1
|
Hyle J, Qi W, Djekidel MN, Rosikiewicz W, Xu B, Li C. Deciphering the role of RNA in regulating CTCF's DNA binding affinity in leukemia cells. Genome Biol 2025; 26:126. [PMID: 40355969 PMCID: PMC12067947 DOI: 10.1186/s13059-025-03582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/20/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND CTCF, a highly studied transcription factor, is essential for chromatin interaction maintenance. Several independent studies report that CTCF interacts with RNAs in vitro and in cells. Yet continuous debates about the authenticity of the RNA-binding affinity of CTCF and its biological role remain in large part due to limited research techniques available, such as CLIP-seq. RESULT Here, we investigate RNA's role in CTCF's transcription factor function through its chromatin occupancy. To systematically explore whether RNAs affect CTCF's ability to bind DNA, we perturb CTCF-RNA interactions by three independent approaches and examine CTCF genome occupancy by ChIP-seq. Although RNase A and triptolide treatment each affect a certain number of CTCF-binding peaks, few peaks overlap between treatment groups indicating the effect of RNA in regulating CTCF's DNA binding affinity is variable between loci. In addition, limited transcriptional or chromatin accessibility changes occur between cells expressing wild-type CTCF or CTCF lacking the RNA binding region. CONCLUSION Our data provide a complementary approach and in silico evidence to consider the significance of RNA affecting CTCF's DNA binding affinity globally.
Collapse
Affiliation(s)
- Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Wenjie Qi
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mohamed Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
2
|
Giles KA, Taberlay PC, Cesare AJ, Jones MJK. Roles for the 3D genome in the cell cycle, DNA replication, and double strand break repair. Front Cell Dev Biol 2025; 13:1548946. [PMID: 40083661 PMCID: PMC11903485 DOI: 10.3389/fcell.2025.1548946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Large eukaryotic genomes are packaged into the restricted area of the nucleus to protect the genetic code and provide a dedicated environment to read, copy and repair DNA. The physical organisation of the genome into chromatin loops and self-interacting domains provides the basic structural units of genome architecture. These structural arrangements are complex, multi-layered, and highly dynamic and influence how different regions of the genome interact. The role of chromatin structures during transcription via enhancer-promoter interactions is well established. Less understood is how nuclear architecture influences the plethora of chromatin transactions during DNA replication and repair. In this review, we discuss how genome architecture is regulated during the cell cycle to influence the positioning of replication origins and the coordination of DNA double strand break repair. The role of genome architecture in these cellular processes highlights its critical involvement in preserving genome integrity and cancer prevention.
Collapse
Affiliation(s)
- Katherine A. Giles
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Phillippa C. Taberlay
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Anthony J. Cesare
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
| | - Mathew J. K. Jones
- Faculty of Medicine, Frazer Institute, University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Liu L, Tang Y, Zhang Y, Wu Q. A negatively charged region within carboxy-terminal domain maintains proper CTCF DNA binding. iScience 2024; 27:111452. [PMID: 39720519 PMCID: PMC11667065 DOI: 10.1016/j.isci.2024.111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/07/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
As an essential regulator of higher-order chromatin structures, CCCTC-binding factor (CTCF) is a highly conserved protein with a central DNA-binding domain of 11 tandem zinc fingers (ZFs), which are flanked by amino (N-) and carboxy (C-) terminal domains of intrinsically disordered regions. Here we report that CRISPR deletion of the entire C-terminal domain of alternating charge blocks decreases CTCF DNA binding but deletion of the C-terminal fragment of 116 amino acids results in increased CTCF DNA binding and aberrant gene regulation. Through a series of genetic targeting experiments, in conjunction with electrophoretic mobility shift assay (EMSA), circularized chromosome conformation capture (4C), qPCR, chromatin immunoprecipitation with sequencing (ChIP-seq), and assay for transposase-accessible chromatin with sequencing (ATAC-seq), we uncovered a negatively charged region (NCR) responsible for weakening CTCF DNA binding and chromatin accessibility. AlphaFold prediction suggests an autoinhibitory mechanism of CTCF via NCR as a flexible DNA mimic domain, possibly competing with DNA binding for the positively charged ZF surface area. Thus, the unstructured C-terminal domain plays an intricate role in maintaining proper CTCF-DNA interactions and 3D genome organization.
Collapse
Affiliation(s)
- Lian Liu
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Medical Genomics, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanxiao Tang
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Medical Genomics, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhang
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Medical Genomics, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Wu
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Medical Genomics, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Zhang J, Hu G, Lu Y, Ren H, Huang Y, Wen Y, Ji B, Wang D, Wang H, Liu H, Ma N, Zhang L, Pan G, Qu Y, Wang H, Zhang W, Miao Z, Yao H. CTCF mutation at R567 causes developmental disorders via 3D genome rearrangement and abnormal neurodevelopment. Nat Commun 2024; 15:5524. [PMID: 38951485 PMCID: PMC11217373 DOI: 10.1038/s41467-024-49684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
The three-dimensional genome structure organized by CTCF is required for development. Clinically identified mutations in CTCF have been linked to adverse developmental outcomes. Nevertheless, the underlying mechanism remains elusive. In this investigation, we explore the regulatory roles of a clinically relevant R567W point mutation, located within the 11th zinc finger of CTCF, by introducing this mutation into both murine models and human embryonic stem cell-derived cortical organoid models. Mice with homozygous CTCFR567W mutation exhibit growth impediments, resulting in postnatal mortality, and deviations in brain, heart, and lung development at the pathological and single-cell transcriptome levels. This mutation induces premature stem-like cell exhaustion, accelerates the maturation of GABAergic neurons, and disrupts neurodevelopmental and synaptic pathways. Additionally, it specifically hinders CTCF binding to peripheral motifs upstream to the core consensus site, causing alterations in local chromatin structure and gene expression, particularly at the clustered protocadherin locus. Comparative analysis using human cortical organoids mirrors the consequences induced by this mutation. In summary, this study elucidates the influence of the CTCFR567W mutation on human neurodevelopmental disorders, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gongcheng Hu
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Yuli Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huawei Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Yin Huang
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Yulin Wen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Binrui Ji
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Diyang Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Huisheng Liu
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Ning Ma
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine (Ministry of Education), Anhui Medical University, Hefei, China
| | - Guangjin Pan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yibo Qu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Hua Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine (Ministry of Education), Anhui Medical University, Hefei, China
| | - Wei Zhang
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Zhichao Miao
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Hongjie Yao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Rittenhouse NL, Dowen JM. Cohesin regulation and roles in chromosome structure and function. Curr Opin Genet Dev 2024; 85:102159. [PMID: 38382406 PMCID: PMC10947815 DOI: 10.1016/j.gde.2024.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Chromosome structure regulates DNA-templated processes such as transcription of genes. Dynamic changes to chromosome structure occur during development and in disease contexts. The cohesin complex is a molecular motor that regulates chromosome structure by generating DNA loops that bring two distal genomic sites into close spatial proximity. There are many open questions regarding the formation and dissolution of DNA loops, as well as the role(s) of DNA loops in regulating transcription of the interphase genome. This review focuses on recent discoveries that provide molecular insights into the role of cohesin and chromosome structure in gene transcription during development and disease.
Collapse
Affiliation(s)
- Natalie L Rittenhouse
- Curriculum in Genetics & Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jill M Dowen
- Department of Biophysics & Biochemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Zhang M, Hyle J, Chen X, Xin Y, Jin Y, Zhang J, Yang X, Chen X, Wright S, Liu Z, Rosikiewicz W, