID: PMC10986572 DOI: 10.1128/spectrum.02133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024] Open
Abstract
The incidence of isoniazid (INH) resistant Mycobacterium tuberculosis is increasing globally. This study aimed to identify the molecular mechanisms behind the development of INH resistance in M. tuberculosis strains collected from the same patients during the standard course of treatment. Three M. tuberculosis strains were collected from a patient before and during antituberculosis (anti-TB) therapy. The strains were characterized using phenotypic drug susceptibility tests, Mycobacterial Interspersed Repeated Unit-Variable-Number Tandem Repeats (MIRU-VNTR), and whole-genome sequencing (WGS) to identify mutations associated with INH resistance. To validate the role of the novel mutations in INH resistance, the mutated katG genes were electroporated into a KatG-deleted M. tuberculosis strain (GA03). Three-dimensional structures of mutated KatG were modeled to predict their impact on INH binding. The pre-treatment strain was susceptible to INH. However, two INH-resistant strains were isolated from the patient after anti-TB therapy. MIRU-VNTR and WGS revealed that the three strains were clonally identical. A missense mutation (P232L) and a nonsense mutation (Q461Stop) were identified in the katG of the two post-treatment strains, respectively. Transformation experiments showed that katG of the pre-treatment strain restored INH susceptibility in GA03, whereas the mutated katG genes from the post-treatment strains rendered negative catalase activity and INH resistance. The protein model indicated that P232L reduced INH-KatG binding affinity while Q461Stop truncated gene transcription. Our results showed that the two katG mutations, P232L and Q461Stop, accounted for the co-emergence of INH-resistant clones during anti-TB therapy. The inclusion of these mutations in the design of molecular assays could increase the diagnostic performance.IMPORTANCEThe evolution of drug-resistant strains of Mycobacterium tuberculosis within the lung lesions of a patient has a detrimental impact on treatment outcomes. This is particularly concerning for isoniazid (INH), which is the most potent first-line antimycobacterial drug. However, the precise genetic factors responsible for drug resistance in patients have not been fully elucidated, with approximately 15% of INH-resistant strains harboring unknown genetic factors. This raises concerns about the emergence of drug-resistant clones within patients, further contributing to the global epidemic of resistance. In this study, we revealed the presence of two novel katG mutations, which emerged independently due to the stress exerted by antituberculosis (anti-TB) treatment on a parental strain. Importantly, we experimentally demonstrated the functional significance of both mutations in conferring resistance to INH. Overall, this research sheds light on the genetic mechanisms underlying the evolution of INH resistance within patients and provides valuable insights for improving diagnostic performance by targeting specific mutations.
Collapse
Affiliation(s)
- Ketema Tafess
- Department of Applied Biology, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia
- Institute of Pharmaceutical Sciences, Adama Science and Technology University, Adama, Ethiopia
| | - Timothy Ting-Leung Ng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kingsley King-Gee Tam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth Siu-Sing Leung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jake Siu-Lun Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Lam-Kwong Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Hiu Yin Lao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chloe Toi-Mei Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wing-Cheong Yam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Samson Sai Yin Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Terrence Chi-Kwong Lau
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Gilman Kit-Hang Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
11
|
Deng MZ, Liu Q, Cui SJ, Fu H, Gan M, Xu YY, Cai X, Sha W, Zhao GP, Fortune SM, Lyu LD. Mycobacterial DnaQ is an Alternative Proofreader Ensuring DNA Replication Fidelity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563508. [PMID: 37961690 PMCID: PMC10634781 DOI: 10.1101/2023.10.24.563508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Remove of mis-incorporated nucleotides ensures replicative fidelity. Although the ε-exonuclease DnaQ is a well-established proofreader in the model organism Escherichia coli, proofreading in mycobacteria relies on the polymerase and histidinol phosphatase (PHP) domain of replicative polymerase despite the presence of an alternative DnaQ homolog. Here, we show that depletion of DnaQ in Mycolicibacterium smegmatis results in increased mutation rate, leading to AT-biased mutagenesis and elevated insertions/deletions in homopolymer tract. We demonstrated that mycobacterial DnaQ binds to the b-clamp and functions synergistically with the PHP domain to correct replication errors. Further, we found that the mycobacterial DnaQ sustains replicative fidelity upon chromosome topological stress. Intriguingly, we showed that a naturally evolved DnaQ variant prevalent in clinical Mycobacterium tuberculosis isolates enables hypermutability and is associated with extensive drug resistance. These results collectively establish that the alternative DnaQ functions in proofreading, and thus reveal that mycobacteria deploy two proofreaders to maintain replicative fidelity.
Collapse
Affiliation(s)
- Ming-Zhi Deng
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health (MOE/NHC), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R.China
- These authors contributed equally
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115
- These authors contributed equally
| | - Shu-Jun Cui
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health (MOE/NHC), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R.China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, P.R.China
| | - Han Fu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health (MOE/NHC), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R.China
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, P.R.China
- University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Mingyu Gan
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, 201102, P.R.China
| | - Yuan-Yuan Xu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health (MOE/NHC), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R.China
| | - Xia Cai
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health (MOE/NHC), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R.China
| | - Wei Sha
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Shanghai 200433, P.R.China
| | - Guo-Ping Zhao
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, P.R.China
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, P.R.China
- University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Liang-Dong Lyu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health (MOE/NHC), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R.China
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Shanghai 200433, P.R.China
| |
Collapse
|
12
|
Zhang X, Lam C, Martinez E, Sim E, Crighton T, Marais BJ, Sintchenko V. Genomic markers of drug resistance in Mycobacterium tuberculosis populations with minority variants. J Clin Microbiol 2023; 61:e0048523. [PMID: 37750734 PMCID: PMC10595065 DOI: 10.1128/jcm.00485-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/17/2023] [Indexed: 09/27/2023] Open
Abstract
Minority variants of Mycobacterium tuberculosis harboring mutations conferring resistance can become dominant populations during tuberculosis (TB) treatment, leading to treatment failure. Our understanding of drug-resistant within-host subpopulations and the frequency of resistance-conferring mutations in minority variants remains limited. M. tuberculosis sequences recovered from liquid cultures of culture-confirmed TB cases notified between January 2017 and December 2021 in New South Wales, Australia were examined. Potential drug resistance-conferring minority variants were identified using LoFreq, and mixed populations of different M. tuberculosis strains (≥100 SNPs apart) were examined using QuantTB. A total of 1831 routinely sequenced M. tuberculosis strains were included in the analysis. Drug resistance-conferring minority variants were detected in 3.5% (65/1831) of sequenced cultures; 84.6% (55/65) had majority strains that were drug susceptible and 15.4% (10/65) had majority strains that were drug resistant. Minority variants with high-confidence drug resistance-conferring mutations were 1.5 times more common when the majority strains were drug resistant. Mixed M. tuberculosis strain populations were documented in 10.0% (183/1831) of specimens. Minority variants with high-confidence drug resistance-conferring mutations were more frequently detected in mixed M. tuberculosis strain populations (2.7%, 5/183) than in single strain populations (0.6%, 10/1648; P = 0.01). Drug-resistant minority variants require monitoring in settings that implement routine M. tuberculosis sequencing. The frequency with which drug-resistant minority variants are detected is likely influenced by pre-culture requirement. Culture-independent sequencing methods should provide a more accurate reflection of drug-resistant subpopulations.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Centre for Research Excellence in Tuberculosis (TB-CRE), Centenary Institute, Sydney, New South Wales, Australia
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, New South Wales, Australia
| | - Connie Lam
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, New South Wales, Australia
| | - Elena Martinez
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, New South Wales, Australia
- NSW Mycobacterium Reference Laboratory,Centre for Infectious Diseases and Microbiology-Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia
| | - Eby Sim
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, New South Wales, Australia
| | - Taryn Crighton
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, New South Wales, Australia
- NSW Mycobacterium Reference Laboratory,Centre for Infectious Diseases and Microbiology-Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia
| | - Ben J. Marais
- Centre for Research Excellence in Tuberculosis (TB-CRE), Centenary Institute, Sydney, New South Wales, Australia
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Centre for Research Excellence in Tuberculosis (TB-CRE), Centenary Institute, Sydney, New South Wales, Australia
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, New South Wales, Australia
- NSW Mycobacterium Reference Laboratory,Centre for Infectious Diseases and Microbiology-Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Koleske BN, Jacobs WR, Bishai WR. The Mycobacterium tuberculosis genome at 25 years: lessons and lingering questions. J Clin Invest 2023; 133:e173156. [PMID: 37781921 PMCID: PMC10541200 DOI: 10.1172/jci173156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
First achieved in 1998 by Cole et al., the complete genome sequence of Mycobacterium tuberculosis continues to provide an invaluable resource to understand tuberculosis (TB), the leading cause of global infectious disease mortality. At the 25-year anniversary of this accomplishment, we describe how insights gleaned from the M. tuberculosis genome have led to vital tools for TB research, epidemiology, and clinical practice. The increasing accessibility of whole-genome sequencing across research and clinical settings has improved our ability to predict antibacterial susceptibility, to track epidemics at the level of individual outbreaks and wider historical trends, to query the efficacy of the bacille Calmette-Guérin (BCG) vaccine, and to uncover targets for novel antitubercular therapeutics. Likewise, we discuss several recent efforts to extract further discoveries from this powerful resource.
Collapse
Affiliation(s)
- Benjamin N. Koleske
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - William R. Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Anthony R, Groenheit R, Mansjö M, de Zwaan R, Werngren J. The Relative Positioning of Genotyping and Phenotyping for Tuberculosis Resistance Screening in Two EU National Reference Laboratories in 2023. Microorganisms 2023; 11:1809. [PMID: 37512981 PMCID: PMC10383358 DOI: 10.3390/microorganisms11071809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The routine use of whole genome sequencing (WGS) as a reference typing technique for Mycobacterium tuberculosis epidemiology combined with the catalogued and extensive knowledge base of resistance-associated mutations means an initial susceptibility prediction can be derived from all cultured isolates in our laboratories based on WGS data alone. Preliminary work has confirmed, in our low-burden settings, these predictions are for first-line drugs, reproducible, robust with an accuracy similar to phenotypic drug susceptibility testing (pDST) and in many cases able to also predict the level of resistance (MIC). Routine screening for drug resistance by WGS results in approximately 80% of the isolates received being predicted as fully susceptible to the first-line drugs. Parallel testing with both WGS and pDST has demonstrated that routine pDST of genotypically fully susceptible isolates yields minimal additional information. Thus, rather than re-confirming all fully sensitive WGS-based predictions, we suggest that a more efficient use of available mycobacterial culture capacity in our setting is the development of a more extensive and detailed pDST targeted at any mono or multi-drug-resistant isolates identified by WGS screening. Phenotypic susceptibility retains a key role in the determination of an extended susceptibility profile for mono/multi-drugresistant isolates identified by WGS screening. The pDST information collected is also needed to support the development of future catalogues of resistance-associated mutations.
Collapse
Affiliation(s)
- Richard Anthony
- National Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721BA Bilthoven, The Netherlands
| | - Ramona Groenheit
- Supranational Reference Laboratory for Tuberculosis, Public Health Agency of Sweden, 171 82 Solna, Sweden
| | - Mikael Mansjö
- Supranational Reference Laboratory for Tuberculosis, Public Health Agency of Sweden, 171 82 Solna, Sweden
| | - Rina de Zwaan
- National Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721BA Bilthoven, The Netherlands
| | - Jim Werngren
- Supranational Reference Laboratory for Tuberculosis, Public Health Agency of Sweden, 171 82 Solna, Sweden
| |
Collapse
|
15
|
Chen X, Li R, Ge S, Li Y, Cai C, Weng T, Zhang Y, Jiang J, Feng Z, Chen Y, Zhang Y, Ma J, Persing DH, Chen J, Tang YW, Sun F, Zhang W. Rapid Detection of Extensive Drug Resistance by Xpert MTB/XDR Optimizes Therapeutic Decision-Making in Rifampin-Resistant Tuberculosis Patients. J Clin Microbiol 2023; 61:e0183222. [PMID: 37249422 PMCID: PMC10281159 DOI: 10.1128/jcm.01832-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
The Xpert MTB/XDR assay met the critical need for etiologic diagnosis of tuberculosis and rifampin resistance in previous studies. However, its benefits in tailoring the treatment regimen and improving the outcome for patients with rifampin-resistant tuberculosis (RR-TB) require further investigation. In this study, the Xpert MTB/XDR assay was used to determine the resistance profile of second-line drugs for RR-TB patients in two registered multicenter clinical trials, TB-TRUST (NCT03867136) and TB-TRUST-plus (NCT04717908), with the aim of testing the efficacy of all-oral shorter regimens in RR-TB patients in China. Patients would receive the fluoroquinolone-based all-oral shorter regimen, the injectable-containing regimen, or the bedaquiline-based regimen depending on fluoroquinolone susceptibility by using Xpert MTB/XDR. Among the 497 patients performed with Xpert MTB/XDR, 128 (25.8%) had infections resistant to fluoroquinolones and/or second-line injectable drugs (SLIDs). A total of 371 participants were recruited for the trials, and whole-genome sequencing (WGS) was performed on all corresponding culture-positive baseline strains. Taking the WGS results as the standard, the accuracy of the Xpert MTB/XDR assay in terms of resistance detection was 95.2% to 99.0% for all drugs. A total of 33 cases had inconsistent results, 9 of which were due to resistance heterogeneity. Most of the patients (241/281, 85.8%) had sputum culture conversion at 2 months. In conclusion, the Xpert MTB/XDR assay has the potential to serve as a quick reflex test in patients with RR-TB, as detected via Xpert MTB/RIF, to provide a reliable drug susceptibility profile of the infecting Mycobacterium tuberculosis strain and to initiate optimized treatment promptly.
Collapse
Affiliation(s)
- Xinchang Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shijia Ge
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cui Cai
- Department of Tuberculosis, Guiyang Public Health Clinical Center, Guiyang, China
| | - Taoping Weng
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Respiratory Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yilin Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingwen Jiang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Feng
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuanyuan Chen
- Zhejiang Prevention and Treatment Center of Tuberculosis, Zhejiang TCM & WM Hospital, Hangzhou, China
| | - Yungui Zhang
- Department of Tuberculosis, Yunnan Provincial Infectious Diseases Hospital, Kunming, Yunan, China
| | - Jian Ma
- Medical Affairs, Danaher Diagnostic Platform/Cepheid, Shanghai, China
| | - David H. Persing
- Medical Affairs, Danaher Diagnostic Platform/Cepheid, Shanghai, China
| | - Jiazhen Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Wei Tang
- Medical Affairs, Danaher Diagnostic Platform/Cepheid, Shanghai, China
| | - Feng Sun
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
| |
Collapse
|
16
|
Zhang S, Chen X, Lin Z, Tan Y, Liang B, Pan Y, Huang M, Su B, Hu X, Xu Y, Li Q. Quantification of Isoniazid-Heteroresistant Mycobacterium tuberculosis Using Droplet Digital PCR. J Clin Microbiol 2023; 61:e0188422. [PMID: 37195177 PMCID: PMC10281145 DOI: 10.1128/jcm.01884-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
The quantitative detection of drug-resistance mutations in Mycobacterium tuberculosis (MTB) is critical for determining the drug resistance status of a sample. We developed a drop-off droplet digital PCR (ddPCR) assay targeting all major isoniazid (INH)-resistant mutations. The ddPCR assay consisted of three reactions: reaction A detects mutations at katG S315; reaction B detects inhA promoter mutations; and reaction C detects ahpC promoter mutations. All reactions could quantify 1%-50% of mutants in the presence of the wild-type, ranging from 100 to 50,000 copies/reaction. Clinical evaluation with 338 clinical isolates yielded clinical sensitivity of 94.5% (95% confidence interval [CI] = 89.1%-97.3%) and clinical specificity of 97.6% (95% CI = 94.6%-99.0%) compared with the traditional drug susceptibility testing (DST). Further clinical evaluation using 194 nucleic acid-positive MTB sputum samples revealed clinical sensitivity of 87.8% (95% CI = 75.8%-94.3%) and clinical specificity of 96.5% (95% CI = 92.2%-98.5%) in comparison with DST. All the mutant and heteroresistant samples detected by the ddPCR assay but susceptible by DST were confirmed by combined molecular assays, including Sanger sequencing, mutant-enriched Sanger sequencing and a commercial melting curve analysis-based assay. Finally, the ddPCR assay was used to monitor longitudinally the INH-resistance status and the bacterial load in nine patients undergoing treatment. Overall, the developed ddPCR assay could be an indispensable tool for quantification of INH-resistant mutations in MTB and bacterial loads in patients.
Collapse
Affiliation(s)
- Siqi Zhang
- Engineering Research Centre of Molecular Diagnostics of Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaohong Chen
- The Pulmonary Hospital of Fuzhou in Fujian Province, Fuzhou, Fujian, China
| | - Zhonghui Lin
- The Pulmonary Hospital of Fuzhou in Fujian Province, Fuzhou, Fujian, China
| | - Yaoju Tan
- Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Bin Liang
- Engineering Research Centre of Molecular Diagnostics of Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuying Pan
- Engineering Research Centre of Molecular Diagnostics of Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mingxiang Huang
- The Pulmonary Hospital of Fuzhou in Fujian Province, Fuzhou, Fujian, China
| | - Biyi Su
- Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Xiaoman Hu
- Engineering Research Centre of Molecular Diagnostics of Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ye Xu
- Engineering Research Centre of Molecular Diagnostics of Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qingge Li
- Engineering Research Centre of Molecular Diagnostics of Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Cano AV, Gitschlag BL, Rozhoňová H, Stoltzfus A, McCandlish DM, Payne JL. Mutation bias and the predictability of evolution. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220055. [PMID: 37004719 PMCID: PMC10067271 DOI: 10.1098/rstb.2022.0055] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/16/2023] [Indexed: 04/04/2023] Open
Abstract
Predicting evolutionary outcomes is an important research goal in a diversity of contexts. The focus of evolutionary forecasting is usually on adaptive processes, and efforts to improve prediction typically focus on selection. However, adaptive processes often rely on new mutations, which can be strongly influenced by predictable biases in mutation. Here, we provide an overview of existing theory and evidence for such mutation-biased adaptation and consider the implications of these results for the problem of prediction, in regard to topics such as the evolution of infectious diseases, resistance to biochemical agents, as well as cancer and other kinds of somatic evolution. We argue that empirical knowledge of mutational biases is likely to improve in the near future, and that this knowledge is readily applicable to the challenges of short-term prediction. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Alejandro V. Cano
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Bryan L. Gitschlag
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hana Rozhoňová
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Arlin Stoltzfus
- Office of Data and Informatics, Material Measurement Laboratory, National Institute of Standards and Technology, Rockville, MD 20899, USA
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - David M. McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Joshua L. Payne
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Perumal R, Khan A, Naidoo K, Ngema SL, Nandlal L, Padayatchi N, Dookie N. Mycobacterium tuberculosis Intra-Host Evolution Among Drug-Resistant Tuberculosis Patients Failing Treatment. Infect Drug Resist 2023; 16:2849-2859. [PMID: 37193296 PMCID: PMC10182815 DOI: 10.2147/idr.s408976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2023] [Indexed: 05/18/2023] Open
Abstract
Background Understanding Mycobacterium tuberculosis (Mtb) intra-host evolution of drug resistance is important for successful drug-resistant tuberculosis (DR-TB) treatment and control strategies. This study aimed to characterise the acquisition of genetic mutations and low-frequency variants associated with treatment-emergent Mtb drug resistance in longitudinally profiled clinical isolates from patients who experienced DR-TB treatment failure. Patients and Methods We performed deep Whole Genome Sequencing on 23 clinical isolates obtained longitudinally across nine timepoints from five patients who experienced DR-TB treatment failure enrolled in the CAPRISA 020 InDEX study. The minimum inhibitory concentrations (MICs) were established on the BACTEC™ MGIT 960™ instrument on 15/23 longitudinal clinical isolates for eight anti-TB drugs (rifampicin, isoniazid, ethambutol, levofloxacin, moxifloxacin, linezolid, clofazimine, bedaquiline). Results In total, 22 resistance associated mutations/variants were detected. We observed four treatment-emergent mutations in two out of the five patients. Emerging resistance to the fluoroquinolones was associated with 16- and 64-fold elevated levofloxacin (2-8 mg/L) and moxifloxacin (1-2 mg/L) MICs, respectively, resulting from the D94G/N and A90V variants in the gyrA gene. We identified two novel mutations associated with elevated bedaquiline MICs (>66-fold): an emerging frameshift variant (D165) on the Rv0678 gene and R409Q variant on the Rv1979c gene present from baseline. Conclusion Genotypic and phenotypic resistance to the fluoroquinolones and bedaquiline was acquired in two out of five patients who experienced DR-TB treatment failure. Deep sequencing of multiple longitudinal clinical isolates for resistance-associated mutations coupled with phenotypic MIC testing confirmed intra-host Mtb evolution.
Collapse
Affiliation(s)
- Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
- South African Medical Research Council (SAMRC) – CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, KwaZulu Natal, South Africa
| | - Azraa Khan
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
- South African Medical Research Council (SAMRC) – CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, KwaZulu Natal, South Africa
| | - Senamile L Ngema
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
| | - Louansha Nandlal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
- South African Medical Research Council (SAMRC) – CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, KwaZulu Natal, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
- South African Medical Research Council (SAMRC) – CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, KwaZulu Natal, South Africa
| | - Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
- South African Medical Research Council (SAMRC) – CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, KwaZulu Natal, South Africa
| |
Collapse
|
19
|
Liu Q, Zhu J, Dulberger CL, Stanley S, Wilson S, Chung ES, Wang X, Culviner P, Liu YJ, Hicks ND, Babunovic GH, Giffen SR, Aldridge BB, Garner EC, Rubin EJ, Chao MC, Fortune SM. Tuberculosis treatment failure associated with evolution of antibiotic resilience. Science 2022; 378:1111-1118. [PMID: 36480634 PMCID: PMC9968493 DOI: 10.1126/science.abq2787] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The widespread use of antibiotics has placed bacterial pathogens under intense pressure to evolve new survival mechanisms. Genomic analysis of 51,229 Mycobacterium tuberculosis (Mtb)clinical isolates has identified an essential transcriptional regulator, Rv1830, herein called resR for resilience regulator, as a frequent target of positive (adaptive) selection. resR mutants do not show canonical drug resistance or drug tolerance but instead shorten the post-antibiotic effect, meaning that they enable Mtb to resume growth after drug exposure substantially faster than wild-type strains. We refer to this phenotype as antibiotic resilience. ResR acts in a regulatory cascade with other transcription factors controlling cell growth and division, which are also under positive selection in clinical isolates of Mtb. Mutations of these genes are associated with treatment failure and the acquisition of canonical drug resistance.
Collapse
Affiliation(s)
- Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Charles L. Dulberger
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA,Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA
| | - Sydney Stanley
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sean Wilson
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA
| | - Eun Seon Chung
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA,Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02115, USA
| | - Xin Wang
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Peter Culviner
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yue J. Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nathan D. Hicks
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Gregory H. Babunovic
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Samantha R. Giffen
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA,Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02115, USA
| | - Ethan C. Garner
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michael C. Chao
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA,Corresponding author.
| |
Collapse
|
20
|
Grote A, Earl AM. Within-host evolution of bacterial pathogens during persistent infection of humans. Curr Opin Microbiol 2022; 70:102197. [PMID: 36063686 PMCID: PMC11333989 DOI: 10.1016/j.mib.2022.102197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023]
Abstract
Many bacterial pathogens can form persistent infections, providing an infectious reservoir, which allows for infection of new hosts. Currently, the molecular mechanisms and evolutionary dynamics driving persistence are still not well-understood. High-throughput sequencing methods have enabled the study of within-host evolution of persistent bacterial pathogens, revealing common trends among bacterial species in how they adapt to persist. We will focus on trends emerging from longitudinal human-cohort studies, including i) genome-size reduction, ii) metabolic adaptation to the host, iii) antimicrobial resistance, iv) changes in virulence and the bacterial cell surface, and v) hypermutation, and comment on where the field should focus going forward.
Collapse
Affiliation(s)
- Alexandra Grote
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
21
|
Nimmo C, Millard J, Faulkner V, Monteserin J, Pugh H, Johnson EO. Evolution of Mycobacterium tuberculosis drug resistance in the genomic era. Front Cell Infect Microbiol 2022; 12:954074. [PMID: 36275027 PMCID: PMC9585206 DOI: 10.3389/fcimb.2022.954074] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium tuberculosis has acquired drug resistance to all drugs that have been used against it, including those only recently introduced into clinical practice. Compared to other bacteria, it has a well conserved genome due to its role as an obligate human pathogen that has adapted to a niche over five to ten thousand years. These features facilitate reconstruction and dating of M. tuberculosis phylogenies, giving key insights into how resistance has been acquired and spread globally. Resistance to each new drug has occurred within five to ten years of clinical use and has occurred even more rapidly with recently introduced drugs. In most cases, resistance-conferring mutations come with a fitness cost, but this can be overcome by compensatory mutations which restore fitness to that of wild-type bacteria. It is likely that M. tuberculosis acquires drug resistance while maintaining limited genomic variability due the generation of low frequency within-host variation, combined with ongoing purifying selection causing loss of variants without a clear fitness advantage. However, variants that do confer an advantage, such as drug resistance, can increase in prevalence amongst all bacteria within a host and become the dominant clone. These resistant strains can then be transmitted leading to primary drug resistant infection in a new host. As many countries move towards genomic methods for diagnosis of M. tuberculosis infection and drug resistance, it is important to be aware of the implications for the evolution of resistance. Currently, understanding of resistance-conferring mutations is incomplete, and some targeted genetic diagnostics create their own selective pressures. We discuss an example where a rifampicin resistance-conferring mutation which was not routinely covered by standard testing became dominant. Finally, resistance to new drugs such as bedaquiline and delamanid is caused by individually rare mutations occurring across a large mutational genomic target that have been detected over a short time, and do not provide statistical power for genotype-phenotype correlation – in contrast to longer-established drugs that form the backbone of drug-sensitive antituberculosis therapy. Therefore, we need a different approach to identify resistance-conferring mutations of new drugs before their resistance becomes widespread, abrogating their usefulness.
Collapse
Affiliation(s)
- Camus Nimmo
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
- *Correspondence: Camus Nimmo,
| | - James Millard
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Valwynne Faulkner
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Johana Monteserin
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Hannah Pugh
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Eachan Oliver Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
22
|
Smith TM, Youngblom MA, Kernien JF, Mohamed MA, Fry SS, Bohr LL, Mortimer TD, O'Neill MB, Pepperell CS. Rapid adaptation of a complex trait during experimental evolution of Mycobacterium tuberculosis. eLife 2022; 11:e78454. [PMID: 35726854 PMCID: PMC9213004 DOI: 10.7554/elife.78454] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/15/2022] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), is a leading cause of death due to infectious disease. TB is not traditionally associated with biofilms, but M. tb biofilms are linked with drug and immune tolerance and there is increasing recognition of their contribution to the recalcitrance of TB infections. Here, we used M. tb experimental evolution to investigate this complex phenotype and identify candidate loci controlling biofilm formation. We identified novel candidate loci, adding to our understanding of the genetic architecture underlying M. tb biofilm development. Under selective pressure to grow as a biofilm, regulatory mutations rapidly swept to fixation and were associated with changes in multiple traits, including extracellular matrix production, cell size, and growth rate. Genetic and phenotypic paths to enhanced biofilm growth varied according to the genetic background of the parent strain, suggesting that epistatic interactions are important in M. tb adaptation to changing environments.
Collapse
Affiliation(s)
| | - Madison A Youngblom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
- Microbiology Doctoral Training Program, University of Wisconsin-MadisonMadisonUnited States
| | - John F Kernien
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Mohamed A Mohamed
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Sydney S Fry
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Lindsey L Bohr
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
- Microbiology Doctoral Training Program, University of Wisconsin-MadisonMadisonUnited States
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Mary B O'Neill
- Laboratoire de Biochimie (LBC), Chimie Biologie et Innovation, ESPCI Paris, PSL UniversitéParisFrance
| | - Caitlin S Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
- Department of Medicine (Infectious Diseases), School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
23
|
Guo Q, Bi J, Lin Q, Ye T, Wang Z, Wang Z, Liu L, Zhang G. Whole Genome Sequencing Identifies Novel Mutations Associated With Bedaquiline Resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:807095. [PMID: 35694543 PMCID: PMC9184757 DOI: 10.3389/fcimb.2022.807095] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Bedaquiline (BDQ), a new antitubercular agent, has been used to treat drug-resistant tuberculosis (TB). Although mutations in atpE, rv0678, and pepQ confer major resistance to BDQ, the mechanisms of resistance to BDQ in vitro and in clinical settings have not been fully elucidated. We selected BDQ-resistant mutants from 7H10 agar plates containing 0.5 mg/L BDQ (the critical concentration) and identified mutations associated with BDQ resistance through whole genome sequencing and Sanger sequencing. A total of 1,025 mutants were resistant to BDQ. We randomly selected 168 mutants for further analysis and discovered that 157/168 BDQ-resistant mutants harbored mutations in rv0678, which encodes a transcriptional regulator that represses the expression of the efflux pump, MmpS5–MmpL5. Moreover, we found two mutations with high frequency in rv0678 at nucleotide positions 286–287 (CG286–287 insertion; accounting for 26.8% [45/168]) and 198–199 (G198, G199 insertion, and G198 deletion; accounting for 14.3% [24/168]). The other mutations were dispersed covering the entire rv0678 gene. Moreover, we found that one new gene, glpK, harbors a G572 insertion; this mutation has a high prevalence (85.7%; 144/168) in the isolated mutants, and the minimum inhibitory concentration (MIC) assay demonstrated that it is closely associated with BDQ resistance. In summary, we characterized 168/1,025 mutants resistant to BDQ and found that mutations in rv0678 confer the primary mechanism of BDQ resistance. Moreover, we identified a new gene (glpK) involved in BDQ resistance. Our study offers new insights and valuable information that will contribute to rapid identification of BDQ-resistant isolates in clinical settings.
Collapse
Affiliation(s)
- Qinglong Guo
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Jing Bi
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Qiao Lin
- Department of Traditional Chinese Medicine, The Baoan People’s Hospital of Shenzhen, Shenzhen University, Shenzhen, China
| | - Taosheng Ye
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhongyuan Wang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhaoqin Wang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Lei Liu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Guoliang Zhang,
| |
Collapse
|
24
|
Foster-Nyarko E, Pallen MJ. The microbial ecology of Escherichia coli in the vertebrate gut. FEMS Microbiol Rev 2022; 46:fuac008. [PMID: 35134909 PMCID: PMC9075585 DOI: 10.1093/femsre/fuac008] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli has a rich history as biology's 'rock star', driving advances across many fields. In the wild, E. coli resides innocuously in the gut of humans and animals but is also a versatile pathogen commonly associated with intestinal and extraintestinal infections and antimicrobial resistance-including large foodborne outbreaks such as the one that swept across Europe in 2011, killing 54 individuals and causing approximately 4000 infections and 900 cases of haemolytic uraemic syndrome. Given that most E. coli are harmless gut colonizers, an important ecological question plaguing microbiologists is what makes E. coli an occasionally devastating pathogen? To address this question requires an enhanced understanding of the ecology of the organism as a commensal. Here, we review how our knowledge of the ecology and within-host diversity of this organism in the vertebrate gut has progressed in the 137 years since E. coli was first described. We also review current approaches to the study of within-host bacterial diversity. In closing, we discuss some of the outstanding questions yet to be addressed and prospects for future research.
Collapse
Affiliation(s)
- Ebenezer Foster-Nyarko
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, United Kingdom
| |
Collapse
|
25
|
Sabin S, Morales-Arce AY, Pfeifer SP, Jensen JD. The impact of frequently neglected model violations on bacterial recombination rate estimation: a case study in Mycobacterium canettii and Mycobacterium tuberculosis. G3 (BETHESDA, MD.) 2022; 12:jkac055. [PMID: 35253851 PMCID: PMC9073693 DOI: 10.1093/g3journal/jkac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/28/2022] [Indexed: 12/04/2022]
Abstract
Mycobacterium canettii is a causative agent of tuberculosis in humans, along with the members of the Mycobacterium tuberculosis complex. Frequently used as an outgroup to the M. tuberculosis complex in phylogenetic analyses, M. canettii is thought to offer the best proxy for the progenitor species that gave rise to the complex. Here, we leverage whole-genome sequencing data and biologically relevant population genomic models to compare the evolutionary dynamics driving variation in the recombining M. canettii with that in the nonrecombining M. tuberculosis complex, and discuss differences in observed genomic diversity in the light of expected levels of Hill-Robertson interference. In doing so, we highlight the methodological challenges of estimating recombination rates through traditional population genetic approaches using sequences called from populations of microorganisms and evaluate the likely mis-inference that arises owing to a neglect of common model violations including purifying selection, background selection, progeny skew, and population size change. In addition, we compare performance when full within-host polymorphism data are utilized, versus the more common approach of basing analyses on within-host consensus sequences.
Collapse
Affiliation(s)
- Susanna Sabin
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Ana Y Morales-Arce
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Susanne P Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jeffrey D Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
26
|
Waddington C, Carey ME, Boinett CJ, Higginson E, Veeraraghavan B, Baker S. Exploiting genomics to mitigate the public health impact of antimicrobial resistance. Genome Med 2022; 14:15. [PMID: 35172877 PMCID: PMC8849018 DOI: 10.1186/s13073-022-01020-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major global public health threat, which has been largely driven by the excessive use of antimicrobials. Control measures are urgently needed to slow the trajectory of AMR but are hampered by an incomplete understanding of the interplay between pathogens, AMR encoding genes, and mobile genetic elements at a microbial level. These factors, combined with the human, animal, and environmental interactions that underlie AMR dissemination at a population level, make for a highly complex landscape. Whole-genome sequencing (WGS) and, more recently, metagenomic analyses have greatly enhanced our understanding of these processes, and these approaches are informing mitigation strategies for how we better understand and control AMR. This review explores how WGS techniques have advanced global, national, and local AMR surveillance, and how this improved understanding is being applied to inform solutions, such as novel diagnostic methods that allow antimicrobial use to be optimised and vaccination strategies for better controlling AMR. We highlight some future opportunities for AMR control informed by genomic sequencing, along with the remaining challenges that must be overcome to fully realise the potential of WGS approaches for international AMR control.
Collapse
Affiliation(s)
- Claire Waddington
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Megan E Carey
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Ellen Higginson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Balaji Veeraraghavan
- Department of Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK. .,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
27
|
Bohrer AC, Castro E, Hu Z, Queiroz AT, Tocheny CE, Assmann M, Sakai S, Nelson C, Baker PJ, Ma H, Wang L, Zilu W, du Bruyn E, Riou C, Kauffman KD, Tuberculosis Imaging Program, Moore IN, Del Nonno F, Petrone L, Goletti D, Martineau AR, Lowe DM, Cronan MR, Wilkinson RJ, Barry CE, Via LE, Barber DL, Klion AD, Andrade BB, Song Y, Wong KW, Mayer-Barber KD. Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. J Exp Med 2021; 218:e20210469. [PMID: 34347010 PMCID: PMC8348215 DOI: 10.1084/jem.20210469] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/16/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Host resistance to Mycobacterium tuberculosis (Mtb) infection requires the activities of multiple leukocyte subsets, yet the roles of the different innate effector cells during tuberculosis are incompletely understood. Here we uncover an unexpected association between eosinophils and Mtb infection. In humans, eosinophils are decreased in the blood but enriched in resected human tuberculosis lung lesions and autopsy granulomas. An influx of eosinophils is also evident in infected zebrafish, mice, and nonhuman primate granulomas, where they are functionally activated and degranulate. Importantly, using complementary genetic models of eosinophil deficiency, we demonstrate that in mice, eosinophils are required for optimal pulmonary bacterial control and host survival after Mtb infection. Collectively, our findings uncover an unexpected recruitment of eosinophils to the infected lung tissue and a protective role for these cells in the control of Mtb infection in mice.
Collapse
Affiliation(s)
- Andrea C. Bohrer
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ehydel Castro
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Zhidong Hu
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Tuberculosis Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Artur T.L. Queiroz
- The KAB group, Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador Brazil
| | - Claire E. Tocheny
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Maike Assmann
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Shunsuke Sakai
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Christine Nelson
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Paul J. Baker
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hui Ma
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Tuberculosis Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Lin Wang
- Tuberculosis Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wen Zilu
- Tuberculosis Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Elsa du Bruyn
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Catherine Riou
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Keith D. Kauffman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tuberculosis Imaging Program
- Tuberculosis Imaging Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ian N. Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Franca Del Nonno
- Pathology Unit, National Institute for Infectious Diseases “L. Spallanzani,” Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, Department of Epidemiology and Preclinical Research National Institute for Infectious Diseases, Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research National Institute for Infectious Diseases, Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Adrian R. Martineau
- Institute of Immunity and Transplantation, University College London, London, UK
| | - David M. Lowe
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Mark R. Cronan
- In Vivo Cell Biology of Infection Unit, Max Planck Institute for Infection Biology, Berlin, Germany
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
| | - Robert J. Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Department of Infectious Diseases, Imperial College London, UK
- Francis Crick Institute, London, UK
| | - Clifton E. Barry
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Laura E. Via
- Tuberculosis Imaging Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Amy D. Klion
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Bruno B. Andrade
- The KAB group, Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador Brazil
| | - Yanzheng Song
- Tuberculosis Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ka-Wing Wong
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Tuberculosis Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
28
|
Bacterial heteroresistance: an evolving novel way to combat antibiotics. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00820-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Castro RAD, Borrell S, Gagneux S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 45:fuaa071. [PMID: 33320947 PMCID: PMC8371278 DOI: 10.1093/femsre/fuaa071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) has been responsible for the greatest number of human deaths due to an infectious disease in general, and due to antimicrobial resistance (AMR) in particular. The etiological agents of human TB are a closely-related group of human-adapted bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Understanding how MTBC populations evolve within-host may allow for improved TB treatment and control strategies. In this review, we highlight recent works that have shed light on how AMR evolves in MTBC populations within individual patients. We discuss the role of heteroresistance in AMR evolution, and review the bacterial, patient and environmental factors that likely modulate the magnitude of heteroresistance within-host. We further highlight recent works on the dynamics of MTBC genetic diversity within-host, and discuss how spatial substructures in patients' lungs, spatiotemporal heterogeneity in antimicrobial concentrations and phenotypic drug tolerance likely modulates the dynamics of MTBC genetic diversity in patients during treatment. We note the general characteristics that are shared between how the MTBC and other bacterial pathogens evolve in humans, and highlight the characteristics unique to the MTBC.
Collapse
Affiliation(s)
- Rhastin A D Castro
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| |
Collapse
|
30
|
Genestet C, Hodille E, Barbry A, Berland JL, Hoffmann J, Westeel E, Bastian F, Guichardant M, Venner S, Lina G, Ginevra C, Ader F, Goutelle S, Dumitrescu O. Rifampicin exposure reveals within-host Mycobacterium tuberculosis diversity in patients with delayed culture conversion. PLoS Pathog 2021; 17:e1009643. [PMID: 34166469 PMCID: PMC8224949 DOI: 10.1371/journal.ppat.1009643] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) genetic micro-diversity in clinical isolates may underline mycobacterial adaptation to tuberculosis (TB) infection and provide insights to anti-TB treatment response and emergence of resistance. Herein we followed within-host evolution of Mtb clinical isolates in two cohorts of TB patients, either with delayed Mtb culture conversion (> 2 months), or with fast culture conversion (< 2 months). We captured the genetic diversity of Mtb isolates obtained in each patient, by focusing on minor variants detected as unfixed single nucleotide polymorphisms (SNPs). To unmask antibiotic tolerant sub-populations, we exposed these isolates to rifampicin (RIF) prior to whole genome sequencing (WGS) analysis. Thanks to WGS, we detected at least 1 unfixed SNP within the Mtb isolates for 9/15 patients with delayed culture conversion, and non-synonymous (ns) SNPs for 8/15 patients. Furthermore, RIF exposure revealed 9 additional unfixed nsSNP from 6/15 isolates unlinked to drug resistance. By contrast, in the fast culture conversion cohort, RIF exposure only revealed 2 unfixed nsSNP from 2/20 patients. To better understand the dynamics of Mtb micro-diversity, we investigated the variant composition of a persistent Mtb clinical isolate before and after controlled stress experiments mimicking the course of TB disease. A minor variant, featuring a particular mycocerosates profile, became enriched during both RIF exposure and macrophage infection. The variant was associated with drug tolerance and intracellular persistence, consistent with the pharmacological modeling predicting increased risk of treatment failure. A thorough study of such variants not necessarily linked to canonical drug-resistance, but which are prone to promote anti-TB drug tolerance, may be crucial to prevent the subsequent emergence of resistance. Taken together, the present findings support the further exploration of Mtb micro-diversity as a promising tool to detect patients at risk of poorly responding to anti-TB treatment, ultimately allowing improved and personalized TB management. Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb), bacteria that are able to persist inside the patient for many months or years, thus requiring long antibiotic treatments. Here we focused on TB patients with delayed response to treatment and we performed genetic characterization of Mtb isolates to search for sub-populations that may tolerate anti-TB drugs. We found that Mtb cultured from 9/15 patients contained different sub-populations, and in vitro drug exposure revealed Mtb sub-populations in 6/15 isolates, none related to known drug-resistance mechanisms. By contrast, drug exposure revealed Mtb sup-populations in 2/20 isolates in the control cohort of patients with fast culture conversion. Furthermore, we characterized a Mtb variant isolated from a sub-population growing in the presence of rifampicin (RIF), a major anti-TB drug. We found that this variant featured a modified lipidic envelope, and that it was able to develop in the presence of RIF and inside human macrophage cells. We performed pharmacological modelling and found that this kind of variant may be related to a poor response to treatment. In conclusion, searching for particular Mtb sub-populations may help to detect patients at risk of treatment failure and provide additional guidance for TB management.
