1
|
Kuldell JC, Kaplan CD. RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease. J Mol Biol 2025; 437:168770. [PMID: 39214283 PMCID: PMC11781076 DOI: 10.1016/j.jmb.2024.168770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Gene expression is dependent on RNA Polymerase II (Pol II) activity in eukaryotes. In addition to determining the rate of RNA synthesis for all protein coding genes, Pol II serves as a platform for the recruitment of factors and regulation of co-transcriptional events, from RNA processing to chromatin modification and remodeling. The transcriptome can be shaped by changes in Pol II kinetics affecting RNA synthesis itself or because of alterations to co-transcriptional events that are responsive to or coupled with transcription. Genetic, biochemical, and structural approaches to Pol II in model organisms have revealed critical insights into how Pol II works and the types of factors that regulate it. The complexity of Pol II regulation generally increases with organismal complexity. In this review, we describe fundamental aspects of how Pol II activity can shape gene expression, discuss recent advances in how Pol II elongation is regulated on genes, and how altered Pol II function is linked to human disease and aging.
Collapse
Affiliation(s)
- James C Kuldell
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States
| | - Craig D Kaplan
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States.
| |
Collapse
|
2
|
Pavlu S, Nikumbh S, Kovacik M, An T, Lenhard B, Simkova H, Navratilova P. Core promoterome of barley embryo. Comput Struct Biotechnol J 2024; 23:264-277. [PMID: 38173877 PMCID: PMC10762323 DOI: 10.1016/j.csbj.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Precise localization and dissection of gene promoters are key to understanding transcriptional gene regulation and to successful bioengineering applications. The core RNA polymerase II initiation machinery is highly conserved among eukaryotes, leading to a general expectation of equivalent underlying mechanisms. Still, less is known about promoters in the plant kingdom. In this study, we employed cap analysis of gene expression (CAGE) at three embryonic developmental stages in barley to accurately map, annotate, and quantify transcription initiation events. Unsupervised discovery of de novo sequence clusters grouped promoters based on characteristic initiator and position-specific core-promoter motifs. This grouping was complemented by the annotation of transcription factor binding site (TFBS) motifs. Integration with genome-wide epigenomic data sets and gene ontology (GO) enrichment analysis further delineated the chromatin environments and functional roles of genes associated with distinct promoter categories. The TATA-box presence governs all features explored, supporting the general model of two separate genomic regulatory environments. We describe the extent and implications of alternative transcription initiation events, including those that are specific to developmental stages, which can affect the protein sequence or the presence of regions that regulate translation. The generated promoterome dataset provides a valuable genomic resource for enhancing the functional annotation of the barley genome. It also offers insights into the transcriptional regulation of individual genes and presents opportunities for the informed manipulation of promoter architecture, with the aim of enhancing traits of agronomic importance.
Collapse
Affiliation(s)
- Simon Pavlu
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Sarvesh Nikumbh
- Merck Sharp & Dohme (UK) Limited, 120 Moorgate, London EC2M 6UR, UK
| | - Martin Kovacik
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Tadaichi An
- DNAFORM Precision Gene Technologies, 230–0046 Yokohama, Kanagawa, Japan
| | - Boris Lenhard
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Hana Simkova
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
| | - Pavla Navratilova
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
| |
Collapse
|
3
|
Yang C, Basnet P, Sharmin S, Shen H, Kaplan C, Murakami K. Transcription start site scanning requires the fungi-specific hydrophobic loop of Tfb3. Nucleic Acids Res 2024; 52:11602-11611. [PMID: 39287137 PMCID: PMC11514446 DOI: 10.1093/nar/gkae805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/07/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
RNA polymerase II (pol II) initiates transcription from transcription start sites (TSSs) located ∼30-35 bp downstream of the TATA box in metazoans, whereas in the yeast Saccharomyces cerevisiae, pol II scans further downstream TSSs located ∼40-120 bp downstream of the TATA box. Previously, we found that removal of the kinase module TFIIK (Kin28-Ccl1-Tfb3) from TFIIH shifts the TSS in a yeast in vitro system upstream to the location observed in metazoans and that addition of recombinant Tfb3 back to TFIIH-ΔTFIIK restores the downstream TSS usage. Here, we report that this biochemical activity of yeast TFIIK in TSS scanning is attributable to the Tfb3 RING domain at the interface with pol II in the pre-initiation complex (PIC): especially, swapping Tfb3 Pro51-a residue conserved among all fungi-with Ala or Ser as in MAT1, the metazoan homolog of Tfb3, confers an upstream TSS shift in vitro in a similar manner to the removal of TFIIK. Yeast genetic analysis suggests that both Pro51 and Arg64 of Tfb3 are required to maintain the stability of the Tfb3-pol II interface in the PIC. Cryo-electron microscopy analysis of a yeast PIC lacking TFIIK reveals considerable variability in the orientation of TFIIH, which impairs TSS scanning after promoter opening.
Collapse
Affiliation(s)
- Chun Yang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 415 CurieBlvd. Philadelphia, PA 19104, USA
| | - Pratik Basnet
- Department of Biological Sciences, University of Pittsburgh, 5th and Ruskin Avenues, Pittsburgh, PA 15260, USA
| | - Samah Sharmin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 415 CurieBlvd. Philadelphia, PA 19104, USA
| | - Hui Shen
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing 210009, China
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, 5th and Ruskin Avenues, Pittsburgh, PA 15260, USA
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 415 CurieBlvd. Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Francette AM, Arndt KM. Multiple direct and indirect roles of the Paf1 complex in transcription elongation, splicing, and histone modifications. Cell Rep 2024; 43:114730. [PMID: 39244754 PMCID: PMC11498942 DOI: 10.1016/j.celrep.2024.114730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
The polymerase-associated factor 1 (Paf1) complex (Paf1C) is a conserved protein complex with critical functions during eukaryotic transcription. Previous studies showed that Paf1C is multi-functional, controlling specific aspects of transcription ranging from RNA polymerase II (RNAPII) processivity to histone modifications. However, it is unclear how specific Paf1C subunits directly impact transcription and coupled processes. We have compared conditional depletion to steady-state deletion for each Paf1C subunit to determine the direct and indirect contributions to gene expression in Saccharomyces cerevisiae. Using nascent transcript sequencing, RNAPII profiling, and modeling of transcription elongation dynamics, we have demonstrated direct effects of Paf1C subunits on RNAPII processivity and elongation rate and indirect effects on transcript splicing and repression of antisense transcripts. Further, our results suggest that the direct transcriptional effects of Paf1C cannot be readily assigned to any particular histone modification. This work comprehensively analyzes both the immediate and the extended roles of each Paf1C subunit in transcription elongation and transcript regulation.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
5
|
Zhan Y, Grabbe F, Oberbeckmann E, Dienemann C, Cramer P. Three-step mechanism of promoter escape by RNA polymerase II. Mol Cell 2024; 84:1699-1710.e6. [PMID: 38604172 DOI: 10.1016/j.molcel.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/04/2024] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Abstract
The transition from transcription initiation to elongation is highly regulated in human cells but remains incompletely understood at the structural level. In particular, it is unclear how interactions between RNA polymerase II (RNA Pol II) and initiation factors are broken to enable promoter escape. Here, we reconstitute RNA Pol II promoter escape in vitro and determine high-resolution structures of initially transcribing complexes containing 8-, 10-, and 12-nt ordered RNAs and two elongation complexes containing 14-nt RNAs. We suggest that promoter escape occurs in three major steps. First, the growing RNA displaces the B-reader element of the initiation factor TFIIB without evicting TFIIB. Second, the rewinding of the transcription bubble coincides with the eviction of TFIIA, TFIIB, and TBP. Third, the binding of DSIF and NELF facilitates TFIIE and TFIIH dissociation, establishing the paused elongation complex. This three-step model for promoter escape fills a gap in our understanding of the initiation-elongation transition of RNA Pol II transcription.
