1
|
Canizo JR, Zhao C, Petropoulos S. The guinea pig serves as an alternative model to study human preimplantation development. Nat Cell Biol 2025; 27:696-710. [PMID: 40185949 PMCID: PMC11991919 DOI: 10.1038/s41556-025-01642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/20/2025] [Indexed: 04/07/2025]
Abstract
Preimplantation development is an important window of human embryogenesis. However, ethical constraints and the limitations involved in studying human embryos often necessitate the use of alternative model systems. Here we identify the guinea pig as a promising small animal model to study human preimplantation development. Using single-cell RNA-sequencing, we generated an atlas of guinea pig preimplantation development, revealing its close resemblance to early human embryogenesis in terms of the timing of compaction, early-, mid- and late-blastocyst formation, and implantation, and the spatio-temporal expression of key lineage markers. We also show conserved roles of Hippo, MEK-ERK and JAK-STAT signalling. Furthermore, multi-species analysis highlights the spatio-temporal expression of conserved and divergent genes during preimplantation development and pluripotency. The guinea pig serves as a valuable animal model for advancing preimplantation development and stem cell research, and can be leveraged to better understand the longer-term impact of early exposures on offspring outcomes.
Collapse
Affiliation(s)
- Jesica Romina Canizo
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montréal, Canada
- Département de Médecine, Molecular Biology Programme, Université de Montréal, Montréal, Canada
| | - Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sophie Petropoulos
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montréal, Canada.
- Département de Médecine, Molecular Biology Programme, Université de Montréal, Montréal, Canada.
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden.
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
2
|
Trotman JB, Abrash EW, Murvin MM, Braceros AK, Li S, Boyson SP, Salcido RT, Cherney RE, Bischoff SR, Kaufmann K, Eberhard QE, Zhang Z, Cowley DO, Calabrese JM. Isogenic comparison of Airn and Xist reveals core principles of Polycomb recruitment by lncRNAs. Mol Cell 2025; 85:1117-1133.e14. [PMID: 40118040 PMCID: PMC11932450 DOI: 10.1016/j.molcel.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/15/2025] [Accepted: 02/19/2025] [Indexed: 03/23/2025]
Abstract
The mechanisms and biological roles of Polycomb repressive complex (PRC) recruitment by long noncoding RNAs (lncRNAs) remain unclear. To gain insight, we expressed two lncRNAs that recruit PRCs to multi-megabase domains, Airn and Xist, from an ectopic locus in mouse stem cells and compared effects. Unexpectedly, ectopic Airn recruited PRC1 and PRC2 to chromatin with a potency resembling Xist yet did not repress genes. Compared with PRC2, PRC1 was more proximal to Airn and Xist, where its enrichment over C-rich elements required the RNA-binding protein HNRNPK. Fusing Airn to Repeat A, the domain required for gene silencing by Xist, enabled gene silencing and altered local patterns but not relative levels of PRC-directed modifications. Our data suggest that, endogenously, Airn recruits PRCs to maintain rather than initiate gene silencing, that PRC recruitment occurs independently of Repeat A, and that protein-bridged interactions, not direct RNA contacts, underlie PRC recruitment by Airn, Xist, and other lncRNAs.
Collapse
Affiliation(s)
- Jackson B Trotman
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elizabeth W Abrash
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - McKenzie M Murvin
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Aki K Braceros
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Shuang Li
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Samuel P Boyson
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ryan T Salcido
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel E Cherney
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven R Bischoff
- Animal Models Core, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kyle Kaufmann
- Animal Models Core, University of North Carolina, Chapel Hill, NC 27599, USA; Transviragen, Inc., Chapel Hill, NC 27599, USA
| | - Quinn E Eberhard
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zhiyue Zhang
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dale O Cowley
- Animal Models Core, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Transviragen, Inc., Chapel Hill, NC 27599, USA
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Du Z, Hu L, Zou Z, Liu M, Li Z, Lu X, Harris C, Xiang Y, Chen F, Yu G, Xu K, Kong F, Xu Q, Huang B, Liu L, Fan Q, Wang H, Kalantry S, Xie W. Stepwise de novo establishment of inactive X chromosome architecture in early development. Nat Genet 2024; 56:2185-2198. [PMID: 39256583 DOI: 10.1038/s41588-024-01897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/07/2024] [Indexed: 09/12/2024]
Abstract
X chromosome inactivation triggers a dramatic reprogramming of transcription and chromosome architecture. However, how the chromatin organization of inactive X chromosome is established de novo in vivo remains elusive. Here, we identified an Xist-separated megadomain structure (X-megadomains) on the inactive X chromosome in mouse extraembryonic lineages and extraembryonic endoderm (XEN) cell lines, and transiently in the embryonic lineages, before Dxz4-delineated megadomain formation at later stages in a strain-specific manner. X-megadomain boundary coincides with strong enhancer activities and cohesin binding in an Xist regulatory region required for proper Xist activation in early embryos. Xist regulatory region disruption or cohesin degradation impaired X-megadomains in extraembryonic endoderm cells and caused ectopic activation of regulatory elements and genes near Xist, indicating that cohesin loading at regulatory elements promotes X-megadomains and confines local gene activities. These data reveal stepwise X chromosome folding and transcriptional regulation to achieve both essential gene activation and global silencing during the early stages of X chromosome inactivation.
Collapse
Affiliation(s)
- Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Liangjun Hu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Meishuo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zihan Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Clair Harris
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yunlong Xiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Fengling Chen
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Guang Yu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Kai Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Bo Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiang Fan
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Haifeng Wang
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
4
|
Li L, Hyun Cho K, Yu X, Cheng S. Systematic Multi-Omics Investigation of Androgen Receptor Driven Gene Expression and Epigenetics changes in Prostate Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604505. [PMID: 39091838 PMCID: PMC11291036 DOI: 10.1101/2024.07.22.604505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Background Prostate cancer, a common malignancy, is driven by androgen receptor (AR) signaling. Understanding the function of AR signaling is critical for prostate cancer research. Methods We performed multi-omics data analysis for the AR+, androgen-sensitive LNCaP cell line, focusing on gene expression (RNAseq), chromatin accessibility (ATACseq), and transcription factor binding (ChIPseq). High-quality datasets were curated from public repositories and processed using state-of-the-art bioinformatics tools. Results Our analysis identified 1004 up-regulated and 707 down-regulated genes in response to androgen deprivation therapy (ADT) which diminished AR signaling activity. Gene-set enrichment analysis revealed that AR signaling influences pathways related to neuron differentiation, cell adhesion, P53 signaling, and inflammation. ATACseq and ChIPseq data demonstrated that as a transcription factor, AR primarily binds to distal enhancers, influencing chromatin modifications without affecting proximal promoter regions. In addition, the AR-induced genes maintained higher active chromatin states than AR-inhibited genes, even under ADT conditions. Furthermore, ADT did not directly induce neuroendocrine differentiation in LNCaP cells, suggesting a complex mechanism behind neuroendocrine prostate cancer development. In addition, a publicly available online application LNCaP-ADT (https://pcatools.shinyapps.io/shinyADT/) was launched for users to visualize and browse data generated by this study. Conclusion This study provides a comprehensive multi-omics dataset, elucidating the role of AR signaling in prostate cancer at the transcriptomic and epigenomic levels. The reprocessed data is publicly available, offering a valuable resource for future prostate cancer research.
Collapse
Affiliation(s)
- Lin Li
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
| | - Kyung Hyun Cho
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
| | - Xiuping Yu
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
- Department of Urology, LSU Health Shreveport, Shreveport, LA
| | - Siyuan Cheng
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
| |
Collapse
|
5
|
Khoa LTP, Yang W, Shan M, Zhang L, Mao F, Zhou B, Li Q, Malcore R, Harris C, Zhao L, Rao RC, Iwase S, Kalantry S, Bielas SL, Lyssiotis CA, Dou Y. Quiescence enables unrestricted cell fate in naive embryonic stem cells. Nat Commun 2024; 15:1721. [PMID: 38409226 PMCID: PMC10897426 DOI: 10.1038/s41467-024-46121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Quiescence in stem cells is traditionally considered as a state of inactive dormancy or with poised potential. Naive mouse embryonic stem cells (ESCs) can enter quiescence spontaneously or upon inhibition of MYC or fatty acid oxidation, mimicking embryonic diapause in vivo. The molecular underpinning and developmental potential of quiescent ESCs (qESCs) are relatively unexplored. Here we show that qESCs possess an expanded or unrestricted cell fate, capable of generating both embryonic and extraembryonic cell types (e.g., trophoblast stem cells). These cells have a divergent metabolic landscape comparing to the cycling ESCs, with a notable decrease of the one-carbon metabolite S-adenosylmethionine. The metabolic changes are accompanied by a global reduction of H3K27me3, an increase of chromatin accessibility, as well as the de-repression of endogenous retrovirus MERVL and trophoblast master regulators. Depletion of methionine adenosyltransferase Mat2a or deletion of Eed in the polycomb repressive complex 2 results in removal of the developmental constraints towards the extraembryonic lineages. Our findings suggest that quiescent ESCs are not dormant but rather undergo an active transition towards an unrestricted cell fate.
Collapse
Affiliation(s)
- Le Tran Phuc Khoa
- Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Wentao Yang
- Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mengrou Shan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Bo Zhou
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Qiang Li
- Department of Ophthalmology & Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, USA
| | - Rebecca Malcore
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Clair Harris
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Lili Zhao
- Beaumont Hospital, Wayne, 33155 Annapolis St., Wayne, MI, 48184, USA
| | - Rajesh C Rao
- Department of Ophthalmology & Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yali Dou
- Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
6
|
Arunima A, van Schaik EJ, Samuel JE. The emerging roles of long non-coding RNA in host immune response and intracellular bacterial infections. Front Cell Infect Microbiol 2023; 13:1160198. [PMID: 37153158 PMCID: PMC10160451 DOI: 10.3389/fcimb.2023.1160198] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
The long non-coding RNAs (lncRNAs) are evolutionarily conserved classes of non-coding regulatory transcripts of > 200 nucleotides in length. They modulate several transcriptional and post-transcriptional events in the organism. Depending on their cellular localization and interactions, they regulate chromatin function and assembly; and alter the stability and translation of cytoplasmic mRNAs. Although their proposed range of functionality remains controversial, there is increasing research evidence that lncRNAs play a regulatory role in the activation, differentiation and development of immune signaling cascades; microbiome development; and in diseases such as neuronal and cardiovascular disorders; cancer; and pathogenic infections. This review discusses the functional roles of different lncRNAs in regulation of host immune responses, signaling pathways during host-microbe interaction and infection caused by obligate intracellular bacterial pathogens. The study of lncRNAs is assuming significance as it could be exploited for development of alternative therapeutic strategies for the treatment of severe and chronic pathogenic infections caused by Mycobacterium, Chlamydia and Rickettsia infections, as well as commensal colonization. Finally, this review summarizes the translational potential of lncRNA research in development of diagnostic and prognostic tools for human diseases.
Collapse
Affiliation(s)
| | | | - James E. Samuel
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
7
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
8
|
Xie K, Zeng J, Wen L, Peng X, Lin Z, Xian G, Guo Y, Yang X, Li P, Xu D, Zeng Q. Abnormally elevated EZH2-mediated H3K27me3 enhances osteogenesis in aortic valve interstitial cells by inhibiting SOCS3 expression. Atherosclerosis 2023; 364:1-9. [PMID: 36455343 DOI: 10.1016/j.atherosclerosis.2022.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/22/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS The osteogenic transition of aortic valve interstitial cells (AVICs) plays a critical role for the progression of calcific aortic valve disease (CAVD). Enhancer of zeste homolog 2 (EZH2) is an important methyltransferase for histone H3 Lys27 (H3K27) that has been found to be involved in osteogenesis. Here, we investigated the effect and mechanism of EZH2 in CAVD progression. METHODS High throughout mRNA sequencing, qRT-PCR and immunoblot were performed to screen differentially expressed genes in non-CAVD and CAVD aortic valves. To investigate the role of EZH2 and SOCS3 in osteogenesis, AVICs were treated with siRNA, adenovirus and specific inhibitors, then osteogenic markers and mineralized deposits were examined. In vivo, the morphology and function of aortic valves were investigated by HE stain and echocardiography in ApoE-/- mice fed a long-term western diet (WD). RESULTS We discovered that EZH2 was upregulated and SOCS3 was downregulated in calcified aortic valves. In AVICs, inhibition or silencing of EZH2 attenuated the osteogenic responses. On the other hand, demethylases inhibitor (GSK-J4) enhanced osteogenic transition of AVICs. Moreover, SOCS3 knockdown enhanced the expression of osteogenic markers, while SOCS3 overexpression suppressed osteogenesis and calcification. The chromatin immunoprecipitation and restored experiments indicated that EZH2 directly targeted SOCS3 to promote osteogenic responses of AVICs. In vivo, treatment with EZH2 inhibitor through intraperitoneal injection attenuated aortic valve thickening, calcification and dysfunction induced by WD. CONCLUSIONS Collectively, we found that EZH2-mediated H3K27me3 enhanced osteogenesis and microcalcification of AVICs via inhibiting SOCS3 expression, which provides potential targets for future therapeutic interventions of CAVD.
Collapse
Affiliation(s)
- Kaiji Xie
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Jingxin Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Liming Wen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Xin Peng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China; Huazhong University of Science and Technology Union Shenzhen Hospital, 518052, Shenzhen, China
| | - Zhibin Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Gaopeng Xian
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Yuyang Guo
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Xi Yang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Peixin Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.
| |
Collapse
|
9
|
Tian Y, Hou Y, Song Y. LncRNAs elevate plant adaptation under low temperature by maintaining local chromatin landscape. PLANT SIGNALING & BEHAVIOR 2022; 17:2014677. [PMID: 35352623 PMCID: PMC8973372 DOI: 10.1080/15592324.2021.2014677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Epigenetic regulation is one of the most precise and subtle ways of gene regulation, including DNA modification, histone modification, RNA modification, histone variants, chromatin remodeling, and long non-coding RNAs (lncRNAs). Chromatin modification is the most basic type of epigenetic regulation, which plays a key role in a myriad of developmental and physiological processes that have been thoroughly studied. These modifications are usually completed by a series of conserved chromatin modification complexes in eukaryotes. In recent years, a series of lncRNAs in organisms also have been described as having irreplaceable functions in biological environment adaptation, especially in biotic and abiotic stresses. Moreover, these molecules form a sophisticated regulatory network through mutual cross-regulation to achieve quantitative expression of key environmental response genes to external signals. For instance, the function of lncRNAs will directly or indirectly depend on the function of the chromatin modification complex. In this review, we mainly focus on chromatin modification, lncRNA, and their coordination mechanism to achieve the high adaptability of plants in low-temperature environments. We highlight recent findings and insights into lncRNA-mediated local chromatin environment changes during plant growth under low temperature via chromatin modification complexes, including target gene specificity for different lncRNA.
Collapse
Affiliation(s)
- Yongke Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yukang Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Single-cell analysis reveals X upregulation is not global in pre-gastrulation embryos. iScience 2022; 25:104465. [PMID: 35707719 PMCID: PMC9189126 DOI: 10.1016/j.isci.2022.104465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
In mammals, transcriptional inactivation of one X chromosome in female compensates for the dosage of X-linked gene expression between the sexes. Additionally, it is believed that the upregulation of active X chromosome in male and female balances the dosage of X-linked gene expression relative to autosomal genes, as proposed by Ohno. However, the existence of X chromosome upregulation (XCU) remains controversial. Here, we have profiled gene-wise dynamics of XCU in pre-gastrulation mouse embryos at single-cell level and found that XCU is dynamically linked with X chromosome inactivation (XCI); however, XCU is not global like XCI. Moreover, we show that upregulated genes are enriched with activating marks and have enhanced burst frequency. Finally, our In-silico model predicts that recruitment probabilities of activating factors and a surge of these factors upon X-inactivation trigger XCU. Altogether, our study provides significant insight into the gene-wise dynamics and mechanistic basis of XCU during early development and extends support for Ohno’s hypothesis. X-upregulation coincides with X chromosome inactivation in pre-gastrulation embryos X-upregulation is not chromosome-wide like X-inactivation Upregulated genes have enhanced burst frequency and are enriched with activating marks A surge of activating factors on X-inactivation triggers X-upregulation
Collapse
|
11
|
Trotman JB, Braceros KCA, Cherney RE, Murvin MM, Calabrese JM. The control of polycomb repressive complexes by long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1657. [PMID: 33861025 PMCID: PMC8500928 DOI: 10.1002/wrna.1657] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
The polycomb repressive complexes 1 and 2 (PRCs; PRC1 and PRC2) are conserved histone-modifying enzymes that often function cooperatively to repress gene expression. The PRCs are regulated by long noncoding RNAs (lncRNAs) in complex ways. On the one hand, specific lncRNAs cause the PRCs to engage with chromatin and repress gene expression over genomic regions that can span megabases. On the other hand, the PRCs bind RNA with seemingly little sequence specificity, and at least in the case of PRC2, direct RNA-binding has the effect of inhibiting the enzyme. Thus, some RNAs appear to promote PRC activity, while others may inhibit it. The reasons behind this apparent dichotomy are unclear. The most potent PRC-activating lncRNAs associate with chromatin and are predominantly unspliced or harbor unusually long exons. Emerging data imply that these lncRNAs promote PRC activity through internal RNA sequence elements that arise and disappear rapidly in evolutionary time. These sequence elements may function by interacting with common subsets of RNA-binding proteins that recruit or stabilize PRCs on chromatin. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jackson B. Trotman
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Keean C. A. Braceros
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel E. Cherney
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - McKenzie M. Murvin
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J. Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Kgatle MM, Lawal IO, Mashabela G, Boshomane TMG, Koatale PC, Mahasha PW, Ndlovu H, Vorster M, Rodrigues HG, Zeevaart JR, Gordon S, Moura-Alves P, Sathekge MM. COVID-19 Is a Multi-Organ Aggressor: Epigenetic and Clinical Marks. Front Immunol 2021; 12:752380. [PMID: 34691068 PMCID: PMC8531724 DOI: 10.3389/fimmu.2021.752380] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
The progression of coronavirus disease 2019 (COVID-19), resulting from a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, may be influenced by both genetic and environmental factors. Several viruses hijack the host genome machinery for their own advantage and survival, and similar phenomena might occur upon SARS-CoV-2 infection. Severe cases of COVID-19 may be driven by metabolic and epigenetic driven mechanisms, including DNA methylation and histone/chromatin alterations. These epigenetic phenomena may respond to enhanced viral replication and mediate persistent long-term infection and clinical phenotypes associated with severe COVID-19 cases and fatalities. Understanding the epigenetic events involved, and their clinical significance, may provide novel insights valuable for the therapeutic control and management of the COVID-19 pandemic. This review highlights different epigenetic marks potentially associated with COVID-19 development, clinical manifestation, and progression.
Collapse
Affiliation(s)
- Mankgopo Magdeline Kgatle
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Ismaheel Opeyemi Lawal
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Gabriel Mashabela
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Tebatso Moshoeu Gillian Boshomane
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Nuclear and Oncology Division, AXIM Medical (Pty), Midrand
| | - Palesa Caroline Koatale
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Phetole Walter Mahasha
- Precision Medicine and SAMRC Genomic Centre, Grants, Innovation, and Product Development (GIPD) Unit, South African Medical Research Council, Pretoria, South Africa
| | - Honest Ndlovu
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Hosana Gomes Rodrigues
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Campinas, Brazil
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- South African Nuclear Energy Corporation, Radiochemistry and NuMeRI PreClinical Imaging Facility, Mahikeng, South Africa
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Pedro Moura-Alves
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mike Machaba Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Panda A, Zylicz JJ, Pasque V. New Insights into X-Chromosome Reactivation during Reprogramming to Pluripotency. Cells 2020; 9:E2706. [PMID: 33348832 PMCID: PMC7766869 DOI: 10.3390/cells9122706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dosage compensation between the sexes results in one X chromosome being inactivated during female mammalian development. Chromosome-wide transcriptional silencing from the inactive X chromosome (Xi) in mammalian cells is erased in a process termed X-chromosome reactivation (XCR), which has emerged as a paradigm for studying the reversal of chromatin silencing. XCR is linked with germline development and induction of naive pluripotency in the epiblast, and also takes place upon reprogramming somatic cells to induced pluripotency. XCR depends on silencing of the long non-coding RNA (lncRNA) X inactive specific transcript (Xist) and is linked with the erasure of chromatin silencing. Over the past years, the advent of transcriptomics and epigenomics has provided new insights into the transcriptional and chromatin dynamics with which XCR takes place. However, multiple questions remain unanswered about how chromatin and transcription related processes enable XCR. Here, we review recent work on establishing the transcriptional and chromatin kinetics of XCR, as well as discuss a model by which transcription factors mediate XCR not only via Xist repression, but also by direct targeting of X-linked genes.
Collapse
Affiliation(s)
- Amitesh Panda
- Laboratory of Cellular Reprogramming and Epigenetic Regulation, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium;
| | - Jan J. Zylicz
- The Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Vincent Pasque
- Laboratory of Cellular Reprogramming and Epigenetic Regulation, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
14
|
Li X, Zhang F, Ma J, Ruan X, Liu X, Zheng J, Liu Y, Cao S, Shen S, Shao L, Cai H, Li Z, Xue Y. NCBP3/SNHG6 inhibits GBX2 transcription in a histone modification manner to facilitate the malignant biological behaviour of glioma cells. RNA Biol 2020; 18:47-63. [PMID: 32618493 DOI: 10.1080/15476286.2020.1790140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) are significantly dysregulated in glioma. In this study, we demonstrated the upregulation of Nuclear cap-binding subunit 3 (NCBP3) in glioma tissues and cells. Further, knockdown of NCBP3 inhibited the malignant progression of glioma. NCBP3 directly bound to small nucleolar RNA host gene 6 (SNHG6) and stabilized SNHG6 expression. In contrast, the gastrulation brain homeobox 2 (GBX2) transcription factor was downregulated in glioma tissues and cells. SNHG6 inhibited GBX2 transcription by mediating the H3K27me3 modification induced by polycomb repressive complex 2 (PRC2). Moreover, GBX2 decreased the promoter activities and downregulated the expression of the flotillin protein family 1 (FLOT1) oncogene. In conclusion, NCBP3/SNHG6 inhibits GBX2 transcription in a PRC2-dependent manner to facilitate the malignant progression of gliomas.