Collapse
Affiliation(s)
- Charlotte Genestet
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
- * E-mail:
| | - Elisabeth Hodille
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
| | - Alexia Barbry
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
| | - Jean-Luc Berland
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Fondation Mérieux, Emerging Pathogens Laboratory, Lyon, France
| | - Jonathan Hoffmann
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Fondation Mérieux, Emerging Pathogens Laboratory, Lyon, France
| | - Emilie Westeel
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Fondation Mérieux, Emerging Pathogens Laboratory, Lyon, France
| | - Fabiola Bastian
- Plateforme DTAMB, CNRS, Université Lyon 1, Villeurbanne, France
| | - Michel Guichardant
- CarMeN laboratory, INSA Lyon, INSERM U1060, INRA U1397, Université Lyon 1, Villeurbanne, France
| | - Samuel Venner
- Laboratoire de Biométrie et Biologie Évolutive, CNRS UMR 5558, Université Lyon 1, Villeurbanne, France
| | - Gérard Lina
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
- Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Lyon, France
| | - Christophe Ginevra
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
| | - Florence Ader
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Service des Maladies infectieuses et tropicales, Lyon, France
| | - Sylvain Goutelle
- Laboratoire de Biométrie et Biologie Évolutive, CNRS UMR 5558, Université Lyon 1, Villeurbanne, France
- Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Lyon, France
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Service pharmaceutique, Lyon, France
| | - Oana Dumitrescu
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
- Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Lyon, France
| |
Collapse
|
31
|
Moreno-Molina M, Shubladze N, Khurtsilava I, Avaliani Z, Bablishvili N, Torres-Puente M, Villamayor L, Gabrielian A, Rosenthal A, Vilaplana C, Gagneux S, Kempker RR, Vashakidze S, Comas I. Genomic analyses of Mycobacterium tuberculosis from human lung resections reveal a high frequency of polyclonal infections. Nat Commun 2021; 12:2716. [PMID: 33976135 PMCID: PMC8113332 DOI: 10.1038/s41467-021-22705-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/22/2021] [Indexed: 01/15/2023] Open
Abstract
Polyclonal infections occur when at least two unrelated strains of the same pathogen are detected in an individual. This has been linked to worse clinical outcomes in tuberculosis, as undetected strains with different antibiotic resistance profiles can lead to treatment failure. Here, we examine the amount of polyclonal infections in sputum and surgical resections from patients with tuberculosis in the country of Georgia. For this purpose, we sequence and analyse the genomes of Mycobacterium tuberculosis isolated from the samples, acquired through an observational clinical study (NCT02715271). Access to the lung enhanced the detection of multiple strains (40% of surgery cases) as opposed to just using a sputum sample (0-5% in the general population). We show that polyclonal infections often involve genetically distant strains and can be associated with reversion of the patient's drug susceptibility profile over time. In addition, we find different patterns of genetic diversity within lesions and across patients, including mutational signatures known to be associated with oxidative damage; this suggests that reactive oxygen species may be acting as a selective pressure in the granuloma environment. Our results support the idea that the magnitude of polyclonal infections in high-burden tuberculosis settings is underestimated when only testing sputum samples.
Collapse
MESH Headings
- Antitubercular Agents/therapeutic use
- Biopsy
- Clone Cells
- Cohort Studies
- Drug Resistance, Multiple, Bacterial/genetics
- Genetic Variation
- Genome, Bacterial
- Georgia (Republic)
- Granuloma/drug therapy
- Granuloma/microbiology
- Granuloma/pathology
- Granuloma/surgery
- Humans
- Lung/microbiology
- Lung/pathology
- Lung/surgery
- Mycobacterium tuberculosis/classification
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/pathogenicity
- Reactive Oxygen Species/metabolism
- Sputum/microbiology
- Tuberculosis, Multidrug-Resistant/drug therapy
- Tuberculosis, Multidrug-Resistant/microbiology
- Tuberculosis, Multidrug-Resistant/pathology
- Tuberculosis, Multidrug-Resistant/surgery
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
- Tuberculosis, Pulmonary/surgery
Collapse
Affiliation(s)
| | - Natalia Shubladze
- National Center for Tuberculosis and Lung Diseases of Georgia, Tbilisi, Georgia
| | - Iza Khurtsilava
- National Center for Tuberculosis and Lung Diseases of Georgia, Tbilisi, Georgia
| | - Zaza Avaliani
- National Center for Tuberculosis and Lung Diseases of Georgia, Tbilisi, Georgia
| | - Nino Bablishvili
- National Center for Tuberculosis and Lung Diseases of Georgia, Tbilisi, Georgia
| | | | | | - Andrei Gabrielian
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Maryland, USA
| | - Alex Rosenthal
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Maryland, USA
| | - Cristina Vilaplana
- Fundació Institut Germans Trias i Pujol (IGTP), Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBER of Respiratory Diseases, Madrid, Spain
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Russell R Kempker
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, USA
| | - Sergo Vashakidze
- National Center for Tuberculosis and Lung Diseases of Georgia, Tbilisi, Georgia
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain.
- CIBER in Epidemiology and Public Health, Madrid, Spain.
| |
Collapse
|
32
|
Fernandez Do Porto DA, Monteserin J, Campos J, Sosa EJ, Matteo M, Serral F, Yokobori N, Benevento AF, Poklepovich T, Pardo A, Wainmayer I, Simboli N, Castello F, Paul R, Martí M, López B, Turjanski A, Ritacco V. Five-year microevolution of a multidrug-resistant Mycobacterium tuberculosis strain within a patient with inadequate compliance to treatment. BMC Infect Dis 2021; 21:394. [PMID: 33926375 PMCID: PMC8082761 DOI: 10.1186/s12879-021-06069-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Whole-genome sequencing has shown that the Mycobacterium tuberculosis infection process can be more heterogeneous than previously thought. Compartmentalized infections, exogenous reinfections, and microevolution are manifestations of this clonal complexity. The analysis of the mechanisms causing the microevolution -the genetic variability of M. tuberculosis at short time scales- of a parental strain into clonal variants with a patient is a relevant issue that has not been yet completely addressed. To our knowledge, a whole genome sequence microevolution analysis in a single patient with inadequate adherence to treatment has not been previously reported. CASE PRESENTATION In this work, we applied whole genome sequencing analysis for a more in-depth analysis of the microevolution of a parental Mycobacterium tuberculosis strain into clonal variants within a patient with poor treatment compliance in Argentina. We analyzed the whole-genome sequence of 8 consecutive Mycobacterium tuberculosis isolates obtained from a patient within 57-months of intermittent therapy. Nineteen mutations (9 short-term, 10 fixed variants) emerged, most of them associated with drug resistance. The first isolate was already resistant to isoniazid, rifampicin, and streptomycin, thereafter the strain developed resistance to fluoroquinolones and pyrazinamide. Surprisingly, isolates remained susceptible to the pro-drug ethionamide after acquiring a frameshift mutation in ethA, a gene required for its activation. We also found a novel variant, (T-54G), in the 5' untranslated region of whiB7 (T-54G), a region allegedly related to kanamycin resistance. Notably, discrepancies between canonical and phage-based susceptibility testing to kanamycin were previously found for the isolate harboring this mutation. In our patient, microevolution was mainly driven by drug selective pressure. Rare short-term mutations fixed together with resistance-conferring mutations during therapy. CONCLUSIONS This report highlights the relevance of whole-genome sequencing analysis in the clinic for characterization of pre-XDR and MDR resistance profile, particularly in patients with incomplete and/or intermittent treatment.
Collapse
Affiliation(s)
- Darío A Fernandez Do Porto
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Johana Monteserin
- Instituto Nacional de Enfermedades Infecciosas-ANLIS Carlos Malbrán, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Josefina Campos
- Instituto Nacional de Enfermedades Infecciosas-ANLIS Carlos Malbrán, Buenos Aires, Argentina
| | - Ezequiel J Sosa
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Mario Matteo
- Instituto de Tisioneumonología Raúl F. Vaccarezza, Hospital de Infecciosas Dr. F. J. Muñiz, Buenos Aires, Argentina
| | - Federico Serral
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Noemí Yokobori
- Instituto Nacional de Enfermedades Infecciosas-ANLIS Carlos Malbrán, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés Fernández Benevento
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Tomás Poklepovich
- Instituto Nacional de Enfermedades Infecciosas-ANLIS Carlos Malbrán, Buenos Aires, Argentina
| | - Agustín Pardo
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Ingrid Wainmayer
- Instituto Nacional de Enfermedades Infecciosas-ANLIS Carlos Malbrán, Buenos Aires, Argentina
| | - Norberto Simboli
- Instituto Nacional de Enfermedades Infecciosas-ANLIS Carlos Malbrán, Buenos Aires, Argentina
| | - Florencia Castello
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roxana Paul
- Instituto Nacional de Enfermedades Infecciosas-ANLIS Carlos Malbrán, Buenos Aires, Argentina
| | - Marcelo Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Beatriz López
- Instituto Nacional de Enfermedades Infecciosas-ANLIS Carlos Malbrán, Buenos Aires, Argentina
| | - Adrián Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, IQUIBICEN, CONICET, Buenos Aires, Argentina.
| | - Viviana Ritacco
- Instituto Nacional de Enfermedades Infecciosas-ANLIS Carlos Malbrán, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
33
|
Emergence of additional drug resistance during treatment of multidrug-resistant tuberculosis in China: a prospective cohort study. Clin Microbiol Infect 2021; 27:1805-1813. [PMID: 33895338 DOI: 10.1016/j.cmi.2021.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Little is known about how additional second-line drug resistance emerges during multidrug-resistant tuberculosis (MDR-TB) treatment. The present study aimed to investigate the influence of microevolution, exogenous reinfection and mixed infection on second-line drug resistance during the recommended 2-year MDR-TB treatment. METHODS Individuals with MDR-TB were enrolled between 2013 and 2016 in a multicentre prospective observational cohort study and were followed up for 2 years until treatment completion. Whole-genome sequencing (WGS) was applied for serial Mycobacterium tuberculosis isolates from study participants throughout the treatment, to study the role of microevolution, exogenous reinfection and mixed infection in the development of second-line drug resistance. RESULTS Of the 286 enrolled patients with MDR-TB, 63 (22.0%) M. tuberculosis isolates developed additional drug resistance during the MDR-TB treatment, including 5 that fulfilled the criteria of extensively drug-resistant TB. By comparing WGS data of serial isolates retrieved from the patients throughout treatment, 41 (65.1%) of the cases of additional second-line drug resistance were the result of exogenous reinfection, 18 (28.6%) were caused by acquired drug resistance, i.e. microevolution, while the remaining 4 (6.3%) were caused by mixed infections with drug-resistant and drug-susceptible strains. In multivariate analysis, previous TB treatment (adjusted hazard ratio (aHR) 2.51, 95% CI 1.51-4.18), extensive disease on chest X-ray (aHR 3.39, 95% CI 2.03-5.66) and type 2 diabetes mellitus (aHR 4.00, 95% CI 2.22-7.21) were independent risk factors associated with the development of additional second-line drug resistance. CONCLUSIONS A large proportion of additional second-line drug resistance emerging during MDR-TB treatment was attributed to exogenous reinfection, indicating the urgency of infection control in health facilities as well as the need for repeated drug susceptibility testing throughout MDR-TB treatment.
Collapse
|
34
|
Dong W, Nie X, Zhu H, Liu Q, Shi K, You L, Zhang Y, Fan H, Yan B, Niu C, Lyu LD, Zhao GP, Yang C. Mycobacterial fatty acid catabolism is repressed by FdmR to sustain lipogenesis and virulence. Proc Natl Acad Sci U S A 2021; 118:e2019305118. [PMID: 33853942 PMCID: PMC8072231 DOI: 10.1073/pnas.2019305118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Host-derived fatty acids are an important carbon source for pathogenic mycobacteria during infection. How mycobacterial cells regulate the catabolism of fatty acids to serve the pathogenicity, however, remains unknown. Here, we identified a TetR-family transcriptional factor, FdmR, as the key regulator of fatty acid catabolism in the pathogen Mycobacterium marinum by combining use of transcriptomics, chromatin immunoprecipitation followed by sequencing, dynamic 13C-based flux analysis, metabolomics, and lipidomics. An M. marinum mutant deficient in FdmR was severely attenuated in zebrafish larvae and adult zebrafish. The mutant showed defective growth but high substrate consumption on fatty acids. FdmR was identified as a long-chain acyl-coenzyme A (acyl-CoA)-responsive repressor of genes involved in fatty acid degradation and modification. We demonstrated that FdmR functions as a valve to direct the flux of exogenously derived fatty acids away from β-oxidation toward lipid biosynthesis, thereby avoiding the overactive catabolism and accumulation of biologically toxic intermediates. Moreover, we found that FdmR suppresses degradation of long-chain acyl-CoAs endogenously synthesized through the type I fatty acid synthase. By modulating the supply of long-chain acyl-CoAs for lipogenesis, FdmR controls the abundance and chain length of virulence-associated lipids and mycolates and plays an important role in the impermeability of the cell envelope. These results reveal that despite the fact that host-derived fatty acids are used as an important carbon source, overactive catabolism of fatty acids is detrimental to mycobacterial cell growth and pathogenicity. This study thus presents FdmR as a potentially attractive target for chemotherapy.
Collapse
Affiliation(s)
- Wenyue Dong
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqun Nie
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Hong Zhu
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Kunxiong Shi
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
| | - Linlin You
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Hongyan Fan
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
| | - Bo Yan
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
| | - Chen Niu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China;
| | - Liang-Dong Lyu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China;
| | - Guo-Ping Zhao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chen Yang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| |
Collapse
|
35
|
Local adaptation of Mycobacterium tuberculosis on the Tibetan Plateau. Proc Natl Acad Sci U S A 2021; 118:2017831118. [PMID: 33879609 DOI: 10.1073/pnas.2017831118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During its global dispersal, Mycobacterium tuberculosis (Mtb) has encountered varied geographic environments and host populations. Although local adaptation seems to be a plausible model for describing long-term host-pathogen interactions, genetic evidence for this model is lacking. Here, we analyzed 576 whole-genome sequences of Mtb strains sampled from different regions of high-altitude Tibet. Our results show that, after sequential introduction of a few ancestral strains, the Tibetan Mtb population diversified locally while maintaining strict separation from the Mtb populations on the lower altitude plain regions of China. The current population structure and estimated past population dynamics suggest that the modern Beijing sublineage strains, which expanded over most of China and other global regions, did not show an expansion advantage in Tibet. The mutations in the Tibetan strains showed a higher proportion of A > G/T > C transitions than strains from the plain regions, and genes encoding DNA repair enzymes showed evidence of positive selection. Moreover, the long-term Tibetan exclusive selection for truncating mutations in the thiol-oxidoreductase encoding sseA gene suggests that Mtb was subjected to local selective pressures associated with oxidative stress. Collectively, the population genomics of Mtb strains in the relatively isolated population of Tibet provides genetic evidence that Mtb has adapted to local environments.
Collapse
|
36
|
Abstract
Within-host adaptation is a hallmark of chronic bacterial infections, involving substantial genomic changes. Recent large-scale genomic data from prolonged infections allow the examination of adaptive strategies employed by different pathogens and open the door to investigate whether they converge toward similar strategies. Here, we compiled extensive data of whole-genome sequences of bacterial isolates belonging to miscellaneous species sampled at sequential time points during clinical infections. Analysis of these data revealed that different species share some common adaptive strategies, achieved by mutating various genes. Although the same genes were often mutated in several strains within a species, different genes related to the same pathway, structure, or function were changed in other species utilizing the same adaptive strategy (e.g., mutating flagellar genes). Strategies exploited by various bacterial species were often predicted to be driven by the host immune system, a powerful selective pressure that is not species specific. Remarkably, we find adaptive strategies identified previously within single species to be ubiquitous. Two striking examples are shifts from siderophore-based to heme-based iron scavenging (previously shown for Pseudomonas aeruginosa) and changes in glycerol-phosphate metabolism (previously shown to decrease sensitivity to antibiotics in Mycobacterium tuberculosis). Virulence factors were often adaptively affected in different species, indicating shifts from acute to chronic virulence and virulence attenuation during infection. Our study presents a global view on common within-host adaptive strategies employed by different bacterial species and provides a rich resource for further studying these processes.
Collapse
Affiliation(s)
- Yair E Gatt
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
37
|
Vargas R, Freschi L, Marin M, Epperson LE, Smith M, Oussenko I, Durbin D, Strong M, Salfinger M, Farhat MR. In-host population dynamics of Mycobacterium tuberculosis complex during active disease. eLife 2021; 10:61805. [PMID: 33522489 PMCID: PMC7884073 DOI: 10.7554/elife.61805] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis (TB) is a leading cause of death globally. Understanding the population dynamics of TB’s causative agent Mycobacterium tuberculosis complex (Mtbc) in-host is vital for understanding the efficacy of antibiotic treatment. We use longitudinally collected clinical Mtbc isolates that underwent Whole-Genome Sequencing from the sputa of 200 patients to investigate Mtbc diversity during the course of active TB disease after excluding 107 cases suspected of reinfection, mixed infection or contamination. Of the 178/200 patients with persistent clonal infection >2 months, 27 developed new resistance mutations between sampling with 20/27 occurring in patients with pre-existing resistance. Low abundance resistance variants at a purity of ≥19% in the first isolate predict fixation in the subsequent sample. We identify significant in-host variation in 27 genes, including antibiotic resistance genes, metabolic genes and genes known to modulate host innate immunity and confirm several to be under positive selection by assessing phylogenetic convergence across a genetically diverse sample of 20,352 isolates.
Collapse
Affiliation(s)
- Roger Vargas
- Department of Systems Biology, Harvard Medical School, Boston, United States.,Department of Biomedical Informatics, Harvard Medical School, Boston, United States
| | - Luca Freschi
- Department of Biomedical Informatics, Harvard Medical School, Boston, United States
| | - Maximillian Marin
- Department of Systems Biology, Harvard Medical School, Boston, United States.,Department of Biomedical Informatics, Harvard Medical School, Boston, United States
| | - L Elaine Epperson
- Center for Genes, Environment and Health, Center for Genes, National Jewish Health, Denver, United States
| | - Melissa Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Icahn Institute of Data Sciences and Genomics Technology, New York, United States
| | - Irina Oussenko
- Icahn Institute of Data Sciences and Genomics Technology, New York, United States
| | - David Durbin
- Mycobacteriology Reference Laboratory, Advanced Diagnostic Laboratories, National Jewish Health, Denver, United States
| | - Michael Strong
- Center for Genes, Environment and Health, Center for Genes, National Jewish Health, Denver, United States
| | - Max Salfinger
- College of Public Health, University of South Florida, Tampa, United States.,Morsani College of Medicine, University of South Florida, Tampa, United States
| | - Maha Reda Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, United States.,Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, United States
| |
Collapse
|
38
|
Chen X, He G, Lin S, Wang S, Sun F, Chen J, Zhang W. Analysis of Serial Multidrug-Resistant Tuberculosis Strains Causing Treatment Failure and Within-Host Evolution by Whole-Genome Sequencing. mSphere 2020; 5:e00884-20. [PMID: 33361124 PMCID: PMC7763549 DOI: 10.1128/msphere.00884-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/20/2020] [Indexed: 11/20/2022] Open
Abstract
The cure rate of multidrug-resistant tuberculosis (MDR-TB) is relatively low in China. The reasons for the treatment failure and within-host evolution during treatment have not been sufficiently studied. All MDR-TB patients receiving standard treatment from January 2014 to September 2016 at a designated TB Hospital in Zhejiang Province were retrospectively included and grouped according to their known treatment outcome. Clinical information was collected. Baseline strains of all patients and serial strains of treatment-failure patients were revived. Drug susceptibility tests (DSTs) of 14 drugs and single nucleotide polymorphism (SNP) analysis based on whole-genome sequencing (WGS) were performed. The genetic distance and within-host evolution were investigated based on SNPs. In total, 20 treatment failure patients and 74 patients who succeeded in treatment were included. The number of effective drugs for patients who failed treatment was no more than three. Eighteen (90.0%) treatment-failure patients were characterized by a continuous infection of the primary strain, of which 14 patients (77.8%) developed phenotypic or genotypic acquired drug resistance under ineffective treatment. Acquired resistance to amikacin and moxifloxacin (2.0 mg/ml) was detected most frequently, in 5 and 4 patients, respectively. The insufficient number of effective drugs in the combined treatment regimen was the main reason for MDR-TB treatment failure. The study emphasizes the importance of DST for second-line drugs when implementing the second-line drug regimen in MDR-TB patients. For patients with risk factors for MDR-TB, DST of second-line antituberculosis drugs should be performed at initiation of treatment. Second-line drugs should be selected based on the results of DST to avoid acquired resistance. WGS detects low-frequency resistance mutations and heterogeneous resistance with high sensitivity, which is of great significance for guiding clinical treatment and preventing acquired resistance.IMPORTANCE Few studies have focused on the reasons for the low cure rate of multidrug-resistant tuberculosis in China and within-host evolution during treatment, which is of great significance for improving clinical treatment regimens. Acquired resistance events were common during the ineffective treatment, among which resistance to amikacin and high-level moxifloxacin were the most common. The main reason for the treatment failure of MDR-TB patients was insufficient effective drugs, which may lead to higher levels of drug resistance in MDR-TB strains. Therefore, the study emphasizes the importance of DST in the development of second-line treatment regimen when there is a risk of MDR. By performing whole-genome sequencing of serial strains from patients with treatment failure, we found that WGS can detect low-frequency resistance mutations and heterogeneous resistance with high sensitivity. It is thus recommended to conduct drug susceptibility tests at the beginning of treatment and repeat the DST when the sputum bacteria remain positive.
Collapse
Affiliation(s)
- Xinchang Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Guiqing He
- Department of Infectious Diseases, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, China
| | - Siran Lin
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shiyong Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng Sun
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiazhen Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Srinivasan V, Ha VTN, Vinh DN, Thai PVK, Ha DTM, Lan NH, Hai HT, Walker TM, Thu DDA, Dunstan SJ, Thwaites GE, Ashton PM, Caws M, Thuong NTT. Sources of Multidrug Resistance in Patients With Previous Isoniazid-Resistant Tuberculosis Identified Using Whole Genome Sequencing: A Longitudinal Cohort Study. Clin Infect Dis 2020; 71:e532-e539. [PMID: 32166306 PMCID: PMC7744982 DOI: 10.1093/cid/ciaa254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/10/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Meta-analysis of patients with isoniazid-resistant tuberculosis (TB) given standard first-line anti-TB treatment indicated an increased risk of multidrug-resistant TB (MDR-TB) emerging (8%), compared to drug-sensitive TB (0.3%). Here we use whole genome sequencing (WGS) to investigate whether treatment of patients with preexisting isoniazid-resistant disease with first-line anti-TB therapy risks selecting for rifampicin resistance, and hence MDR-TB. METHODS Patients with isoniazid-resistant pulmonary TB were recruited and followed up for 24 months. Drug susceptibility testing was performed by microscopic observation drug susceptibility assay, mycobacterial growth indicator tube, and by WGS on isolates at first presentation and in the case of re-presentation. Where MDR-TB was diagnosed, WGS was used to determine the genomic relatedness between initial and subsequent isolates. De novo emergence of MDR-TB was assumed where the genomic distance was 5 or fewer single-nucleotide polymorphisms (SNPs), whereas reinfection with a different MDR-TB strain was assumed where the distance was 10 or more SNPs. RESULTS Two hundred thirty-nine patients with isoniazid-resistant pulmonary TB were recruited. Fourteen (14/239 [5.9%]) patients were diagnosed with a second episode of TB that was multidrug resistant. Six (6/239 [2.5%]) were identified as having evolved MDR-TB de novo and 6 as having been reinfected with a different strain. In 2 cases, the genomic distance was between 5 and 10 SNPs and therefore indeterminate. CONCLUSIONS In isoniazid-resistant TB, de novo emergence and reinfection of MDR-TB strains equally contributed to MDR development. Early diagnosis and optimal treatment of isoniazid-resistant TB are urgently needed to avert the de novo emergence of MDR-TB during treatment.
Collapse
Affiliation(s)
- Vijay Srinivasan
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vu T N Ha
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Dao N Vinh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Phan V K Thai
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, Ho Chi Minh City, Vietnam
| | - Dang T M Ha
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, Ho Chi Minh City, Vietnam
| | - Nguyen H Lan
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, Ho Chi Minh City, Vietnam
| | - Hoang T Hai
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Timothy M Walker
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Do D A Thu
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Sarah J Dunstan
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Philip M Ashton
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maxine Caws
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | |
Collapse
|
40
|
Nonsynonymous Polymorphism Counts in Bacterial Genomes: a Comparative Examination. Appl Environ Microbiol 2020; 87:AEM.02002-20. [PMID: 33097502 DOI: 10.1128/aem.02002-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/14/2020] [Indexed: 01/14/2023] Open
Abstract
Genomic data reveal single-nucleotide polymorphisms (SNPs) that may carry information about the evolutionary history of bacteria. However, it remains unclear what inferences about selection can be made from genomic SNP data. Bacterial species are often sampled during epidemic outbreaks or within hosts during the course of chronic infections. SNPs obtained from genomic analysis of these data are not necessarily fixed. Treating them as fixed during analysis by using measures such as the ratio of nonsynonymous to synonymous evolutionary changes (dN/dS) may lead to incorrect inferences about the strength and direction of selection. In this study, we consider data from a range of whole-genome sequencing studies of bacterial pathogens and explore patterns of nonsynonymous variation to assess whether evidence of selection can be identified by investigating SNP counts alone across multiple WGS studies. We visualize these SNP data in ways that highlight their relationship to neutral baseline expectations. These neutral expectations are based on a simple model of mutation, from which we simulate SNP accumulation to investigate how SNP counts are distributed under alternative assumptions about positive and negative selection. We compare these patterns with empirical SNP data and illustrate the general difficulty of detecting positive selection from SNP data. Finally, we consider whether SNP counts observed at the between-host population level differ from those observed at the within-host level and find some evidence that suggests that dynamics across these two scales are driven by different underlying processes.IMPORTANCE Identifying selection from SNP data obtained from whole-genome sequencing studies is challenging. Some current measures used to identify and quantify selection acting on genomes rely on fixed differences; thus, these are inappropriate for SNP data where variants are not fixed. With the increase in whole-genome sequencing studies, it is important to consider SNP data in the context of evolutionary processes. How SNPs are counted and analyzed can help in understanding mutation accumulation and trajectories of strains. We developed a tool for identifying possible evidence of selection and for comparative analysis with other SNP data. We propose a model that provides a rule-of-thumb guideline and two new visualization techniques that can be used to interpret and compare SNP data. We quantify the expected proportion of nonsynonymous SNPs in coding regions under neutrality and demonstrate its use in identifying evidence of positive and negative selection from simulations and empirical data.
Collapse
|
41
|
Goossens SN, Sampson SL, Van Rie A. Mechanisms of Drug-Induced Tolerance in Mycobacterium tuberculosis. Clin Microbiol Rev 2020; 34:e00141-20. [PMID: 33055230 PMCID: PMC7566895 DOI: 10.1128/cmr.00141-20] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Successful treatment of tuberculosis (TB) can be hampered by Mycobacterium tuberculosis populations that are temporarily able to survive antibiotic pressure in the absence of drug resistance-conferring mutations, a phenomenon termed drug tolerance. We summarize findings on M. tuberculosis tolerance published in the past 20 years. Key M. tuberculosis responses to drug pressure are reduced growth rates, metabolic shifting, and the promotion of efflux pump activity. Metabolic shifts upon drug pressure mainly occur in M. tuberculosis's lipid metabolism and redox homeostasis, with reduced tricarboxylic acid cycle activity in favor of lipid anabolism. Increased lipid anabolism plays a role in cell wall thickening, which reduces sensitivity to most TB drugs. In addition to these general mechanisms, drug-specific mechanisms have been described. Upon isoniazid exposure, M. tuberculosis reprograms several pathways associated with mycolic acid biosynthesis. Upon rifampicin exposure, M. tuberculosis upregulates the expression of its drug target rpoB Upon bedaquiline exposure, ATP synthesis is stimulated, and the transcription factors Rv0324 and Rv0880 are activated. A better understanding of M. tuberculosis's responses to drug pressure will be important for the development of novel agents that prevent the development of drug tolerance following treatment initiation. Such agents could then contribute to novel TB treatment-shortening strategies.
Collapse
Affiliation(s)
- Sander N Goossens
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Samantha L Sampson
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Annelies Van Rie
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
42
|
Morales-Arce AY, Sabin SJ, Stone AC, Jensen JD. The population genomics of within-host Mycobacterium tuberculosis. Heredity (Edinb) 2020; 126:1-9. [PMID: 33060846 DOI: 10.1038/s41437-020-00377-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 11/09/2022] Open
Abstract
Recent progress in genomic sequencing from patient samples has allowed for the first detailed insight into the within-host genetic diversity of Mycobacterium tuberculosis (M.TB), revealing remarkably low levels of variation. While this has often been attributed to low mutation rates, other factors have been described, including resistance evolution (i.e., selective sweeps), widespread purifying and background selection, and, more recently, progeny skew. Here we review recent findings pertaining to the processes governing the evolutionary dynamics of M.TB, discuss their implications for improving our understanding of this important human pathogen, and make recommendations for future work. Significantly, this emerging evolutionary framework involving the joint estimation of demographic, selective, and reproductive processes is forming a new paradigm for the study of within-host pathogen evolution that will be widely applicable across organisms.
Collapse
Affiliation(s)
- Ana Y Morales-Arce
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
| | - Susanna J Sabin
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Anne C Stone
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.,School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Jeffrey D Jensen
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA. .,School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
43
|
Godfroid M, Dagan T, Merker M, Kohl TA, Diel R, Maurer FP, Niemann S, Kupczok A. Insertion and deletion evolution reflects antibiotics selection pressure in a Mycobacterium tuberculosis outbreak. PLoS Pathog 2020; 16:e1008357. [PMID: 32997707 PMCID: PMC7549793 DOI: 10.1371/journal.ppat.1008357] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/12/2020] [Accepted: 08/18/2020] [Indexed: 11/18/2022] Open
Abstract
In genome evolution, genetic variants are the source of diversity, which natural selection acts upon. Treatment of human tuberculosis (TB) induces a strong selection pressure for the emergence of antibiotic resistance-conferring variants in the infecting Mycobacterium tuberculosis (MTB) strains. MTB evolution in response to treatment has been intensively studied and mainly attributed to point substitutions. However, the frequency and contribution of insertions and deletions (indels) to MTB genome evolution remains poorly understood. Here, we analyzed a multi-drug resistant MTB outbreak for the presence of high-quality indels and substitutions. We find that indels are significantly enriched in genes conferring antibiotic resistance. Furthermore, we show that indels are inherited during the outbreak and follow a molecular clock with an evolutionary rate of 5.37e-9 indels/site/year, which is 23 times lower than the substitution rate. Inherited indels may co-occur with substitutions in genes along related biological pathways; examples are iron storage and resistance to second-line antibiotics. This suggests that epistatic interactions between indels and substitutions affect antibiotic resistance and compensatory evolution in MTB.
Collapse
Affiliation(s)
- Maxime Godfroid
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Thomas A. Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Roland Diel
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Institute for Epidemiology, University Medical Hospital Schleswig-Holstein, Kiel, Germany
- Lungenclinic Grosshansdorf, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Großhansdorf, Germany
| | - Florian P. Maurer
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Anne Kupczok
- Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
44
|
The role of volatile organic compounds as predictors of treatment response in drug susceptible TB patients: An initial proof of concept study. J Infect 2020; 81:e25-e27. [PMID: 32610109 DOI: 10.1016/j.jinf.2020.06.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/21/2022]
|
45
|
Dohál M, Porvazník I, Pršo K, Rasmussen EM, Solovič I, Mokrý J. Whole-genome sequencing and Mycobacterium tuberculosis: Challenges in sample preparation and sequencing data analysis. Tuberculosis (Edinb) 2020; 123:101946. [PMID: 32741530 DOI: 10.1016/j.tube.2020.101946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022]
Abstract
The numbers of patients with tuberculosis (TB) caused by resistant strains are still alarming. Therefore, it is necessary to determine resistance more quickly and precisely, than it is with the currently used phenotypic and genotypic methods. In recent years, technological advances have been made and the whole-genome sequencing (WGS) method has been introduced as a part of routine diagnostics in clinical laboratories. Comparing a wide range of mycobacterial genomic variations with a reference genome leads to a consistent evaluation of molecular-epidemiology and resistance of Mycobacterium tuberculosis (M. tuberculosis) to a wide range of anti-TB drugs. The quality of the obtained sequencing data is closely related to the type of sample and the method used for DNA extraction and sequencing library preparation. Moreover, the correct interpretation of results is also influenced by a bioinformatic data processing. A large number of bioinformatics pipelines are currently available, the sensitivity of which varies due to the different sizes of databases containing relevant mutations. This review focuses on the individual steps included in the sequencing workflow and factors that may affect the interpretation of final results.
Collapse
Affiliation(s)
- Matúš Dohál
- Department of Pharmacology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia.
| | - Igor Porvazník
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, Vyšné Hágy, Slovakia; Faculty of Health, Catholic University, Ružomberok, Slovakia
| | - Kristián Pršo
- Department of Pharmacology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Erik Michael Rasmussen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Ivan Solovič
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, Vyšné Hágy, Slovakia
| | - Juraj Mokrý
- Department of Pharmacology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| |
Collapse
|
46
|
Liu Q, Wei J, Li Y, Wang M, Su J, Lu Y, López MG, Qian X, Zhu Z, Wang H, Gan M, Jiang Q, Fu YX, Takiff HE, Comas I, Li F, Lu X, Fortune SM, Gao Q. Mycobacterium tuberculosis clinical isolates carry mutational signatures of host immune environments. SCIENCE ADVANCES 2020; 6:eaba4901. [PMID: 32524000 PMCID: PMC7259932 DOI: 10.1126/sciadv.aba4901] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/25/2020] [Indexed: 05/12/2023]
Abstract
Mycobacterium tuberculosis (Mtb) infection results in a spectrum of clinical and histopathologic manifestations. It has been proposed that the environmental and immune pressures associated with different contexts of infection have different consequences for the associated bacterial populations, affecting drug susceptibility and the emergence of resistance. However, there is little concrete evidence for this model. We prospectively collected sputum samples from 18 newly diagnosed and treatment-naïve patients with tuberculosis and sequenced 795 colony-derived Mtb isolates. Mutant accumulation rates varied considerably between different bacilli isolated from the same individual, and where high rates of mutation were observed, the mutational spectrum was consistent with reactive oxygen species-induced mutagenesis. Elevated bacterial mutation rates were identified in isolates from HIV-negative but not HIV-positive individuals, suggesting that they were immune-driven. These results support the model that mutagenesis of Mtb in vivo is modulated by the host environment, which could drive the emergence of variants associated with drug resistance in a host-dependent manner.
Collapse
Affiliation(s)
- Qingyun Liu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Medical College and School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jianhao Wei
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yawei Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Su
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yonghui Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Mariana G. López
- Tuberculosis Genomic Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Xueqin Qian
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhaoqin Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Haiying Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyun Gan
- Molecular Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Qi Jiang
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Medical College and School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Yun-Xin Fu
- Department of Biostatistics and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Howard E. Takiff
- Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, Paris, France
- Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Iñaki Comas
- Tuberculosis Genomic Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Feng Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xuemei Lu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Qian Gao
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Medical College and School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| |
Collapse
|
47
|
Nimmo C, Brien K, Millard J, Grant AD, Padayatchi N, Pym AS, O'Donnell M, Goldstein R, Breuer J, Balloux F. Dynamics of within-host Mycobacterium tuberculosis diversity and heteroresistance during treatment. EBioMedicine 2020; 55:102747. [PMID: 32361247 PMCID: PMC7195533 DOI: 10.1016/j.ebiom.2020.102747] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/02/2020] [Accepted: 03/19/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Studying within-host genetic diversity of Mycobacterium tuberculosis (Mtb) in patients during treatment may identify adaptations to antibiotic and immune pressure. Understanding the significance of genetic heteroresistance, and more specifically heterozygous resistance-associated variants (RAVs), is clinically important given increasing use of rapid molecular tests and whole genome sequencing (WGS). METHODS We analyse data from six studies in KwaZulu-Natal, South Africa. Most patients (>75%) had baseline rifampicin resistance. Sputum was collected for culture at baseline and at between two and nine intervals until month six. Positive cultures underwent WGS. Mixed infections and reinfections were excluded from analysis. FINDINGS Baseline Mtb overall genetic diversity (at treatment initiation or major change to regimen) was associated with cavitary disease, not taking antiretroviral therapy if HIV infected, infection with lineage 2 strains and absence of second-line drug resistance on univariate analyses. Baseline genetic diversity was not associated with six-month outcome. Genetic diversity increased from baseline to weeks one and two before returning to previous levels. Baseline genetic heteroresistance was most common for bedaquiline (6/10 [60%] of isolates with RAVs) and fluoroquinolones (9/62 [13%]). Most patients with heterozygous RAVs on WGS with sequential isolates available demonstrated RAV persistence or fixation (17/20, 85%). New RAVs emerged in 9/286 (3%) patients during treatment. We could detect low-frequency RAVs preceding emergent resistance in only one case, although validation of deep sequencing to detect rare variants is required. INTERPRETATION In this study of single-strain Mtb infections, baseline within-host bacterial genetic diversity did not predict outcome but may reveal adaptations to host and drug pressures. Predicting emergent resistance from low-frequency RAVs requires further work to separate transient from consequential mutations. FUNDING Wellcome Trust, NIH/NIAID.
Collapse
MESH Headings
- Adult
- Antitubercular Agents/therapeutic use
- Cohort Studies
- Diarylquinolines/therapeutic use
- Drug Resistance, Multiple, Bacterial/genetics
- Female
- Fluoroquinolones/therapeutic use
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Genetic Variation
- Host-Pathogen Interactions/genetics
- Humans
- Male
- Metabolic Networks and Pathways/genetics
- Microbial Sensitivity Tests
- Middle Aged
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/metabolism
- Rifampin/therapeutic use
- South Africa
- Sputum/microbiology
- Tuberculosis, Multidrug-Resistant/drug therapy
- Tuberculosis, Multidrug-Resistant/microbiology
- Tuberculosis, Multidrug-Resistant/pathology
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
Collapse
Affiliation(s)
- Camus Nimmo
- Division of Infection and Immunity, University College London, London, UK; UCL Genetics Institute, University College London, London, UK; Africa Health Research Institute, Durban, South Africa.
| | - Kayleen Brien
- Africa Health Research Institute, Durban, South Africa
| | - James Millard
- Africa Health Research Institute, Durban, South Africa; Wellcome Trust Liverpool Glasgow Centre for Global Health Research, Liverpool, UK; Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Alison D Grant
- Africa Health Research Institute, Durban, South Africa; London School of Hygiene & Tropical Medicine, London, UK
| | - Nesri Padayatchi
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | | | - Max O'Donnell
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa; Department of Medicine & Epidemiology, Columbia University Medical Center, New York, NY, USA
| | - Richard Goldstein
- Division of Infection and Immunity, University College London, London, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| | | |
Collapse
|
48
|
Engelthaler DM, Streicher EM, Kelley EJ, Allender CJ, Wiggins K, Jimenez D, Lemmer D, Vittinghoff E, Theron G, Sirgel FA, Warren RM, Metcalfe JZ. Minority Mycobacterium tuberculosis Genotypic Populations as an Indicator of Subsequent Phenotypic Resistance. Am J Respir Cell Mol Biol 2020; 61:789-791. [PMID: 31774334 DOI: 10.1165/rcmb.2019-0178le] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | - Erin J Kelley
- Translational Genomics Research InstituteFlagstaff, Arizona
| | | | | | - Dulce Jimenez
- Translational Genomics Research InstituteFlagstaff, Arizona
| | - Darrin Lemmer
- Translational Genomics Research InstituteFlagstaff, Arizona
| | - Eric Vittinghoff
- University of California-San FranciscoSan Francisco, Californiaand
| | | | | | | | - John Z Metcalfe
- University of California, San FranciscoSan Francisco, California
| |
Collapse
|
49
|
Morales-Arce AY, Harris RB, Stone AC, Jensen JD. Evaluating the contributions of purifying selection and progeny-skew in dictating within-host Mycobacterium tuberculosis evolution. Evolution 2020; 74:992-1001. [PMID: 32233086 DOI: 10.1111/evo.13954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/08/2020] [Indexed: 12/28/2022]
Abstract
The within-host evolutionary dynamics of tuberculosis (TB) remain unclear, and underlying biological characteristics render standard population genetic approaches based upon the Wright-Fisher model largely inappropriate. In addition, the compact genome combined with an absence of recombination is expected to result in strong purifying selection effects. Thus, it is imperative to establish a biologically relevant evolutionary framework incorporating these factors in order to enable an accurate study of this important human pathogen. Further, such a model is critical for inferring fundamental evolutionary parameters related to patient treatment, including mutation rates and the severity of infection bottlenecks. We here implement such a model and infer the underlying evolutionary parameters governing within-patient evolutionary dynamics. Results demonstrate that the progeny skew associated with the clonal nature of TB severely reduces genetic diversity and that the neglect of this parameter in previous studies has led to significant mis-inference of mutation rates. As such, our results suggest an underlying de novo mutation rate that is considerably faster than previously inferred, and a progeny distribution differing significantly from Wright-Fisher assumptions. This inference represents a more appropriate evolutionary null model, against which the periodic effects of positive selection, associated with drug-resistance for example, may be better assessed.
Collapse
Affiliation(s)
- Ana Y Morales-Arce
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Rebecca B Harris
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Anne C Stone
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA.,School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Jeffrey D Jensen
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA.,School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
50
|
Goig GA, Blanco S, Garcia-Basteiro AL, Comas I. Contaminant DNA in bacterial sequencing experiments is a major source of false genetic variability. BMC Biol 2020; 18:24. [PMID: 32122347 PMCID: PMC7053099 DOI: 10.1186/s12915-020-0748-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Contaminant DNA is a well-known confounding factor in molecular biology and in genomic repositories. Strikingly, analysis workflows for whole-genome sequencing (WGS) data commonly do not account for errors potentially introduced by contamination, which could lead to the wrong assessment of allele frequency both in basic and clinical research. Results We used a taxonomic filter to remove contaminant reads from more than 4000 bacterial samples from 20 different studies and performed a comprehensive evaluation of the extent and impact of contaminant DNA in WGS. We found that contamination is pervasive and can introduce large biases in variant analysis. We showed that these biases can result in hundreds of false positive and negative SNPs, even for samples with slight contamination. Studies investigating complex biological traits from sequencing data can be completely biased if contamination is neglected during the bioinformatic analysis, and we demonstrate that removing contaminant reads with a taxonomic classifier permits more accurate variant calling. We used both real and simulated data to evaluate and implement reliable, contamination-aware analysis pipelines. Conclusion As sequencing technologies consolidate as precision tools that are increasingly adopted in the research and clinical context, our results urge for the implementation of contamination-aware analysis pipelines. Taxonomic classifiers are a powerful tool to implement such pipelines.
Collapse
Affiliation(s)
- Galo A Goig
- Institute of Biomedicine of Valencia, IBV-CSIC, St. Jaume Roig 11, 46010, Valencia, Spain.
| | - Silvia Blanco
- Centro de Investigaçao em Saúde de Manhiça (CISM), Bairro Cambeve, Rua 12, Distrito da Manhiça, 1929, Maputo, Mozambique
| | - Alberto L Garcia-Basteiro
- Centro de Investigaçao em Saúde de Manhiça (CISM), Bairro Cambeve, Rua 12, Distrito da Manhiça, 1929, Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Iñaki Comas
- Institute of Biomedicine of Valencia, IBV-CSIC, St. Jaume Roig 11, 46010, Valencia, Spain.,CIBER in Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|