1
|
Breton G, Barham L, Mudenda G, Soodyall H, Schlebusch CM, Jakobsson M. BaTwa populations from Zambia retain ancestry of past hunter-gatherer groups. Nat Commun 2024; 15:7307. [PMID: 39181874 PMCID: PMC11344834 DOI: 10.1038/s41467-024-50733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
Sub-equatorial Africa is today inhabited predominantly by Bantu-speaking groups of Western African descent who brought agriculture to the Luangwa valley in eastern Zambia ~2000 years ago. Before their arrival the area was inhabited by hunter-gatherers, who in many cases were subsequently replaced, displaced or assimilated. In Zambia, we know little about the genetic affinities of these hunter-gatherers. We examine ancestry of two isolated communities in Zambia, known as BaTwa and possible descendants of recent hunter-gatherers. We genotype over two million genome-wide SNPs from two BaTwa populations (total of 80 individuals) and from three comparative farming populations to: (i) determine if the BaTwa carry genetic links to past hunter-gatherer-groups, and (ii) characterise the genetic affinities of past Zambian hunter-gatherer-groups. The BaTwa populations do harbour a hunter-gatherer-like genetic ancestry and Western African ancestry. The hunter-gatherer component is a unique local signature, intermediate between current-day Khoe-San ancestry from southern Africa and central African rainforest hunter-gatherer ancestry.
Collapse
Affiliation(s)
- Gwenna Breton
- Department of Organismal Biology, Human Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
- Department of Clinical Genetics and Genomics, Centre for Medical Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Lawrence Barham
- Department of Archaeology, Classics & Egyptology, University of Liverpool, Liverpool, UK
| | - George Mudenda
- Livingstone Museum, Livingstone, Zambia
- National Museums Board, Lusaka, Zambia
| | - Himla Soodyall
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
- Academy of Science of South Africa, Pretoria, South Africa
| | - Carina M Schlebusch
- Department of Organismal Biology, Human Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
- SciLifeLab, Uppsala, Sweden
| | - Mattias Jakobsson
- Department of Organismal Biology, Human Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa.
- SciLifeLab, Uppsala, Sweden.
| |
Collapse
|
2
|
Nguidi M, Gomes V, Vullo C, Rodrigues P, Rotondo M, Longaray M, Catelli L, Martínez B, Campos A, Carvalho E, Orovboni VO, Keshinro SO, Simão F, Gusmão L. Impact of patrilocality on contrasting patterns of paternal and maternal heritage in Central-West Africa. Sci Rep 2024; 14:15653. [PMID: 38977763 PMCID: PMC11231350 DOI: 10.1038/s41598-024-65428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Despite their ancient past and high diversity, African populations are the least represented in human population genetic studies. In this study, uniparental markers (mtDNA and Y chromosome) were used to investigate the impact of sociocultural factors on the genetic diversity and inter-ethnolinguistic gene flow in the three major Nigerian groups: Hausa (n = 89), Yoruba (n = 135) and Igbo (n = 134). The results show a distinct history from the maternal and paternal perspectives. The three Nigerian groups present a similar substrate for mtDNA, but not for the Y chromosome. The two Niger-Congo groups, Yoruba and Igbo, are paternally genetically correlated with populations from the same ethnolinguistic affiliation. Meanwhile, the Hausa is paternally closer to other Afro-Asiatic populations and presented a high diversity of lineages from across Africa. When expanding the analyses to other African populations, it is observed that language did not act as a major barrier to female-mediated gene flow and that the differentiation of paternal lineages is better correlated with linguistic than geographic distances. The results obtained demonstrate the impact of patrilocality, a common and well-established practice in populations from Central-West Africa, in the preservation of the patrilineage gene pool and in the affirmation of identity between groups.
Collapse
Affiliation(s)
- Masinda Nguidi
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
| | - Verónica Gomes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Carlos Vullo
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Pedro Rodrigues
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Martina Rotondo
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Micaela Longaray
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Laura Catelli
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Beatriz Martínez
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Afonso Campos
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Elizeu Carvalho
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Victoria O Orovboni
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | | | - Filipa Simão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
D'Atanasio E, Risi F, Ravasini F, Montinaro F, Hajiesmaeil M, Bonucci B, Pistacchia L, Amoako-Sakyi D, Bonito M, Onidi S, Colombo G, Semino O, Destro Bisol G, Anagnostou P, Metspalu M, Tambets K, Trombetta B, Cruciani F. The genomic echoes of the last Green Sahara on the Fulani and Sahelian people. Curr Biol 2023; 33:5495-5504.e4. [PMID: 37995693 DOI: 10.1016/j.cub.2023.10.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
The population history of the Sahara/Sahelian belt is understudied, despite previous work highlighting complex dynamics.1,2,3,4,5,6,7 The Sahelian Fulani, i.e., the largest nomadic pastoral population in the world,8 represent an interesting case because they show a non-negligible proportion of an Eurasian genetic component, usually explained by recent admixture with northern Africans.1,2,5,6,7,9,10,11,12 Nevertheless, their origins are largely unknown, although several hypotheses have been proposed, including a possible link to ancient peoples settled in the Sahara during its last humid phase (Green Sahara, 12,000-5,000 years before present [BP]).13,14,15 To shed light about the Fulani ancient genetic roots, we produced 23 high-coverage (30×) whole genomes from Fulani individuals from 8 Sahelian countries, plus 17 samples from other African groups and 3 from Europeans as controls, for a total of 43 new whole genomes. These data have been compared with 814 published modern whole genomes2,16,17,18 and with relevant published ancient sequences (> 1,800 samples).19 These analyses showed some evidence that the non-sub-Saharan genetic ancestry component of the Fulani might have also been shaped by older events,1,5,6 possibly tracing the Fulani origins to unsampled ancient Green Saharan population(s). The joint analysis of modern and ancient samples allowed us to shed light on the genetic ancestry composition of such ancient Saharans, suggesting a similarity with Late Neolithic Moroccans and possibly pointing to a link with the spread of cattle herding. We also identified two different Fulani clusters whose admixture pattern may be informative about the historical Fulani movements and their later involvement in the western African empires.
Collapse
Affiliation(s)
- Eugenia D'Atanasio
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy.
| | - Flavia Risi
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Ravasini
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Montinaro
- Department of Biology, University of Bari, 70121 Bari, Italy; Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Mogge Hajiesmaeil
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Letizia Pistacchia
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy; Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Daniel Amoako-Sakyi
- Department of Microbiology and Immunology, University of Cape Coast, Cape Coast, Ghana
| | - Maria Bonito
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Onidi
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Colombo
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Destro Bisol
- Department of Enviromental Biology, Sapienza University of Rome, 00185 Rome, Italy; Istituto Italiano di Antropologia, 00185 Rome, Italy
| | - Paolo Anagnostou
- Department of Enviromental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Mait Metspalu
- Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | | | - Beniamino Trombetta
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Fulvio Cruciani
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy; Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
4
|
Pfennig A, Petersen LN, Kachambwa P, Lachance J. Evolutionary Genetics and Admixture in African Populations. Genome Biol Evol 2023; 15:evad054. [PMID: 36987563 PMCID: PMC10118306 DOI: 10.1093/gbe/evad054] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
As the ancestral homeland of our species, Africa contains elevated levels of genetic diversity and substantial population structure. Importantly, African genomes are heterogeneous: They contain mixtures of multiple ancestries, each of which have experienced different evolutionary histories. In this review, we view population genetics through the lens of admixture, highlighting how multiple demographic events have shaped African genomes. Each of these historical vignettes paints a recurring picture of population divergence followed by secondary contact. First, we give a brief overview of genetic variation in Africa and examine deep population structure within Africa, including the evidence of ancient introgression from archaic "ghost" populations. Second, we describe the genetic legacies of admixture events that have occurred during the past 10,000 years. This includes gene flow between different click-speaking Khoe-San populations, the stepwise spread of pastoralism from eastern to southern Africa, multiple migrations of Bantu speakers across the continent, as well as admixture from the Middle East and Europe into the Sahel region and North Africa. Furthermore, the genomic signatures of more recent admixture can be found in the Cape Peninsula and throughout the African diaspora. Third, we highlight how natural selection has shaped patterns of genetic variation across the continent, noting that gene flow provides a potent source of adaptive variation and that selective pressures vary across Africa. Finally, we explore the biomedical implications of population structure in Africa on health and disease and call for more ethically conducted studies of genetic variation in Africa.
Collapse
Affiliation(s)
- Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | | | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
5
|
Bonito M, Ravasini F, Novelletto A, D'Atanasio E, Cruciani F, Trombetta B. Disclosing complex mutational dynamics at a Y chromosome palindrome evolving through intra- and inter-chromosomal gene conversion. Hum Mol Genet 2023; 32:65-78. [PMID: 35921243 DOI: 10.1093/hmg/ddac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 01/17/2023] Open
Abstract
The human MSY ampliconic region is mainly composed of large duplicated sequences that are organized in eight palindromes (termed P1-P8), and may undergo arm-to-arm gene conversion. Although the importance of these elements is widely recognized, their evolutionary dynamics are still nuanced. Here, we focused on the P8 palindrome, which shows a complex evolutionary history, being involved in intra- and inter-chromosomal gene conversion. To disclose its evolutionary complexity, we performed a high-depth (50×) targeted next-generation sequencing of this element in 157 subjects belonging to the most divergent lineages of the Y chromosome tree. We found a total of 72 polymorphic paralogous sequence variants that have been exploited to identify 41 Y-Y gene conversion events that occurred during recent human history. Through our analysis, we were able to categorize P8 arms into three portions, whose molecular diversity was modelled by different evolutionary forces. Notably, the outer region of the palindrome is not involved in any gene conversion event and evolves exclusively through the action of mutational pressure. The inner region is affected by Y-Y gene conversion occurring at a rate of 1.52 × 10-5 conversions/base/year, with no bias towards the retention of the ancestral state of the sequence. In this portion, GC-biased gene conversion is counterbalanced by a mutational bias towards AT bases. Finally, the middle region of the arms, in addition to intra-chromosomal gene conversion, is involved in X-to-Y gene conversion (at a rate of 6.013 × 10-8 conversions/base/year) thus being a major force in the evolution of the VCY/VCX gene family.
Collapse
Affiliation(s)
- Maria Bonito
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome 00185, Italy
| | - Francesco Ravasini
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome 00185, Italy
| | - Andrea Novelletto
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Eugenia D'Atanasio
- Institute of Molecular Biology and Pathology (IBPM), CNR, Rome 00185, Italy
| | - Fulvio Cruciani
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome 00185, Italy.,Institute of Molecular Biology and Pathology (IBPM), CNR, Rome 00185, Italy
| | - Beniamino Trombetta
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome 00185, Italy
| |
Collapse
|
6
|
Bioarchaeological and palaeogenomic portrait of two Pompeians that died during the eruption of Vesuvius in 79 AD. Sci Rep 2022; 12:6468. [PMID: 35618734 PMCID: PMC9135728 DOI: 10.1038/s41598-022-10899-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
The archaeological site of Pompeii is one of the 54 UNESCO World Heritage sites in Italy, thanks to its uniqueness: the town was completely destroyed and buried by a Vesuvius’ eruption in 79 AD. In this work, we present a multidisciplinary approach with bioarchaeological and palaeogenomic analyses of two Pompeian human remains from the Casa del Fabbro. We have been able to characterize the genetic profile of the first Pompeian’ genome, which has strong affinities with the surrounding central Italian population from the Roman Imperial Age. Our findings suggest that, despite the extensive connection between Rome and other Mediterranean populations, a noticeable degree of genetic homogeneity exists in the Italian peninsula at that time. Moreover, palaeopathological analyses identified the presence of spinal tuberculosis and we further investigated the presence of ancient DNA from Mycobacterium tuberculosis. In conclusion, our study demonstrates the power of a combined approach to investigate ancient humans and confirms the possibility to retrieve ancient DNA from Pompeii human remains. Our initial findings provide a foundation to promote an intensive and extensive paleogenetic analysis in order to reconstruct the genetic history of population from Pompeii, a unique archaeological site.
Collapse
|
7
|
Rambaldi Migliore N, Colombo G, Capodiferro MR, Mazzocchi L, Chero Osorio AM, Raveane A, Tribaldos M, Perego UA, Mendizábal T, Montón AG, Lombardo G, Grugni V, Garofalo M, Ferretti L, Cereda C, Gagliardi S, Cooke R, Smith-Guzmán N, Olivieri A, Aram B, Torroni A, Motta J, Semino O, Achilli A. Weaving Mitochondrial DNA and Y-Chromosome Variation in the Panamanian Genetic Canvas. Genes (Basel) 2021; 12:genes12121921. [PMID: 34946870 PMCID: PMC8702192 DOI: 10.3390/genes12121921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022] Open
Abstract
The Isthmus of Panama was a crossroads between North and South America during the continent’s first peopling (and subsequent movements) also playing a pivotal role during European colonization and the African slave trade. Previous analyses of uniparental systems revealed significant sex biases in the genetic history of Panamanians, as testified by the high proportions of Indigenous and sub-Saharan mitochondrial DNAs (mtDNAs) and by the prevalence of Western European/northern African Y chromosomes. Those studies were conducted on the general population without considering any self-reported ethnic affiliations. Here, we compared the mtDNA and Y-chromosome lineages of a new sample collection from 431 individuals (301 males and 130 females) belonging to either the general population, mixed groups, or one of five Indigenous groups currently living in Panama. We found different proportions of paternal and maternal lineages in the Indigenous groups testifying to pre-contact demographic events and genetic inputs (some dated to Pleistocene times) that created genetic structure. Then, while the local mitochondrial gene pool was marginally involved in post-contact admixtures, the Indigenous Y chromosomes were differentially replaced, mostly by lineages of western Eurasian origin. Finally, our new estimates of the sub-Saharan contribution, on a more accurately defined general population, reduce an apparent divergence between genetic and historical data.
Collapse
Affiliation(s)
- Nicola Rambaldi Migliore
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Giulia Colombo
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Marco Rosario Capodiferro
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Lucia Mazzocchi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Ana Maria Chero Osorio
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Alessandro Raveane
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Maribel Tribaldos
- Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama; (M.T.); (J.M.)
| | - Ugo Alessandro Perego
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
- Department of Math and Science, Southeastern Community College, West Burlington, IA 52655, USA
| | - Tomás Mendizábal
- Center for Historical, Anthropological and Cultural Research—AIP, Panama City 0816-07812, Panama;
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama; (R.C.); (N.S.-G.)
| | - Alejandro García Montón
- Departamento de Geografía, Historia y Filosofía, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.G.M.); (B.A.)
| | - Gianluca Lombardo
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Viola Grugni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Maria Garofalo
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.C.); (S.G.)
| | - Luca Ferretti
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Cristina Cereda
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.C.); (S.G.)
| | - Stella Gagliardi
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.C.); (S.G.)
| | - Richard Cooke
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama; (R.C.); (N.S.-G.)
- Sistema Nacional de Investigadores, Secretaría Nacional de Ciencia y Tecnología, Ciudad del Saber, Clayton 0816-02852, Panama
| | - Nicole Smith-Guzmán
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama; (R.C.); (N.S.-G.)
- Sistema Nacional de Investigadores, Secretaría Nacional de Ciencia y Tecnología, Ciudad del Saber, Clayton 0816-02852, Panama
| | - Anna Olivieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Bethany Aram
- Departamento de Geografía, Historia y Filosofía, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.G.M.); (B.A.)
| | - Antonio Torroni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Jorge Motta
- Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama; (M.T.); (J.M.)
| | - Ornella Semino
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
- Correspondence: (O.S.); (A.A.)
| | - Alessandro Achilli
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
- Correspondence: (O.S.); (A.A.)
| |
Collapse
|
8
|
Bonito M, D’Atanasio E, Ravasini F, Cariati S, Finocchio A, Novelletto A, Trombetta B, Cruciani F. New insights into the evolution of human Y chromosome palindromes through mutation and gene conversion. Hum Mol Genet 2021; 30:2272-2285. [PMID: 34244762 PMCID: PMC8600007 DOI: 10.1093/hmg/ddab189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
About one-quarter of the euchromatic portion of the male-specific region of the human Y chromosome consists of large duplicated sequences that are organized in eight palindromes (termed P1-P8), which undergo arm-to arm gene conversion, a proposed mechanism for maintaining their sequence integrity. Although the relevance of gene conversion in the evolution of palindromic sequences has been profoundly recognized, the dynamic of this mechanism is still nuanced. To shed light into the evolution of these genomic elements, we performed a high-depth (50×) targeted next-generation sequencing of the palindrome P6 in 157 subjects belonging to the most divergent evolutionary lineages of the Y chromosome. We found 118 new paralogous sequence variants, which were placed into the context of a robust Y chromosome phylogeny based on 7240 SNPs of the X-degenerate region. We mapped along the phylogeny 80 gene conversion events that shaped the diversity of P6 arms during recent human history. In contrast to previous studies, we demonstrated that arm-to-arm gene conversion, which occurs at a rate of 6.01 × 10 -6 conversions/base/year, is not biased toward the retention of the ancestral state of sequences. We also found a significantly lower mutation rate of the arms (6.18 × 10-10 mutations/base/year) compared with the spacer (9.16 × 10-10 mutations/base/year), a finding that may explain the observed higher inter-species conservation of arms, without invoking any bias of conversion. Finally, by formally testing the mutation/conversion balance in P6, we found that the arms of this palindrome reached a steady-state equilibrium between mutation and gene conversion.
Collapse
Affiliation(s)
- Maria Bonito
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome 0185, Italy
| | - Eugenia D’Atanasio
- Institute of Molecular Biology and Pathology (IBPM), CNR, Rome 0185, Italy
| | - Francesco Ravasini
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome 0185, Italy
| | - Selene Cariati
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome 0185, Italy
| | - Andrea Finocchio
- Department of Biology, University of Rome Tor Vergata, Rome 0133, Italy
| | - Andrea Novelletto
- Department of Biology, University of Rome Tor Vergata, Rome 0133, Italy
| | - Beniamino Trombetta
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome 0185, Italy
| | - Fulvio Cruciani
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome 0185, Italy
- Institute of Molecular Biology and Pathology (IBPM), CNR, Rome 0185, Italy
| |
Collapse
|
9
|
Fu K, Wang C, Ma C, Zhou H, Li Y. The Potential Application of Chinese Medicine in Liver Diseases: A New Opportunity. Front Pharmacol 2021; 12:771459. [PMID: 34803712 PMCID: PMC8600187 DOI: 10.3389/fphar.2021.771459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Liver diseases have been a common challenge for people all over the world, which threatens the quality of life and safety of hundreds of millions of patients. China is a major country with liver diseases. Metabolic associated fatty liver disease, hepatitis B virus and alcoholic liver disease are the three most common liver diseases in our country, and the number of patients with liver cancer is increasing. Therefore, finding effective drugs to treat liver disease has become an urgent task. Chinese medicine (CM) has the advantages of low cost, high safety, and various biological activities, which is an important factor for the prevention and treatment of liver diseases. This review systematically summarizes the potential of CM in the treatment of liver diseases, showing that CM can alleviate liver diseases by regulating lipid metabolism, bile acid metabolism, immune function, and gut microbiota, as well as exerting anti-liver injury, anti-oxidation, and anti-hepatitis virus effects. Among them, Keap1/Nrf2, TGF-β/SMADS, p38 MAPK, NF-κB/IκBα, NF-κB-NLRP3, PI3K/Akt, TLR4-MyD88-NF-κB and IL-6/STAT3 signaling pathways are mainly involved. In conclusion, CM is very likely to be a potential candidate for liver disease treatment based on modern phytochemistry, pharmacology, and genomeproteomics, which needs more clinical trials to further clarify its importance in the treatment of liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Calò CM, Vona G, Robledo R, Francalacci P. From old markers to next generation: reconstructing the history of the peopling of Sardinia. Ann Hum Biol 2021; 48:203-212. [PMID: 34459339 DOI: 10.1080/03014460.2021.1944312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT For many years the Sardinian population has been the object of numerous studies because of its unique genetic structure. Despite the extreme abundance of papers, various aspects of the peopling and genetic structure of Sardinia still remain uncertain and sometimes controversial. OBJECTIVE We reviewed what has emerged from different studies, focussing on some still open questions, such as the origin of Sardinians, their relationship with the Corsican population, and the intra-regional genetic heterogeneity. METHODS The various issues have been addressed through the analysis of classical markers, molecular markers and, finally, genomic data through next generation sequencing. RESULTS AND CONCLUSIONS Although the most ancient human remains date back to the end of the Palaeolithic, Mesolithic populations brought founding lineages that left evident traces in the modern population. Then, with the Neolithic, the island underwent an important demographic expansion. Subsequently, isolation and genetic drift contributed to maintain a significant genetic heterogeneity, but preserving the overall homogeneity on a regional scale. At the same time, isolation and genetic drift contributed to differentiate Sardinia from Corsica, which saw an important gene flow from the mainland. However, the isolation did not prevent gene flow from the neighbouring populations whose contribution are still recognisable in the genome of Sardinians.
Collapse
Affiliation(s)
- Carla Maria Calò
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Giuseppe Vona
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Renato Robledo
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paolo Francalacci
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
11
|
Insights into the Middle Eastern paternal genetic pool in Tunisia: high prevalence of T-M70 haplogroup in an Arab population. Sci Rep 2021; 11:15728. [PMID: 34344940 PMCID: PMC8333252 DOI: 10.1038/s41598-021-95144-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023] Open
Abstract
To obtain refreshed insights into the paternal lineages of Tunisian populations, Y-chromosome diversity was assessed in two populations belonging to an Arab genealogical lineage, Kairouan and Wesletia, as well as in four Tunisian Andalusian populations, Testour, Slouguia, Qalaat-El-Andalous and El Alia. The Arabs from Kairouan revealed 73.47% of E-M81 and close affinities with Berber groups, indicating they are likely arabized Berbers, clearly differentiated from the Arabs from Wesletia, who harbored the highest frequency (71.8%) of the Middle Eastern component ever observed in North Africa. In the Tunisian Andalusians, the North African component largely prevailed, followed by the Middle Eastern contribution. Global comparative analysis highlighted the heterogeneity of Tunisian populations, among which, as a whole, dominated a set of lineages ascribed to be of autochthonous Berber origin (71.67%), beside a component of essentially Middle Eastern extraction (18.35%), and signatures of Sub-Saharan (5.2%), European (3.45%) and Asiatic (1.33%) contributions. The remarkable frequency of T-M70 in Wesletia (17.4%) prompted to refine its phylogeographic analysis, allowing to confirm its Middle Eastern origin, though signs of local evolution in Northern Africa were also detected. Evidence was clear on the ancient introduction of T lineages into the region, probably since Neolithic times associated to spread of agriculture.
Collapse
|
12
|
Rocha JL, Godinho R, Brito JC, Nielsen R. Life in Deserts: The Genetic Basis of Mammalian Desert Adaptation. Trends Ecol Evol 2021; 36:637-650. [PMID: 33863602 DOI: 10.1016/j.tree.2021.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Deserts are among the harshest environments on Earth. The multiple ages of different deserts and their global distribution provide a unique opportunity to study repeated adaptation at different timescales. Here, we summarize recent genomic research on the genetic mechanisms underlying desert adaptations in mammals. Several studies on different desert mammals show large overlap in functional classes of genes and pathways, consistent with the complexity and variety of phenotypes associated with desert adaptation to water and food scarcity and extreme temperatures. However, studies of desert adaptation are also challenged by a lack of accurate genotype-phenotype-environment maps. We encourage development of systems that facilitate functional analyses, but also acknowledge the need for more studies on a wider variety of desert mammals.
Collapse
Affiliation(s)
- Joana L Rocha
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
| | - Raquel Godinho
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; Department of Zoology, University of Johannesburg, PO Box 534, Auckland Park 2006, South Africa
| | - José C Brito
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Rasmus Nielsen
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA 94820, USA; Globe Institute, University of Copenhagen, DK-1165 Copenhagen, Denmark.
| |
Collapse
|
13
|
Sahakyan H, Margaryan A, Saag L, Karmin M, Flores R, Haber M, Kushniarevich A, Khachatryan Z, Bahmanimehr A, Parik J, Karafet T, Yunusbayev B, Reisberg T, Solnik A, Metspalu E, Hovhannisyan A, Khusnutdinova EK, Behar DM, Metspalu M, Yepiskoposyan L, Rootsi S, Villems R. Origin and diffusion of human Y chromosome haplogroup J1-M267. Sci Rep 2021; 11:6659. [PMID: 33758277 PMCID: PMC7987999 DOI: 10.1038/s41598-021-85883-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/08/2021] [Indexed: 01/31/2023] Open
Abstract
Human Y chromosome haplogroup J1-M267 is a common male lineage in West Asia. One high-frequency region-encompassing the Arabian Peninsula, southern Mesopotamia, and the southern Levant-resides ~ 2000 km away from the other one found in the Caucasus. The region between them, although has a lower frequency, nevertheless demonstrates high genetic diversity. Studies associate this haplogroup with the spread of farming from the Fertile Crescent to Europe, the spread of mobile pastoralism in the desert regions of the Arabian Peninsula, the history of the Jews, and the spread of Islam. Here, we study past human male demography in West Asia with 172 high-coverage whole Y chromosome sequences and 889 genotyped samples of haplogroup J1-M267. We show that this haplogroup evolved ~ 20,000 years ago somewhere in northwestern Iran, the Caucasus, the Armenian Highland, and northern Mesopotamia. The major branch-J1a1a1-P58-evolved during the early Holocene ~ 9500 years ago somewhere in the Arabian Peninsula, the Levant, and southern Mesopotamia. Haplogroup J1-M267 expanded during the Chalcolithic, the Bronze Age, and the Iron Age. Most probably, the spread of Afro-Asiatic languages, the spread of mobile pastoralism in the arid zones, or both of these events together explain the distribution of haplogroup J1-M267 we see today in the southern regions of West Asia.
Collapse
Affiliation(s)
- Hovhannes Sahakyan
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia.
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia.
| | - Ashot Margaryan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia
- Lundbeck Foundation, Department of Biology, GeoGenetics Centre, University of Copenhagen, 1350, Copenhagen, Denmark
| | - Lauri Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Monika Karmin
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University, Palmerston North, Manawatu, 4442, New Zealand
| | - Rodrigo Flores
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Marc Haber
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alena Kushniarevich
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Zaruhi Khachatryan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia
| | - Ardeshir Bahmanimehr
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia
- Thalassemia and Haemophilia Genetic PND Research Center, Dastgheib Hospital, Shiraz University of Medical Sciences, 71456-83769, Shiraz, Iran
| | - Jüri Parik
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Department of Evolutionary Biology, Institute of Cell and Molecular Biology, University of Tartu, 51010, Tartu, Estonia
| | - Tatiana Karafet
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| | - Bayazit Yunusbayev
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Department of Genetics and Fundamental Medicine of Bashkir State University, Ufa, Bashkortostan, Russia, 450076
| | - Tuuli Reisberg
- Core Facility, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Anu Solnik
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Core Facility, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Ene Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Anahit Hovhannisyan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia
| | - Elza K Khusnutdinova
- Department of Genetics and Fundamental Medicine of Bashkir State University, Ufa, Bashkortostan, Russia, 450076
- Institute of Biochemistry and Genetics of Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, 450054, Russia
| | - Doron M Behar
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Levon Yepiskoposyan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia
| | - Siiri Rootsi
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Richard Villems
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Department of Evolutionary Biology, Institute of Cell and Molecular Biology, University of Tartu, 51010, Tartu, Estonia
| |
Collapse
|
14
|
Mestiri S, Boussetta S, Pakstis AJ, Elkamel S, Elgaaied ABA, Kidd KK, Cherni L. Genetic diversity of the North African population revealed by the typing of SNPs in the DRD2/ANKK1 genomic region. Gene 2021; 777:145466. [PMID: 33524518 DOI: 10.1016/j.gene.2021.145466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
The dopamine - related genes, like dopamine D2 receptor (DRD2) gene and ankyrin repeat and kinase domain containing 1 (ANKK1) gene are implicated in neurological functions. Some polymorphisms of the DRD2/ANKK1 locus (TaqIA, TaqIB, TaqID) have been used to study genetic diversity and the evolution of human populations. The present investigation aims to assess the genetic diversity in seven North African populations in order to explore their genetic structure and to compare them to others worldwide populations studied for the same locus. Nine single nucleotide polymorphisms (SNPs) from the DRD2/ANKK1 locus (rs1800497 TaqIA, rs2242592, rs1124492, rs6277, rs6275, rs1079727, rs2002453, rs2234690 and rs1079597 TaqIB) were typed in 366 individuals from seven North African populations: six from Tunisia (Sousse, Smar, Kesra, Kairouan, Mehdia and Kerkennah) and one from Libya. The allelic frequencies of rs2002453 and rs2234690 were higher in the Smar population than in the other North African populations. More, the Smar population showed the lowest average heterozygosity (0.313). The principal component analysis (PCA) showed that the Smar population was clearly separated from others. Furthermore, linkage disequilibrium analysis shown a high linkage disequilibrium in the North African population and essentially in Smar population. Comparison with other world populations has shown that the heterozygosity of North African population was very close to that of the African and European populations. The PCA and the haplotypic analysis suggested the presence of an important Eurasian genetic component for the North African population. These results suggested that the Smar population was isolated from the others North Africans ones by its peculiar genetic structure because of isolation, endogamy and genetic drift. On the other hand, the North African population is characterized by a multi ancestral gene pool from Eurasia and sub-Saharan Africa due to human migration since prehistoric times.
Collapse
Affiliation(s)
- Souhir Mestiri
- Laboratory of Genetics, Biodiversity and Bioresource Valorization (LR11ES41), University of Monastir, Monastir 5000, Tunisia; Higher Institute of Biotechnology of Monastir, Monastir University, 5000 Monastir, Tunisia.
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia.
| | - Andrew J Pakstis
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Sarra Elkamel
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia.
| | - Amel Ben Ammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Kenneth K Kidd
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Lotfi Cherni
- Higher Institute of Biotechnology of Monastir, Monastir University, 5000 Monastir, Tunisia; Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia.
| |
Collapse
|
15
|
Searching for the roots of the first free African American community. Sci Rep 2020; 10:20634. [PMID: 33244039 PMCID: PMC7691995 DOI: 10.1038/s41598-020-77608-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022] Open
Abstract
San Basilio de Palenque is an Afro-descendant community near Cartagena, Colombia, founded in the sixteenth century. The recognition of the historical and cultural importance of Palenque has promoted several studies, namely concerning the African roots of its first inhabitants. To deepen the knowledge of the origin and diversity of the Palenque parental lineages, we analysed a sample of 81 individuals for the entire mtDNA Control Region as well as 92 individuals for 27 Y-STRs and 95 for 51 Y-SNPs. The results confirmed the strong isolation of the Palenque, with some degree of influx of Native American maternal lineages, and a European admixture exclusively mediated by men. Due to the high genetic drift observed, a pairwise FST analysis with available data on African populations proved to be inadequate for determining population affinities. In contrast, when a phylogenetic approach was used, it was possible to infer the phylogeographic origin of some lineages in Palenque. Contradicting previous studies indicating a single African origin, our results evidence parental genetic contributions from widely different African regions.
Collapse
|
16
|
Villaescusa P, Seidel M, Nothnagel M, Pinotti T, González-Andrade F, Alvarez-Gila O, M de Pancorbo M, Roewer L. A Y-chromosomal survey of Ecuador's multi-ethnic population reveals new insights into the tri-partite population structure and supports an early Holocene age of the rare Native American founder lineage C3-MPB373. Forensic Sci Int Genet 2020; 51:102427. [PMID: 33254102 DOI: 10.1016/j.fsigen.2020.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022]
Abstract
Ecuador is a multiethnic and pluricultural country with a complex history defined by migration and admixture processes. The present study aims to increase our knowledge on the Ecuadorian Native Amerindian groups and the unique South American Y-chromosome haplogroup C3-MPB373 through the analysis of up to 23 Y-chromosome STRs (Y-STRs) and several Y-SNPs in a sample of 527 Ecuadorians from 7 distinct populations and geographic areas, including Kichwa and non-Kichwa Native Amerindians, Mestizos and Afro-Ecuadorians. Our results reveal the presence of C3-MPB373 both in the Amazonian lowland Kichwa with frequencies up to 28 % and, for the first time, in notable proportions in Kichwa populations from the Ecuadorian highlands. The substantially higher frequencies of C3-MPB373 in the Amazonian lowlands found in Kichwa and Waorani individuals suggest a founder effect in that area. Notably, estimates for the time to the most recent common ancestor (TMRCA) in the range of 7.2-9.0 kya point to an ancient origin of the haplogroup and suggest an early Holocene expansion of C3-MPB373 into South America. Finally, the pairwise genetic distances (RST) separate the Kichwa Salasaka from all the other Native Amerindian and Ecuadorian groups, indicating a so far hidden diversity among the Kichwa-speaking populations and suggesting a more southern origin of this population. In sum, our study provides a more in-depth knowledge of the male genetic structure of the multiethnic Ecuadorian population, as well as a valuable reference dataset for forensic use.
Collapse
Affiliation(s)
- Patricia Villaescusa
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
| | - Maria Seidel
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Nothnagel
- Department of Statistical Genetics and Bioinformatics, Cologne Center for Genomics, University of Cologne, Cologne, Germany; University Hospital Cologne, Cologne, Germany
| | - Thomaz Pinotti
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | | - Oscar Alvarez-Gila
- Department of Medieval, Early Modern and American History, Faculty of Letters, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Lutz Roewer
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Anagnostou P, Dominici V, Battaggia C, Boukhchim N, Ben Nasr J, Boussoffara R, Cancellieri E, Marnaoui M, Marzouki M, Bel Haj Brahim H, Bou Rass M, di Lernia S, Destro Bisol G. Berbers and Arabs: Tracing the genetic diversity and history of Southern Tunisia through genome wide analysis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:697-708. [PMID: 32936953 DOI: 10.1002/ajpa.24139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/11/2020] [Accepted: 08/02/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Tunisia has been a crossroads for people from Africa, Europe, and the Middle East since prehistoric times. At present, it is inhabited by two main ethnic groups, Arabs and Berbers, and several minorities. This study aims to advance knowledge regarding their genetic structure using new population samplings and a genome-wide approach. MATERIALS AND METHODS We investigated genomic variation, estimated ancestry components and dated admixture events in three Berber and two Arab populations from Southern Tunisia, mining a dataset including Middle Eastern, sub-Saharan, and European populations. RESULTS Differences in the proportion of North African, Arabian, and European ancestries and the varying impact of admixture and isolation determined significant heterogeneity in the genetic structure of Southern Tunisian populations. Admixture time estimates show a multilayer pattern of admixture events, involving both ethno-linguistic groups, which started around the mid XI century and lasted for nearly five centuries. DISCUSSION Our study provides evidence that the relationships between genetic and cultural diversity of old and new inhabitants of North Africa in southern Tunisia follow different patterns. The Berbers seem to have preserved a significant part of their common genomic heritage despite Islamization, Arab cultural influence, and linguistic diversity. Compared to Morocco and Algeria, southern Tunisian Arabs have retained a higher level of Arabian ancestry. This is more evident in the semi-nomad R'Baya, who have kept their original Bedouin lifestyle, than in the population from Douz, who have undergone multiple events of stratification and admixture.
Collapse
Affiliation(s)
- Paolo Anagnostou
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Italy.,Istituto Italiano di Antropologia, Italy
| | - Valentina Dominici
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Italy
| | - Cinzia Battaggia
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Italy
| | - Nouri Boukhchim
- Faculté des Lettres et Sciences Humaines, Université de Kairouan, Kairouan, Tunisia.,Laboratoire LMAIM, LR99ES01, Université de Tunis, Tunisia
| | - Jaâfar Ben Nasr
- Département d'Archéologie (FLSHK), LR 13 ES 11/ UR 16 ES 01, Université de Kairouan, Tunisia
| | | | | | - Marwa Marnaoui
- Dipartimento di Scienze dell'Antichità, Università di Roma "La Sapienza", Italy
| | - Meriem Marzouki
- Higher institute of fine arts, Department of Space Design, University of Sousse, Sousse, Tunisia
| | | | | | - Savino di Lernia
- Dipartimento di Scienze dell'Antichità, Università di Roma "La Sapienza", Italy.,GAES, University of Witwatersrand, Johannesburg, South Africa
| | - Giovanni Destro Bisol
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Italy.,Istituto Italiano di Antropologia, Italy
| |
Collapse
|
18
|
D’Atanasio E, Trionfetti F, Bonito M, Sellitto D, Coppa A, Berti A, Trombetta B, Cruciani F. Y Haplogroup Diversity of the Dominican Republic: Reconstructing the Effect of the European Colonization and the Trans-Atlantic Slave Trades. Genome Biol Evol 2020; 12:1579-1590. [PMID: 32835369 PMCID: PMC7523727 DOI: 10.1093/gbe/evaa176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
The Dominican Republic is one of the two countries on the Hispaniola island, which is part of the Antilles. Hispaniola was affected by the European colonization and massive deportation of African slaves since the XVI century and these events heavily shaped the genetic composition of the present-day population. To shed light about the effect of the European rules, we analyzed 92 single nucleotide polymorphisms on the Y chromosome in 182 Dominican individuals from three different locations. The Dominican Y haplogroup composition was characterized by an excess of northern African/European lineages (59%), followed by the African clades (38%), whereas the Native-American lineages were rare (3%). The comparison with the mitochondrial DNA variability, dominated by African clades, revealed a sex-biased admixture pattern, in line with the colonial society dominated by European men. When other Caribbean and non-Caribbean former colonies were also considered, we noted a difference between territories under a Spanish rule (like the Dominican Republic) and British/French rule, with the former characterized by an excess of European Y lineages reflecting the more permissive Iberian legislation about mixed people and slavery. Finally, we analyzed the distribution in Africa of the Dominican lineages with a putative African origin, mainly focusing on central and western Africa, which were the main sources of African slaves. We found that most (83%) of the African lineages observed in Santo Domingo have a central African ancestry, suggesting that most of the slaves were deported from regions.
Collapse
Affiliation(s)
- Eugenia D’Atanasio
- Istituto di Biologia e Patologia Molecolari, CNR, Roma, Italy
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Flavia Trionfetti
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Maria Bonito
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | | | - Alfredo Coppa
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Andrea Berti
- Reparto CC Investigazioni Scientifiche di Roma, Sezione di Biologia, Rome, Italy
| | - Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Fulvio Cruciani
- Istituto di Biologia e Patologia Molecolari, CNR, Roma, Italy
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
19
|
Della Rocca C, Cannone F, D'Atanasio E, Bonito M, Anagnostou P, Russo G, Barni F, Alladio E, Destro-Bisol G, Trombetta B, Berti A, Cruciani F. Ethnic fragmentation and degree of urbanization strongly affect the discrimination power of Y-STR haplotypes in central Sahel. Forensic Sci Int Genet 2020; 49:102374. [PMID: 32890883 DOI: 10.1016/j.fsigen.2020.102374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/06/2020] [Accepted: 08/16/2020] [Indexed: 10/23/2022]
Abstract
Y chromosome short tandem repeats (Y-STRs) are commonly used to identify male lineages for investigative and judicial purposes and could represent the only source of male-specific genetic information from unbalanced female-male mixtures. The Yfiler Plus multiplex, which includes twenty conventional and seven rapidly-mutating Y-STRs, represents the most discriminating patrilineal system commercially available to date. Over the past five years, this multiplex has been used to analyze several Eurasian populations, with a reported discrimination capacity (DC) approaching or corresponding to the highest possible value. However, despite the inclusion of rapidly mutating Y-STRs, extensive haplotype sharing was still reported for some African populations due to a number of different factors affecting the effective population size. In the present study, we analyzed 27 Y-STRs included in the Yfiler Plus multiplex and 82 Y-SNPs in central Sahel (northern Cameroon and western Chad), an African region characterized by a strong ethnic fragmentation and linguistic diversity. We evaluated the effects of population sub-structuring on genetic diversity by stratifying a sample composed of 431 males according to their ethnicity (44 different ethnic groups) and urbanization degree (four villages and four towns). Overall, we observed a low discrimination capacity (DC = 0.90), with 71 subjects (16.5 %) sharing 27 Y-STR haplotypes. Haplotype sharing was essentially limited to subjects with the same binary haplogroup, coming from the same location and belonging to the same ethnic group. Haplotype sharing was much higher in rural areas (average DC = 0.83) than urban settlements (average DC = 0.96) with a significant correlation between DC and census size (r = 0.89; p = 0.003). Notably, we found that genetic differentiation between villages from the same country (ΦST = 0.14) largely exceeded that found among countries (ΦST = 0.02). These findings have important implications for the choice of the appropriate reference population database to evaluate the statistical relevance of forensic Y-haplotype matches.
Collapse
Affiliation(s)
- Chiara Della Rocca
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Cannone
- Reparto Carabinieri Investigazioni Scientifiche di Roma - Sezione di Biologia, Viale Tor di Quinto 119, 00191, Rome, Italy
| | | | - Maria Bonito
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Paolo Anagnostou
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 - Rome, Italy; Istituto Italiano di Antropologia, Rome, Italy
| | - Gianluca Russo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Filippo Barni
- Reparto Carabinieri Investigazioni Scientifiche di Roma - Sezione di Biologia, Viale Tor di Quinto 119, 00191, Rome, Italy
| | - Eugenio Alladio
- Reparto Carabinieri Investigazioni Scientifiche di Roma - Sezione di Biologia, Viale Tor di Quinto 119, 00191, Rome, Italy
| | - Giovanni Destro-Bisol
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 - Rome, Italy; Istituto Italiano di Antropologia, Rome, Italy
| | - Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Berti
- Reparto Carabinieri Investigazioni Scientifiche di Roma - Sezione di Biologia, Viale Tor di Quinto 119, 00191, Rome, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy; Istituto di Biologia e Patologia Molecolari, CNR, Rome, Italy.
| |
Collapse
|
20
|
Alladio E, Della Rocca C, Barni F, Dugoujon JM, Garofano P, Semino O, Berti A, Novelletto A, Vincenti M, Cruciani F. A multivariate statistical approach for the estimation of the ethnic origin of unknown genetic profiles in forensic genetics. Forensic Sci Int Genet 2019; 45:102209. [PMID: 31812099 DOI: 10.1016/j.fsigen.2019.102209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/11/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
DNA typing and genetic profile data interpretation are among the most relevant topics in forensic science; among other applications, genetic profile's capability to distinguish biogeographic information about population groups, subgroups and affiliations have been largely explored in the last decade. In fact, for investigative and intelligence purposes, it is extremely useful to identify subjects and estimate their biogeographic origins by examining the recovered DNA profiles from evidence on a crime scene. Current approaches for BiogeoGraphic Ancestry (BGA) estimation using STRs profiles are usually based on Bayesian methods, which quantify the evidence in terms of likelihood ratio, supporting or not the hypothesis that a certain profile belongs to a specific ethnic group. The present study provides an alternative approach to the likelihood ratio method that involves multivariate data analysis strategies for the estimation of multiple populations. Starting from the well-known NIST US autosomal STRs dataset involving African-American, Asian, and Caucasian individuals, and moving towards further and more geographically restricted populations (such as Northern Africans vs sub-Saharan Africans, Afghans vs Iraqis and Italians vs Romanians), powerful multivariate techniques such as Sparse and Logistic Principal Component Analysis (SL-PCA), Sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) and Support Vector Machines (SVM) were employed and their discriminating power was also compared. Both sPLS-DA and SVM techniques provided robust classifications, yielding high sensitivity and specificity models capable of discriminating populations on ethnic basis. This application may represent a powerful and dynamic tool for law enforcement agencies whenever a standard autosomal STR profile is obtained from the biological evidence collected at a crime scene or recovered during mass-disaster and missing person investigations.
Collapse
Affiliation(s)
- Eugenio Alladio
- Reparto CC Investigazioni Scientifiche di Roma, Sezione di Biologia, Viale Tor di Quinto 119, 00191, Roma, Italy; Dipartimento di Chimica, Università degli Studi di Torino, Via P. Giuria 7, 10125, Torino, Italy; Centro Regionale Antidoping e di Tossicologia "A. Bertinaria" di Orbassano (Torino), Regione Gonzole 10/1, 10030, Orbassano, Torino, Italy.
| | - Chiara Della Rocca
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Filippo Barni
- Reparto CC Investigazioni Scientifiche di Roma, Sezione di Biologia, Viale Tor di Quinto 119, 00191, Roma, Italy
| | - Jean-Michel Dugoujon
- Centre National de la Recherche Scientifique (CNRS) and Université Toulouse III - Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Paolo Garofano
- Centro Regionale Antidoping e di Tossicologia "A. Bertinaria" di Orbassano (Torino), Regione Gonzole 10/1, 10030, Orbassano, Torino, Italy
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università degli Studi di Pavia, Via Adolfo Ferrata 9, 27100, Pavia, Italy
| | - Andrea Berti
- Reparto CC Investigazioni Scientifiche di Roma, Sezione di Biologia, Viale Tor di Quinto 119, 00191, Roma, Italy
| | - Andrea Novelletto
- Dipartimento di Biologia, Università degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica, 1, 00133, Roma, Italy
| | - Marco Vincenti
- Dipartimento di Chimica, Università degli Studi di Torino, Via P. Giuria 7, 10125, Torino, Italy; Centro Regionale Antidoping e di Tossicologia "A. Bertinaria" di Orbassano (Torino), Regione Gonzole 10/1, 10030, Orbassano, Torino, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy; Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
21
|
Grugni V, Raveane A, Colombo G, Nici C, Crobu F, Ongaro L, Battaglia V, Sanna D, Al-Zahery N, Fiorani O, Lisa A, Ferretti L, Achilli A, Olivieri A, Francalacci P, Piazza A, Torroni A, Semino O. Y-chromosome and Surname Analyses for Reconstructing Past Population Structures: The Sardinian Population as a Test Case. Int J Mol Sci 2019; 20:E5763. [PMID: 31744094 PMCID: PMC6888588 DOI: 10.3390/ijms20225763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 11/17/2022] Open
Abstract
Many anthropological, linguistic, genetic and genomic analyses have been carried out to evaluate the potential impact that evolutionary forces had in shaping the present-day Sardinian gene pool, the main outlier in the genetic landscape of Europe. However, due to the homogenizing effect of internal movements, which have intensified over the past fifty years, only partial information has been obtained about the main demographic events. To overcome this limitation, we analyzed the male-specific region of the Y chromosome in three population samples obtained by reallocating a large number of Sardinian subjects to the place of origin of their monophyletic surnames, which are paternally transmitted through generations in most of the populations, much like the Y chromosome. Three Y-chromosome founding lineages, G2-L91, I2-M26 and R1b-V88, were identified as strongly contributing to the definition of the outlying position of Sardinians in the European genetic context and marking a significant differentiation within the island. The present distribution of these lineages does not always mirror that detected in ancient DNAs. Our results show that the analysis of the Y-chromosome gene pool coupled with a sampling method based on the origin of the family name, is an efficient approach to unravelling past heterogeneity, often hidden by recent movements, in the gene pool of modern populations. Furthermore, the reconstruction and comparison of past genetic isolates represent a starting point to better assess the genetic information deriving from the increasing number of available ancient DNA samples.