Collapse
Affiliation(s)
- Yumeng Zhan
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Frauke Grabbe
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Elisa Oberbeckmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
6
|
Francette AM, Arndt KM. Multiple direct and indirect roles of Paf1C in elongation, splicing, and histone post-translational modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591159. [PMID: 38712269 PMCID: PMC11071476 DOI: 10.1101/2024.04.25.591159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Paf1C is a highly conserved protein complex with critical functions during eukaryotic transcription. Previous studies have shown that Paf1C is multi-functional, controlling specific aspects of transcription, ranging from RNAPII processivity to histone modifications. However, it is unclear how specific Paf1C subunits directly impact transcription and coupled processes. We have compared conditional depletion to steady-state deletion for each Paf1C subunit to determine the direct and indirect contributions to gene expression in Saccharomyces cerevisiae. Using nascent transcript sequencing, RNAPII profiling, and modeling of transcription elongation dynamics, we have demonstrated direct effects of Paf1C subunits on RNAPII processivity and elongation rate and indirect effects on transcript splicing and repression of antisense transcripts. Further, our results suggest that the direct transcriptional effects of Paf1C cannot be readily assigned to any particular histone modification. This work comprehensively analyzes both the immediate and extended roles of each Paf1C subunit in transcription elongation and transcript regulation.
Collapse
Affiliation(s)
- Alex M. Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Karen M. Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
- Lead contact
| |
Collapse
|
7
|
Calvo-Roitberg E, Carroll CL, Venev SV, Kim G, Mick ST, Dekker J, Fiszbein A, Pai AA. mRNA initiation and termination are spatially coordinated. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574404. [PMID: 38260419 PMCID: PMC10802295 DOI: 10.1101/2024.01.05.574404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The expression of a precise mRNA transcriptome is crucial for establishing cell identity and function, with dozens of alternative isoforms produced for a single gene sequence. The regulation of mRNA isoform usage occurs by the coordination of co-transcriptional mRNA processing mechanisms across a gene. Decisions involved in mRNA initiation and termination underlie the largest extent of mRNA isoform diversity, but little is known about any relationships between decisions at both ends of mRNA molecules. Here, we systematically profile the joint usage of mRNA transcription start sites (TSSs) and polyadenylation sites (PASs) across tissues and species. Using both short and long read RNA-seq data, we observe that mRNAs preferentially using upstream TSSs also tend to use upstream PASs, and congruently, the usage of downstream sites is similarly paired. This observation suggests that mRNA 5' end choice may directly influence mRNA 3' ends. Our results suggest a novel "Positional Initiation-Termination Axis" (PITA), in which the usage of alternative terminal sites are coupled based on the order in which they appear in the genome. PITA isoforms are more likely to encode alternative protein domains and use conserved sites. PITA is strongly associated with the length of genomic features, such that PITA is enriched in longer genes with more area devoted to regions that regulate alternative 5' or 3' ends. Strikingly, we found that PITA genes are more likely than non-PITA genes to have multiple, overlapping chromatin structural domains related to pairing of ordinally coupled start and end sites. In turn, PITA coupling is also associated with fast RNA Polymerase II (RNAPII) trafficking across these long gene regions. Our findings indicate that a combination of spatial and kinetic mechanisms couple transcription initiation and mRNA 3' end decisions based on ordinal position to define the expression mRNA isoforms.
Collapse
Affiliation(s)
| | | | - Sergey V. Venev
- Department of Systems Biology, University Massachusetts Chan Medical School, Worcester, MA
| | - GyeungYun Kim
- Department of Biology, Boston University, Boston, MA
| | | | - Job Dekker
- Department of Systems Biology, University Massachusetts Chan Medical School, Worcester, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Ana Fiszbein
- Department of Biology, Boston University, Boston, MA
- Center for Computing & Data Sciences, Boston University, Boston, MA
| | - Athma A. Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
8
|
Zhu Y, Vvedenskaya IO, Sze SH, Nickels BE, Kaplan CD. Quantitative analysis of transcription start site selection reveals control by DNA sequence, RNA polymerase II activity and NTP levels. Nat Struct Mol Biol 2024; 31:190-202. [PMID: 38177677 PMCID: PMC10928753 DOI: 10.1038/s41594-023-01171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 11/03/2023] [Indexed: 01/06/2024]
Abstract
Transcription start site (TSS) selection is a key step in gene expression and occurs at many promoter positions over a wide range of efficiencies. Here we develop a massively parallel reporter assay to quantitatively dissect contributions of promoter sequence, nucleoside triphosphate substrate levels and RNA polymerase II (Pol II) activity to TSS selection by 'promoter scanning' in Saccharomyces cerevisiae (Pol II MAssively Systematic Transcript End Readout, 'Pol II MASTER'). Using Pol II MASTER, we measure the efficiency of Pol II initiation at 1,000,000 individual TSS sequences in a defined promoter context. Pol II MASTER confirms proposed critical qualities of S. cerevisiae TSS -8, -1 and +1 positions, quantitatively, in a controlled promoter context. Pol II MASTER extends quantitative analysis to surrounding sequences and determines that they tune initiation over a wide range of efficiencies. These results enabled the development of a predictive model for initiation efficiency based on sequence. We show that genetic perturbation of Pol II catalytic activity alters initiation efficiency mostly independently of TSS sequence, but selectively modulates preference for the initiating nucleotide. Intriguingly, we find that Pol II initiation efficiency is directly sensitive to guanosine-5'-triphosphate levels at the first five transcript positions and to cytosine-5'-triphosphate and uridine-5'-triphosphate levels at the second position genome wide. These results suggest individual nucleoside triphosphate levels can have transcript-specific effects on initiation, representing a cryptic layer of potential regulation at the level of Pol II biochemical properties. The results establish Pol II MASTER as a method for quantitative dissection of transcription initiation in eukaryotes.
Collapse
Affiliation(s)
- Yunye Zhu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Irina O Vvedenskaya
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ, USA
| | - Sing-Hoi Sze
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Bryce E Nickels
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Bernardini A, Hollinger C, Willgenss D, Müller F, Devys D, Tora L. Transcription factor IID parks and drives preinitiation complexes at sharp or broad promoters. Trends Biochem Sci 2023; 48:839-848. [PMID: 37574371 PMCID: PMC10529448 DOI: 10.1016/j.tibs.2023.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Core promoters are sites where transcriptional regulatory inputs of a gene are integrated to direct the assembly of the preinitiation complex (PIC) and RNA polymerase II (Pol II) transcription output. Until now, core promoter functions have been investigated by distinct methods, including Pol II transcription initiation site mappings and structural characterization of PICs on distinct promoters. Here, we bring together these previously unconnected observations and hypothesize how, on metazoan TATA promoters, the precisely structured building up of transcription factor (TF) IID-based PICs results in sharp transcription start site (TSS) selection; or, in contrast, how the less strictly controlled positioning of the TATA-less promoter DNA relative to TFIID-core PIC components results in alternative broad TSS selections by Pol II.
Collapse
Affiliation(s)
- Andrea Bernardini
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | | | | | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
10
|
Abril-Garrido J, Dienemann C, Grabbe F, Velychko T, Lidschreiber M, Wang H, Cramer P. Structural basis of transcription reduction by a promoter-proximal +1 nucleosome. Mol Cell 2023:S1097-2765(23)00255-1. [PMID: 37148879 DOI: 10.1016/j.molcel.2023.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
At active human genes, the +1 nucleosome is located downstream of the RNA polymerase II (RNA Pol II) pre-initiation complex (PIC). However, at inactive genes, the +1 nucleosome is found further upstream, at a promoter-proximal location. Here, we establish a model system to show that a promoter-proximal +1 nucleosome can reduce RNA synthesis in vivo and in vitro, and we analyze its structural basis. We find that the PIC assembles normally when the edge of the +1 nucleosome is located 18 base pairs (bp) downstream of the transcription start site (TSS). However, when the nucleosome edge is located further upstream, only 10 bp downstream of the TSS, the PIC adopts an inhibited state. The transcription factor IIH (TFIIH) shows a closed conformation and its subunit XPB contacts DNA with only one of its two ATPase lobes, inconsistent with DNA opening. These results provide a mechanism for nucleosome-dependent regulation of transcription initiation.
Collapse
Affiliation(s)
- Julio Abril-Garrido
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Frauke Grabbe
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Taras Velychko
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Lidschreiber
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Haibo Wang
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
11
|
Wang H, Schilbach S, Ninov M, Urlaub H, Cramer P. Structures of transcription preinitiation complex engaged with the +1 nucleosome. Nat Struct Mol Biol 2023; 30:226-232. [PMID: 36411341 PMCID: PMC9935396 DOI: 10.1038/s41594-022-00865-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022]
Abstract
The preinitiation complex (PIC) assembles on promoters of protein-coding genes to position RNA polymerase II (Pol II) for transcription initiation. Previous structural studies revealed the PIC on different promoters, but did not address how the PIC assembles within chromatin. In the yeast Saccharomyces cerevisiae, PIC assembly occurs adjacent to the +1 nucleosome that is located downstream of the core promoter. Here we present cryo-EM structures of the yeast PIC bound to promoter DNA and the +1 nucleosome located at three different positions. The general transcription factor TFIIH engages with the incoming downstream nucleosome and its translocase subunit Ssl2 (XPB in human TFIIH) drives the rotation of the +1 nucleosome leading to partial detachment of nucleosomal DNA and intimate interactions between TFIIH and the nucleosome. The structures provide insights into how transcription initiation can be influenced by the +1 nucleosome and may explain why the transcription start site is often located roughly 60 base pairs upstream of the dyad of the +1 nucleosome in yeast.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Sandra Schilbach
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Momchil Ninov
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Institute of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
12
|
Kari H, Bandi SMS, Kumar A, Yella VR. DeePromClass: Delineator for Eukaryotic Core Promoters Employing Deep Neural Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:802-807. [PMID: 35353704 DOI: 10.1109/tcbb.2022.3163418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Computational promoter identification in eukaryotes is a classical biological problem that should be refurbished with the availability of an avalanche of experimental data and emerging deep learning technologies. The current knowledge indicates that eukaryotic core promoters display multifarious signals such as TATA-Box, Inr element, TCT, and Pause-button, etc., and structural motifs such as G-quadruplexes. In the present study, we combined the power of deep learning with a plethora of promoter motifs to delineate promoter and non-promoters gleaned from the statistical properties of DNA sequence arrangement. To this end, we implemented convolutional neural network (CNN) and long short-term memory (LSTM) recurrent neural network architecture for five model systems with [-100 to +50] segments relative to the transcription start site being the core promoter. Unlike previous state-of-the-art tools, which furnish a binary decision of promoter or non-promoter, we classify a chunk of 151mer sequence into a promoter along with the consensus signal type or a non-promoter. The combined CNN-LSTM model; we call "DeePromClass", achieved testing accuracy of 90.6%, 93.6%, 91.8%, 86.5%, and 84.0% for S. cerevisiae, C. elegans, D. melanogaster, Mus musculus, and Homo sapiens respectively. In total, our tool provides an insightful update on next-generation promoter prediction tools for promoter biologists.
Collapse
|
13
|
Evolutionary Invariant of the Structure of DNA Double Helix in RNAP II Core Promoters. Int J Mol Sci 2022; 23:ijms231810873. [PMID: 36142782 PMCID: PMC9504043 DOI: 10.3390/ijms231810873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Eukaryotic and archaeal RNA polymerase II (POL II) machinery is highly conserved, regardless of the extreme changes in promoter sequences in different organisms. The goal of our work is to find the cause of this conservatism. The representative sets of aligned promoter sequences of fifteen organisms belonging to different evolutional stages were studied. Their textual profiles, as well as profiles of the indexes that characterize the secondary structure and the mechanical and physicochemical properties, were analyzed. The evolutionarily stable, extremely heterogeneous special secondary structure of POL II core promoters was revealed, which includes two singular regions—hexanucleotide “INR” around TSS and octanucleotide “TATA element” of about −28 bp upstream. Such structures may have developed at some stage of evolution. It turned out to be so well matched for the pre-initiation complex formation and the subsequent initiation of transcription for POL II machinery that in the course of evolution there were selected only those nucleotide sequences that were able to reproduce these structural properties. The individual features of specific sequences representing the singular region of the promoter of each gene can affect the kinetics of DNA-protein complex formation and facilitate strand separation in double-stranded DNA at the TSS position.
Collapse
|
14
|
Mittal C, Lang O, Lai WKM, Pugh BF. An integrated SAGA and TFIID PIC assembly pathway selective for poised and induced promoters. Genes Dev 2022; 36:985-1001. [PMID: 36302553 PMCID: PMC9732905 DOI: 10.1101/gad.350026.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/11/2022] [Indexed: 02/05/2023]
Abstract
Genome-wide, little is understood about how proteins organize at inducible promoters before and after induction and to what extent inducible and constitutive architectures depend on cofactors. We report that sequence-specific transcription factors and their tethered cofactors (e.g., SAGA [Spt-Ada-Gcn5-acetyltransferase], Mediator, TUP, NuA4, SWI/SNF, and RPD3-L) are generally bound to promoters prior to induction ("poised"), rather than recruited upon induction, whereas induction recruits the preinitiation complex (PIC) to DNA. Through depletion and/or deletion experiments, we show that SAGA does not function at constitutive promoters, although a SAGA-independent Gcn5 acetylates +1 nucleosomes there. When inducible promoters are poised, SAGA catalyzes +1 nucleosome acetylation but not PIC assembly. When induced, SAGA catalyzes acetylation, deubiquitylation, and PIC assembly. Surprisingly, SAGA mediates induction by creating a PIC that allows TFIID (transcription factor II-D) to stably associate, rather than creating a completely TFIID-independent PIC, as generally thought. These findings suggest that inducible systems, where present, are integrated with constitutive systems.
Collapse
Affiliation(s)
- Chitvan Mittal
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16801, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Olivia Lang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - William K M Lai
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16801, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - B Franklin Pugh
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16801, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
15
|
Bassett J, Rimel JK, Basu S, Basnet P, Luo J, Engel KL, Nagel M, Woyciehowsky A, Ebmeier CC, Kaplan CD, Taatjes DJ, Ranish JA. Systematic mutagenesis of TFIIH subunit p52/Tfb2 identifies residues required for XPB/Ssl2 subunit function and genetic interactions with TFB6. J Biol Chem 2022; 298:102433. [PMID: 36041630 PMCID: PMC9557730 DOI: 10.1016/j.jbc.2022.102433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
TFIIH is an evolutionarily conserved complex that plays central roles in both RNA polymerase II (pol II) transcription and DNA repair. As an integral component of the pol II preinitiation complex, TFIIH regulates pol II enzyme activity in numerous ways. The TFIIH subunit XPB/Ssl2 is an ATP-dependent DNA translocase that stimulates promoter opening prior to transcription initiation. Crosslinking-mass spectrometry and cryo-EM results have shown a conserved interaction network involving XPB/Ssl2 and the C-terminal Hub region of the TFIIH p52/Tfb2 subunit, but the functional significance of specific residues is unclear. Here, we systematically mutagenized the HubA region of Tfb2 and screened for growth phenotypes in a TFB6 deletion background in Saccharomyces cerevisiae. We identified six lethal and 12 conditional mutants. Slow growth phenotypes of all but three conditional mutants were relieved in the presence of TFB6, thus identifying a functional interaction between Tfb2 HubA mutants and Tfb6, a protein that dissociates Ssl2 from TFIIH. Our biochemical analysis of Tfb2 mutants with severe growth phenotypes revealed defects in Ssl2 association, with similar results in human cells. Further characterization of these tfb2 mutant cells revealed defects in GAL gene induction, and reduced occupancy of TFIIH and pol II at GAL gene promoters, suggesting that functionally competent TFIIH is required for proper pol II recruitment to preinitiation complexes in vivo. Consistent with recent structural models of TFIIH, our results identify key residues in the p52/Tfb2 HubA domain that are required for stable incorporation of XPB/Ssl2 into TFIIH and for pol II transcription.
Collapse
Affiliation(s)
- Jacob Bassett
- Department of Systems Biology, Institute for Systems Biology, Seattle, Washington, USA
| | - Jenna K. Rimel
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
| | - Shrabani Basu
- Department of Cell Biology, University of Pittsburgh, Pennsylvania, USA
| | - Pratik Basnet
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jie Luo
- Department of Systems Biology, Institute for Systems Biology, Seattle, Washington, USA
| | | | - Michael Nagel
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
| | | | | | - Craig D. Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dylan J. Taatjes
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
| | - Jeffrey A. Ranish
- Department of Systems Biology, Institute for Systems Biology, Seattle, Washington, USA,For correspondence: Jeffrey A. Ranish
| |
Collapse
|
16
|
Genome-wide transcription start site mapping in the facultative intracellular pathogen Brucella melitensis by Capping-seq. Gene 2022; 844:146827. [PMID: 35995114 DOI: 10.1016/j.gene.2022.146827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022]
Abstract
Brucella melitensis (B. melitensis) is an important facultative intracellular bacterium that causes global zoonotic diseases. Continuous intracellular survival and replication are the main obstruction responsible for the accessibility of prevention and treatment of brucellosis. Bacteria respond to complex environment by regulating gene expression. Many regulatory factors function at loci where RNA polymerase initiates messenger RNA synthesis. However, limited gene annotation is a current obstacle for the research on expression regulation in bacteria. To improve annotation and explore potential functional sites, we proposed a novel genome-wide method called Capping-seq for transcription start site (TSS) mapping in B. melitensis. This technique combines capture of capped primary transcripts with Single Molecule Real-Time (SMRT) sequencing technology. We identified 2,369 TSSs at single nucleotide resolution by Capping-seq. TSSs analysis of Brucella transcripts showed a preference of purine on the TSS positions. Our results revealed that -35 and -10 elements of promoter contained consensus sequences of TTGNNN and TATNNN, respectively. The 5' ends analysis showed that 57% genes are associated with more than one TSS and 47% genes contain long leader regions, suggested potential complex regulation at the 5' ends of genes in B. melitensis. Moreover, we identified 52 leaderless genes that are mainly involved in the metabolic processes. Overall, Capping-seq technology provides a unique solution for TSS determination in prokaryotes. Our findings develop a systematic insight into the primary transcriptome characterization of B. melitensis. This study represents a critical basis for investigating gene regulation and pathogenesis of Brucella.
Collapse
|
17
|
Chou SP, Alexander AK, Rice EJ, Choate LA, Danko CG. Genetic dissection of the RNA polymerase II transcription cycle. eLife 2022; 11:e78458. [PMID: 35775732 PMCID: PMC9286732 DOI: 10.7554/elife.78458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
How DNA sequence affects the dynamics and position of RNA Polymerase II (Pol II) during transcription remains poorly understood. Here, we used naturally occurring genetic variation in F1 hybrid mice to explore how DNA sequence differences affect the genome-wide distribution of Pol II. We measured the position and orientation of Pol II in eight organs collected from heterozygous F1 hybrid mice using ChRO-seq. Our data revealed a strong genetic basis for the precise coordinates of transcription initiation and promoter proximal pause, allowing us to redefine molecular models of core transcriptional processes. Our results implicate DNA sequence, including both known and novel DNA sequence motifs, as key determinants of the position of Pol II initiation and pause. We report evidence that initiation site selection follows a stochastic process similar to Brownian motion along the DNA template. We found widespread differences in the position of transcription termination, which impact the primary structure and stability of mature mRNA. Finally, we report evidence that allelic changes in transcription often affect mRNA and ncRNA expression across broad genomic domains. Collectively, we reveal how DNA sequences shape core transcriptional processes at single nucleotide resolution in mammals.
Collapse
Affiliation(s)
- Shao-Pei Chou
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Adriana K Alexander
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Lauren A Choate
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| |
Collapse
|
18
|
Yang C, Fujiwara R, Kim HJ, Basnet P, Zhu Y, Colón JJG, Steimle S, Garcia BA, Kaplan CD, Murakami K. Structural visualization of de novo transcription initiation by Saccharomyces cerevisiae RNA polymerase II. Mol Cell 2022; 82:660-676.e9. [PMID: 35051353 PMCID: PMC8818039 DOI: 10.1016/j.molcel.2021.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/04/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023]
Abstract
Previous structural studies of the initiation-elongation transition of RNA polymerase II (pol II) transcription have relied on the use of synthetic oligonucleotides, often artificially discontinuous to capture pol II in the initiating state. Here, we report multiple structures of initiation complexes converted de novo from a 33-subunit yeast pre-initiation complex (PIC) through catalytic activities and subsequently stalled at different template positions. We determine that PICs in the initially transcribing complex (ITC) can synthesize a transcript of ∼26 nucleotides before transitioning to an elongation complex (EC) as determined by the loss of general transcription factors (GTFs). Unexpectedly, transition to an EC was greatly accelerated when an ITC encountered a downstream EC stalled at promoter proximal regions and resulted in a collided head-to-end dimeric EC complex. Our structural analysis reveals a dynamic state of TFIIH, the largest of GTFs, in PIC/ITC with distinct functional consequences at multiple steps on the pathway to elongation.
Collapse
Affiliation(s)
- Chun Yang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A
| | - Rina Fujiwara
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A.,Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A.,Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA,Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Pratik Basnet
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Yunye Zhu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Jose J. Gorbea Colón
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A.,Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Stefan Steimle
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A.,Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Craig D. Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A.,Lead contact,Correspondence to:
| |
Collapse
|
19
|
Connell Z, Parnell TJ, McCullough LL, Hill CP, Formosa T. The interaction between the Spt6-tSH2 domain and Rpb1 affects multiple functions of RNA Polymerase II. Nucleic Acids Res 2021; 50:784-802. [PMID: 34967414 PMCID: PMC8789061 DOI: 10.1093/nar/gkab1262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022] Open
Abstract
The conserved transcription elongation factor Spt6 makes several contacts with the RNA Polymerase II (RNAPII) complex, including a high-affinity interaction between the Spt6 tandem SH2 domain (Spt6-tSH2) and phosphorylated residues of the Rpb1 subunit in the linker between the catalytic core and the C-terminal domain (CTD) heptad repeats. This interaction contributes to generic localization of Spt6, but we show here that it also has gene-specific roles. Disrupting the interface affected transcription start site selection at a subset of genes whose expression is regulated by this choice, and this was accompanied by changes in a distinct pattern of Spt6 accumulation at these sites. Splicing efficiency was also diminished, as was apparent progression through introns that encode snoRNAs. Chromatin-mediated repression was impaired, and a distinct role in maintaining +1 nucleosomes was identified, especially at ribosomal protein genes. The Spt6-tSH2:Rpb1 interface therefore has both genome-wide functions and local roles at subsets of genes where dynamic decisions regarding initiation, transcript processing, or termination are made. We propose that the interaction modulates the availability or activity of the core elongation and histone chaperone functions of Spt6, contributing to coordination between RNAPII and its accessory factors as varying local conditions call for dynamic responses.
Collapse
Affiliation(s)
- Zaily Connell
- Dept of Biochemistry, University of Utah School of Medicine 15 N Medical Drive, Rm 4100, Salt Lake City, UT 84112, USA
| | - Timothy J Parnell
- Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Laura L McCullough
- Dept of Biochemistry, University of Utah School of Medicine 15 N Medical Drive, Rm 4100, Salt Lake City, UT 84112, USA
| | - Christopher P Hill
- Dept of Biochemistry, University of Utah School of Medicine 15 N Medical Drive, Rm 4100, Salt Lake City, UT 84112, USA
| | - Tim Formosa
- Dept of Biochemistry, University of Utah School of Medicine 15 N Medical Drive, Rm 4100, Salt Lake City, UT 84112, USA
| |
Collapse
|
20
|
Fischer U, Bartuli J, Grimm C. Structure and function of the poxvirus transcription machinery. Enzymes 2021; 50:1-20. [PMID: 34861934 DOI: 10.1016/bs.enz.2021.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Members of the Poxviridae family are large double-stranded DNA viruses that replicate exclusively in the cytoplasm of their hosts. This goes in hand with a high level of independence from the host cell, which supports transcription and replication events only in the nucleus or in DNA-containing organelles. Consequently, virus specific, rather than cellular enzymes mediate most processes involving DNA replication and mRNA synthesis. Recent technological advances allowed a detailed functional and structural investigation of the transcription machinery of the prototypic poxvirus vaccinia. The DNA-dependent RNA polymerase (RNAP) at its core displays distinct similarities to eukaryotic RNAPs. Strong idiosyncrasies, however, are apparent for viral factors that are associated with the viral RNAP during mRNA production. We expect that future studies will unravel more key aspects of poxvirus gene expression, helping also the understanding of nuclear transcription mechanisms.
Collapse
Affiliation(s)
- Utz Fischer
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Julia Bartuli
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Clemens Grimm
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
21
|
Zhao T, Vvedenskaya IO, Lai WKM, Basu S, Pugh BF, Nickels BE, Kaplan CD. Ssl2/TFIIH function in transcription start site scanning by RNA polymerase II in Saccharomyces cerevisiae. eLife 2021; 10:e71013. [PMID: 34652274 PMCID: PMC8589449 DOI: 10.7554/elife.71013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/14/2021] [Indexed: 12/31/2022] Open
Abstract
In Saccharomyces cerevisiae, RNA polymerase II (Pol II) selects transcription start sites (TSSs) by a unidirectional scanning process. During scanning, a preinitiation complex (PIC) assembled at an upstream core promoter initiates at select positions within a window ~40-120 bp downstream. Several lines of evidence indicate that Ssl2, the yeast homolog of XPB and an essential and conserved subunit of the general transcription factor (GTF) TFIIH, drives scanning through its DNA-dependent ATPase activity, therefore potentially controlling both scanning rate and scanning extent (processivity). To address questions of how Ssl2 functions in promoter scanning and interacts with other initiation activities, we leveraged distinct initiation-sensitive reporters to identify novel ssl2 alleles. These ssl2 alleles, many of which alter residues conserved from yeast to human, confer either upstream or downstream TSS shifts at the model promoter ADH1 and genome-wide. Specifically, tested ssl2 alleles alter TSS selection by increasing or narrowing the distribution of TSSs used at individual promoters. Genetic interactions of ssl2 alleles with other initiation factors are consistent with ssl2 allele classes functioning through increasing or decreasing scanning processivity but not necessarily scanning rate. These alleles underpin a residue interaction network that likely modulates Ssl2 activity and TFIIH function in promoter scanning. We propose that the outcome of promoter scanning is determined by two functional networks, the first being Pol II activity and factors that modulate it to determine initiation efficiency within a scanning window, and the second being Ssl2/TFIIH and factors that modulate scanning processivity to determine the width of the scanning widow.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Irina O Vvedenskaya
- Department of Genetics and Waksman Institute, Rutgers UniversityPiscatawayUnited States
| | - William KM Lai
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Shrabani Basu
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - B Franklin Pugh
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Bryce E Nickels
- Department of Genetics and Waksman Institute, Rutgers UniversityPiscatawayUnited States
| | - Craig D Kaplan
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| |
Collapse
|
22
|
Abstract
Transcription start site (TSS) selection influences transcript stability and translation as well as protein sequence. Alternative TSS usage is pervasive in organismal development, is a major contributor to transcript isoform diversity in humans, and is frequently observed in human diseases including cancer. In this review, we discuss the breadth of techniques that have been used to globally profile TSSs and the resulting insights into gene regulation, as well as future prospects in this area of inquiry.
Collapse
Affiliation(s)
| | - Gabriel E. Zentner
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
23
|
Nguyen VQ, Ranjan A, Liu S, Tang X, Ling YH, Wisniewski J, Mizuguchi G, Li KY, Jou V, Zheng Q, Lavis LD, Lionnet T, Wu C. Spatiotemporal coordination of transcription preinitiation complex assembly in live cells. Mol Cell 2021; 81:3560-3575.e6. [PMID: 34375585 PMCID: PMC8420877 DOI: 10.1016/j.molcel.2021.07.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/18/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
Transcription initiation by RNA polymerase II (RNA Pol II) requires preinitiation complex (PIC) assembly at gene promoters. In the dynamic nucleus, where thousands of promoters are broadly distributed in chromatin, it is unclear how multiple individual components converge on any target to establish the PIC. Here we use live-cell, single-molecule tracking in S. cerevisiae to visualize constrained exploration of the nucleoplasm by PIC components and Mediator's key role in guiding this process. On chromatin, TFIID/TATA-binding protein (TBP), Mediator, and RNA Pol II instruct assembly of a short-lived PIC, which occurs infrequently but efficiently within a few seconds on average. Moreover, PIC exclusion by nucleosome encroachment underscores regulated promoter accessibility by chromatin remodeling. Thus, coordinated nuclear exploration and recruitment to accessible targets underlies dynamic PIC establishment in yeast. Our study provides a global spatiotemporal model for transcription initiation in live cells.
Collapse
Affiliation(s)
- Vu Q Nguyen
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anand Ranjan
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sheng Liu
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xiaona Tang
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yick Hin Ling
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jan Wisniewski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Gaku Mizuguchi
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kai Yu Li
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vivian Jou
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Qinsi Zheng
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Timothée Lionnet
- Institute of Systems Genetics, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Carl Wu
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
24
|
Muniz L, Nicolas E, Trouche D. RNA polymerase II speed: a key player in controlling and adapting transcriptome composition. EMBO J 2021; 40:e105740. [PMID: 34254686 PMCID: PMC8327950 DOI: 10.15252/embj.2020105740] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
RNA polymerase II (RNA Pol II) speed or elongation rate, i.e., the number of nucleotides synthesized per unit of time, is a major determinant of transcriptome composition. It controls co-transcriptional processes such as splicing, polyadenylation, and transcription termination, thus regulating the production of alternative splice variants, circular RNAs, alternatively polyadenylated transcripts, or read-through transcripts. RNA Pol II speed itself is regulated in response to intra- and extra-cellular stimuli and can in turn affect the transcriptome composition in response to these stimuli. Evidence points to a potentially important role of transcriptome composition modification through RNA Pol II speed regulation for adaptation of cells to a changing environment, thus pointing to a function of RNA Pol II speed regulation in cellular physiology. Analyzing RNA Pol II speed dynamics may therefore be central to fully understand the regulation of physiological processes, such as the development of multicellular organisms. Recent findings also raise the possibility that RNA Pol II speed deregulation can be detrimental and participate in disease progression. Here, we review initial and current approaches to measure RNA Pol II speed, as well as providing an overview of the factors controlling speed and the co-transcriptional processes which are affected. Finally, we discuss the role of RNA Pol II speed regulation in cell physiology.
Collapse
Affiliation(s)
- Lisa Muniz
- MCDCentre de Biologie Integrative (CBI)CNRSUPSUniversity of ToulouseToulouseFrance
| | - Estelle Nicolas
- MCDCentre de Biologie Integrative (CBI)CNRSUPSUniversity of ToulouseToulouseFrance
| | - Didier Trouche
- MCDCentre de Biologie Integrative (CBI)CNRSUPSUniversity of ToulouseToulouseFrance
| |
Collapse
|
25
|
Tomko EJ, Luyties O, Rimel JK, Tsai CL, Fuss JO, Fishburn J, Hahn S, Tsutakawa SE, Taatjes DJ, Galburt EA. The Role of XPB/Ssl2 dsDNA Translocase Processivity in Transcription Start-site Scanning. J Mol Biol 2021; 433:166813. [PMID: 33453189 PMCID: PMC8327364 DOI: 10.1016/j.jmb.2021.166813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
The general transcription factor TFIIH contains three ATP-dependent catalytic activities. TFIIH functions in nucleotide excision repair primarily as a DNA helicase and in Pol II transcription initiation as a dsDNA translocase and protein kinase. During initiation, the XPB/Ssl2 subunit of TFIIH couples ATP hydrolysis to dsDNA translocation facilitating promoter opening and the kinase module phosphorylates Pol II to facilitate the transition to elongation. These functions are conserved between metazoans and yeast; however, yeast TFIIH also drives transcription start-site scanning in which Pol II scans downstream DNA to locate productive start-sites. The ten-subunit holo-TFIIH from S. cerevisiae has a processive dsDNA translocase activity required for scanning and a structural role in scanning has been ascribed to the three-subunit TFIIH kinase module. Here, we assess the dsDNA translocase activity of ten-subunit holo- and core-TFIIH complexes (i.e. seven subunits, lacking the kinase module) from both S. cerevisiae and H. sapiens. We find that neither holo nor core human TFIIH exhibit processive translocation, consistent with the lack of start-site scanning in humans. Furthermore, in contrast to holo-TFIIH, the S. cerevisiae core-TFIIH also lacks processive translocation and its dsDNA-stimulated ATPase activity was reduced ~5-fold to a level comparable to the human complexes, potentially explaining the reported upstream shift in start-site observed in vitro in the absence of the S. cerevisiae kinase module. These results suggest that neither human nor S. cerevisiae core-TFIIH can translocate efficiently, and that the S. cerevisiae kinase module functions as a processivity factor to allow for robust transcription start-site scanning.
Collapse
Affiliation(s)
- Eric J Tomko
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Olivia Luyties
- Dept. of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Jenna K Rimel
- Dept. of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jill O Fuss
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James Fishburn
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Steven Hahn
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dylan J Taatjes
- Dept. of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Eric A Galburt
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
26
|
Kaplan CD, Arndt KM. A PICture is worth a thousand words (and ten references). Cell 2021; 184:3850-3851. [PMID: 34297929 DOI: 10.1016/j.cell.2021.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Scientists have long been fascinated by the complexity of eukaryotic transcription and the large numbers of proteins involved at each step in the process. In this issue of Cell, Schilbach et al. bring us one important step closer to the goal of a complete understanding of transcription at atomic resolution.
Collapse
Affiliation(s)
- Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
27
|
van Eeuwen T, Shim Y, Kim HJ, Zhao T, Basu S, Garcia BA, Kaplan CD, Min JH, Murakami K. Cryo-EM structure of TFIIH/Rad4-Rad23-Rad33 in damaged DNA opening in nucleotide excision repair. Nat Commun 2021; 12:3338. [PMID: 34099686 PMCID: PMC8184850 DOI: 10.1038/s41467-021-23684-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/05/2021] [Indexed: 11/08/2022] Open
Abstract
The versatile nucleotide excision repair (NER) pathway initiates as the XPC-RAD23B-CETN2 complex first recognizes DNA lesions from the genomic DNA and recruits the general transcription factor complex, TFIIH, for subsequent lesion verification. Here, we present a cryo-EM structure of an NER initiation complex containing Rad4-Rad23-Rad33 (yeast homologue of XPC-RAD23B-CETN2) and 7-subunit coreTFIIH assembled on a carcinogen-DNA adduct lesion at 3.9-9.2 Å resolution. A ~30-bp DNA duplex could be mapped as it straddles between Rad4 and the Ssl2 (XPB) subunit of TFIIH on the 3' and 5' side of the lesion, respectively. The simultaneous binding with Rad4 and TFIIH was permitted by an unwinding of DNA at the lesion. Translocation coupled with torque generation by Ssl2 and Rad4 would extend the DNA unwinding at the lesion and deliver the damaged strand to Rad3 (XPD) in an open form suitable for subsequent lesion scanning and verification.
Collapse
Affiliation(s)
- Trevor van Eeuwen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yoonjung Shim
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tingting Zhao
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shrabani Basu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jung-Hyun Min
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA.
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Policastro RA, McDonald DJ, Brendel VP, Zentner GE. Flexible analysis of TSS mapping data and detection of TSS shifts with TSRexploreR. NAR Genom Bioinform 2021; 3:lqab051. [PMID: 34250478 PMCID: PMC8265037 DOI: 10.1093/nargab/lqab051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/29/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Heterogeneity in transcription initiation has important consequences for transcript stability and translation, and shifts in transcription start site (TSS) usage are prevalent in various developmental, metabolic, and disease contexts. Accordingly, numerous methods for global TSS profiling have been developed, including most recently Survey of TRanscription Initiation at Promoter Elements with high-throughput sequencing (STRIPE-seq), a method to profile transcription start sites (TSSs) on a genome-wide scale with significant cost and time savings compared to previous methods. In anticipation of more widespread adoption of STRIPE-seq and related methods for construction of promoter atlases and studies of differential gene expression, we built TSRexploreR, an R package for end-to-end analysis of TSS mapping data. TSRexploreR provides functions for TSS and transcription start region (TSR) detection, normalization, correlation, visualization, and differential TSS/TSR analyses. TSRexploreR is highly interoperable, accepting the data structures of TSS and TSR sets generated by several existing tools for processing and alignment of TSS mapping data, such as CAGEr for Cap Analysis of Gene Expression (CAGE) data. Lastly, TSRexploreR implements a novel approach for the detection of shifts in TSS distribution.
Collapse
Affiliation(s)
| | - Daniel J McDonald
- Department of Statistics, Indiana University, Bloomington, IN 47405, USA
| | - Volker P Brendel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Department of Computer Science, Indiana University, Bloomington, IN 47405, USA
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
29
|
Feng X, Marchisio MA. Novel S. cerevisiae Hybrid Synthetic Promoters Based on Foreign Core Promoter Sequences. Int J Mol Sci 2021; 22:ijms22115704. [PMID: 34071849 PMCID: PMC8198421 DOI: 10.3390/ijms22115704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Promoters are fundamental components of synthetic gene circuits. They are DNA segments where transcription initiation takes place. New constitutive and regulated promoters are constantly engineered in order to meet the requirements for protein and RNA expression into different genetic networks. In this work, we constructed and optimized new synthetic constitutive promoters for the yeast Saccharomyces cerevisiae. We started from foreign (e.g., viral) core promoters as templates. They are, usually, unfunctional in yeast but can be activated by extending them with a short sequence, from the CYC1 promoter, containing various transcription start sites (TSSs). Transcription was modulated by mutating the TATA box composition and varying its distance from the TSS. We found that gene expression is maximized when the TATA box has the form TATAAAA or TATATAA and lies between 30 and 70 nucleotides upstream of the TSS. Core promoters were turned into stronger promoters via the addition of a short UAS. In particular, the 40 nt bipartite UAS from the GPD promoter can enhance protein synthesis considerably when placed 150 nt upstream of the TATA box. Overall, we extended the pool of S. cerevisiae promoters with 59 new samples, the strongest overcoming the native TEF2 promoter.
Collapse
|
30
|
Zhang H, Lu Z, Zhan Y, Rodriguez J, Lu C, Xue Y, Lin Z. Distinct roles of nucleosome sliding and histone modifications in controlling the fidelity of transcription initiation. RNA Biol 2021; 18:1642-1652. [PMID: 33280509 DOI: 10.1080/15476286.2020.1860389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Regulation of gene expression starts from the transcription initiation. Regulated transcription initiation is critical for generating correct transcripts with proper abundance. The impact of epigenetic control, such as histone modifications and chromatin remodelling, on gene regulation has been extensively investigated, but their specific role in regulating transcription initiation is far from well understood. Here we aimed to better understand the roles of genes involved in histone H3 methylations and chromatin remodelling on the regulation of transcription initiation at a genome-scale using the budding yeast as a study system. We obtained and compared maps of transcription start site (TSS) at single-nucleotide resolution by nAnT-iCAGE for a strain with depletion of MINC (Mot1-Ino80C-Nc2) by Mot1p and Ino80p anchor-away (Mot1&Ino80AA) and a strain with loss of histone methylation (set1Δset2Δdot1Δ) to their wild-type controls. Our study showed that the depletion of MINC stimulated transcription initiation from many new sites flanking the dominant TSS of genes, while the loss of histone methylation generates more TSSs in the coding region. Moreover, the depletion of MINC led to less confined boundaries of TSS clusters (TCs) and resulted in broader core promoters, and such patterns are not present in the ssdΔ mutant. Our data also exhibits that the MINC has distinctive impacts on TATA-containing and TATA-less promoters. In conclusion, our study shows that MINC is required for accurate identification of bona fide TSSs, particularly in TATA-containing promoters, and histone methylation contributes to the repression of transcription initiation in coding regions.
Collapse
Affiliation(s)
- Huiming Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Yu Zhan
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Judith Rodriguez
- Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Chen Lu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yong Xue
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
31
|
Hansen AW, Arora P, Khayat MM, Smith LJ, Lewis AM, Rossetti LZ, Jayaseelan J, Cristian I, Haynes D, DiTroia S, Meeks N, Delgado MR, Rosenfeld JA, Pais L, White SM, Meng Q, Pehlivan D, Liu P, Gingras MC, Wangler MF, Muzny DM, Lupski JR, Kaplan CD, Gibbs RA. Germline mutation in POLR2A: a heterogeneous, multi-systemic developmental disorder characterized by transcriptional dysregulation. HGG ADVANCES 2021; 2:100014. [PMID: 33665635 PMCID: PMC7928427 DOI: 10.1016/j.xhgg.2020.100014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022] Open
Abstract
De novo germline variation in POLR2A was recently reported to associate with a neurodevelopmental disorder. We report twelve individuals harboring putatively pathogenic de novo or inherited variants in POLR2A, detail their phenotypes, and map all known variants to the domain structure of POLR2A and crystal structure of RNA polymerase II. Affected individuals were ascertained from a local data lake, pediatric genetics clinic, and an online community of families of affected individuals. These include six affected by de novo missense variants (including one previously reported individual), four clinical laboratory samples affected by missense variation with unknown inheritance-with yeast functional assays further supporting altered function-one affected by a de novo in-frame deletion, and one affected by a C-terminal frameshift variant inherited from a largely asymptomatic mother. Recurrently observed phenotypes include ataxia, joint hypermobility, short stature, skin abnormalities, congenital cardiac abnormalities, immune system abnormalities, hip dysplasia, and short Achilles tendons. We report a significantly higher occurrence of epilepsy (8/12, 66.7%) than previously reported (3/15, 20%) (p value = 0.014196; chi-square test) and a lower occurrence of hypotonia (8/12, 66.7%) than previously reported (14/15, 93.3%) (p value = 0.076309). POLR2A-related developmental disorders likely represent a spectrum of related, multi-systemic developmental disorders, driven by distinct mechanisms, converging at a single locus.
Collapse
Affiliation(s)
- Adam W. Hansen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Payal Arora
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael M. Khayat
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Leah J. Smith
- Department of Biochemistry and Biophysics, Texas A&M University, TX, USA
| | - Andrea M. Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Linda Z. Rossetti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Joy Jayaseelan
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ingrid Cristian
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL, USA
| | - Devon Haynes
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL, USA
| | - Stephanie DiTroia
- Broad Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Naomi Meeks
- Departments of Pediatrics and Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mauricio R. Delgado
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Lynn Pais
- Broad Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Susan M. White
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville 3052, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Qingchang Meng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Marie-Claude Gingras
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Michael F. Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - James R. Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Craig D. Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
32
|
Lu Z, Lin Z. The origin and evolution of a distinct mechanism of transcription initiation in yeasts. Genome Res 2020; 31:51-63. [PMID: 33219055 PMCID: PMC7849388 DOI: 10.1101/gr.264325.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
The molecular process of transcription by RNA Polymerase II is highly conserved among eukaryotes (“classic model”). A distinct way of locating transcription start sites (TSSs) has been identified in a budding yeast Saccharomyces cerevisiae (“scanning model”). Herein, we applied genomic approaches to elucidate the origin of the scanning model and its underlying genetic mechanisms. We first identified TSSs at single-nucleotide resolution for 12 yeast species using the nAnT-iCAGE technique, which significantly improved the annotations of these genomes by providing accurate 5′ boundaries for protein-coding genes. We then inferred the initiation mechanism of each species based on its TSS maps and genome sequences. We discovered that the scanning model likely originated after the split of Yarrowia lipolytica and the other budding yeasts. Species that use the scanning model showed an adenine-rich region immediately upstream of the TSS that might facilitate TSS selection. Both initiation mechanisms share a strong preference for pyrimidine–purine dinucleotides surrounding the TSS. Our results suggest that the purine is required to accurately recruit the first nucleotide, thereby increasing the chances of a messenger RNA of being capped during mRNA maturation, which is critical for efficient translation initiation during protein biosynthesis. Based on our findings, we propose a model for TSS selection in the scanning-model species, as well as a model for the stepwise process responsible for the origin and evolution of the scanning model.
Collapse
Affiliation(s)
- Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, Missouri 63104, USA
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, Missouri 63104, USA
| |
Collapse
|