Collapse
Affiliation(s)
- Xiwen Li
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, China
| | - Fangfang Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| | - Shuo Cao
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, China
| | - Shuyuan Shen
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, China
| | - Lianqi Shao
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, China
| |
Collapse
|
15
|
Harris C, Cloutier M, Trotter M, Hinten M, Gayen S, Du Z, Xie W, Kalantry S. Conversion of random X-inactivation to imprinted X-inactivation by maternal PRC2. eLife 2019; 8:e44258. [PMID: 30938678 PMCID: PMC6541438 DOI: 10.7554/elife.44258] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/01/2019] [Indexed: 01/15/2023] Open
Abstract
Imprinted X-inactivation silences genes exclusively on the paternally-inherited X-chromosome and is a paradigm of transgenerational epigenetic inheritance in mammals. Here, we test the role of maternal vs. zygotic Polycomb repressive complex 2 (PRC2) protein EED in orchestrating imprinted X-inactivation in mouse embryos. In maternal-null (Eedm-/-) but not zygotic-null (Eed-/-) early embryos, the maternal X-chromosome ectopically induced Xist and underwent inactivation. Eedm-/- females subsequently stochastically silenced Xist from one of the two X-chromosomes and displayed random X-inactivation. This effect was exacerbated in embryos lacking both maternal and zygotic EED (Eedmz-/-), suggesting that zygotic EED can also contribute to the onset of imprinted X-inactivation. Xist expression dynamics in Eedm-/- embryos resemble that of early human embryos, which lack oocyte-derived maternal PRC2 and only undergo random X-inactivation. Thus, expression of PRC2 in the oocyte and transmission of the gene products to the embryo may dictate the occurrence of imprinted X-inactivation in mammals.
Collapse
Affiliation(s)
- Clair Harris
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Marissa Cloutier
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Megan Trotter
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Michael Hinten
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Srimonta Gayen
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life ScienceTsinghua UniversityBeijingChina
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life ScienceTsinghua UniversityBeijingChina
| | - Sundeep Kalantry
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| |
Collapse
|
16
|
Wang W, Toran PT, Sabol R, Brown TJ, Barth BM. Epigenetics and Sphingolipid Metabolism in Health and Disease. ACTA ACUST UNITED AC 2019; 1. [PMID: 30637412 DOI: 10.31021/ijbs.20181105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sphingolipids represent one of the major classes of bioactive lipids. Studies of sphingolipids have intensified in the past several years, revealing their roles in nearly all cell biological processes. In addition, epigenetic regulation has gained substantial interest due to its role in controlling gene expression and activity without changing the genetic code. In this review, we first introduce a brief background on sphingolipid biology, highlighting its role in pathophysiology. We then illustrate the concept of epigenetic regulation, focusing on how it affects the metabolism of sphingolipids. We further discuss the roles of bioactive sphingolipids as epigenetic regulators themselves. Overall, a better understanding of the relationship between epigenetics and sphingolipid metabolism may help to improve the development of sphingolipid-targeted therapeutics.
Collapse
Affiliation(s)
- Weiyuan Wang
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - Paul T Toran
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - Rachel Sabol
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - Timothy J Brown
- Department of Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Brian M Barth
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| |
Collapse
|
17
|
The Role of Nucleosomes in Epigenetic Gene Regulation. Clin Epigenetics 2019. [DOI: 10.1007/978-981-13-8958-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
18
|
Cloutier M, Harris C, Gayen S, Maclary E, Kalantry S. Experimental Analysis of Imprinted Mouse X-Chromosome Inactivation. Methods Mol Biol 2018; 1861:177-203. [PMID: 30218368 PMCID: PMC6209079 DOI: 10.1007/978-1-4939-8766-5_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
X-chromosome inactivation is a dosage compensation mechanism that equalizes X-linked gene expression between male and female mammals through the transcriptional silencing of most genes on one of the two X-chromosomes in females. With a few key exceptions, once the X-chromosome is inactivated replicated copies of that X-chromosome are maintained as inactive in all descendant cells. X-inactivation is therefore a paradigm of epigenetic inheritance. Imprinted X-inactivation is a specialized form of X-inactivation that results in the silencing of the paternally derived X-chromosome. Due to its parent-of-origin-specific pattern of inactivation, imprinted X-inactivation is a model of mitotic as well as meiotic, i.e., transgenerational, epigenetic inheritance. All cells of the early mouse embryo undergo imprinted X-inactivation, a pattern that is subsequently maintained in extraembryonic cell types in vivo and in vitro. Here, we describe both high- and low-throughput approaches to interrogate imprinted X-inactivation in the mouse embryo as well in cultured extraembryonic stem cells.
Collapse
Affiliation(s)
- Marissa Cloutier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Clair Harris
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Srimonta Gayen
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Emily Maclary
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|