Collapse
Affiliation(s)
- Viola Grugni
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Alessandro Raveane
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Giulia Colombo
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Carmen Nici
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Francesca Crobu
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Italy
| | - Linda Ongaro
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
- Estonian Biocentre, Institute of Genomics, Riia 23, 51010 Tartu, Estonia
- Department of Evolutionary Biology, Institute of Molecular and Cell Biology, Riia 23, 51010 Tartu, Estonia
| | - Vincenza Battaglia
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Daria Sanna
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy
| | - Nadia Al-Zahery
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Ornella Fiorani
- Istituto di Genetica Molecolare “L.L. Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), 27100 Pavia, Italy; (O.F.); (A.L.)
| | - Antonella Lisa
- Istituto di Genetica Molecolare “L.L. Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), 27100 Pavia, Italy; (O.F.); (A.L.)
| | - Luca Ferretti
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Paolo Francalacci
- Dipartimento di Scienza della Vita e dell’Ambiente, Università di Cagliari, 09123 Cagliari, Italy;
| | - Alberto Piazza
- Dipartimento di Scienze Mediche, Scuola di Medicina, Università di Torino, 10124 Torino, Italy;
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| |
Collapse
|
22
|
Haber M, Jones AL, Connell BA, Asan, Arciero E, Yang H, Thomas MG, Xue Y, Tyler-Smith C. A Rare Deep-Rooting D0 African Y-Chromosomal Haplogroup and Its Implications for the Expansion of Modern Humans Out of Africa. Genetics 2019; 212:1421-1428. [PMID: 31196864 PMCID: PMC6707464 DOI: 10.1534/genetics.119.302368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Present-day humans outside Africa descend mainly from a single expansion out ∼50,000-70,000 years ago, but many details of this expansion remain unclear, including the history of the male-specific Y chromosome at this time. Here, we reinvestigate a rare deep-rooting African Y-chromosomal lineage by sequencing the whole genomes of three Nigerian men described in 2003 as carrying haplogroup DE* Y chromosomes, and analyzing them in the context of a calibrated worldwide Y-chromosomal phylogeny. We confirm that these three chromosomes do represent a deep-rooting DE lineage, branching close to the DE bifurcation, but place them on the D branch as an outgroup to all other known D chromosomes, and designate the new lineage D0. We consider three models for the expansion of Y lineages out of Africa ∼50,000-100,000 years ago, incorporating migration back to Africa where necessary to explain present-day Y-lineage distributions. Considering both the Y-chromosomal phylogenetic structure incorporating the D0 lineage, and published evidence for modern humans outside Africa, the most favored model involves an origin of the DE lineage within Africa with D0 and E remaining there, and migration out of the three lineages (C, D, and FT) that now form the vast majority of non-African Y chromosomes. The exit took place 50,300-81,000 years ago (latest date for FT lineage expansion outside Africa - earliest date for the D/D0 lineage split inside Africa), and most likely 50,300-59,400 years ago (considering Neanderthal admixture). This work resolves a long-running debate about Y-chromosomal out-of-Africa/back-to-Africa migrations, and provides insights into the out-of-Africa expansion more generally.
Collapse
Affiliation(s)
- Marc Haber
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | | | - Bruce A Connell
- Glendon College, York University, Toronto, Ontario M4N 3N6, Canada
| | - Asan
- BGI-Shenzhen, Shenzhen 518083, China
| | - Elena Arciero
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Science, 310008 Hangzhou, China
| | - Mark G Thomas
- Research Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, UK, and University College London (UCL) Genetics Institute, University College London, WC1E 6BT, UK
| | - Yali Xue
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | | |
Collapse
|
23
|
Macaulay V, Soares P, Richards MB. Rectifying long-standing misconceptions about the ρ statistic for molecular dating. PLoS One 2019; 14:e0212311. [PMID: 30779770 PMCID: PMC6380571 DOI: 10.1371/journal.pone.0212311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 01/19/2019] [Indexed: 01/01/2023] Open
Abstract
When divided by a given mutation rate, the ρ (rho) statistic provides a simple estimator of the age of a clade within a phylogenetic tree by averaging the number of mutations from each sample in the clade to its root. However, a long-standing critique of the use of ρ in genetic dating has been quite often cited. Here we show that the critique is unfounded. We demonstrate by a formal mathematical argument and illustrate with a simulation study that ρ estimates are unbiased and also that ρ and maximum likelihood estimates do not differ in any systematic fashion. We also demonstrate that the claim that the associated confidence intervals commonly estimate the uncertainty inappropriately is flawed since it relies on a means of calculating standard errors that is not used by any other researchers, whereas an established expression for the standard error is largely unproblematic. We conclude that ρ dating, alongside approaches such as maximum likelihood (ML) and Bayesian inference, remains a useful tool for genetic dating.
Collapse
Affiliation(s)
- Vincent Macaulay
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Pedro Soares
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- * E-mail:
| | - Martin B. Richards
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom
| |
Collapse
|
24
|
Sands TR. Evolutionary genomics: the fruits of genomic approaches applied to evolutionary biology. Genome Biol 2019; 20:10. [PMID: 30630506 PMCID: PMC6329088 DOI: 10.1186/s13059-018-1615-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
25
|
Rapidly mutating Y-STRs in rapidly expanding populations: Discrimination power of the Yfiler Plus multiplex in northern Africa. Forensic Sci Int Genet 2019; 38:185-194. [DOI: 10.1016/j.fsigen.2018.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/02/2018] [Accepted: 11/02/2018] [Indexed: 11/18/2022]
|
26
|
Molinaro L, Pagani L. Human evolutionary history of Eastern Africa. Curr Opin Genet Dev 2018; 53:134-139. [DOI: 10.1016/j.gde.2018.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/31/2018] [Accepted: 10/08/2018] [Indexed: 01/16/2023]
|
27
|
Choudhury A, Aron S, Sengupta D, Hazelhurst S, Ramsay M. African genetic diversity provides novel insights into evolutionary history and local adaptations. Hum Mol Genet 2018; 27:R209-R218. [PMID: 29741686 PMCID: PMC6061870 DOI: 10.1093/hmg/ddy161] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022] Open
Abstract
Genetic variation and susceptibility to disease are shaped by human demographic history and adaptation. We can now study the genomes of extant Africans and uncover traces of population migration, admixture, assimilation and selection by applying sophisticated computational algorithms. There are four major ethnolinguistic divisions among present day Africans: Hunter-gatherer populations in southern and central Africa; Nilo-Saharan speakers from north and northeast Africa; Afro-Asiatic speakers from north and east Africa; and Niger-Congo speakers who are the predominant ethnolinguistic group spread across most of sub-Saharan Africa. The enormous ethnolinguistic diversity in sub-Saharan African populations is largely paralleled by extensive genetic diversity and until a decade ago, little was known about detailed origins and divergence of these groups. Results from large-scale population genetic studies, and more recently whole genome sequence data, are unravelling the critical role of events like migration and admixture and environmental factors including diet, infectious diseases and climatic conditions in shaping current population diversity. It is now possible to start providing quantitative estimates of divergence times, population size and dynamic processes that have affected populations and their genetic risk for disease. Finally, the availability of ancient genomes from Africa provides historical insights of unprecedented depth. In this review, we highlight some key interpretations that have emerged from recent African genome studies.
Collapse
Affiliation(s)
- Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shaun Aron
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical & Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
28
|
Abstract
The Sahara was once fertile; a recent study identifies human Y-chromosomal lineages that flourished in this Green Sahara and their relation to present-day populations.
Collapse
Affiliation(s)
- Yali Xue
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|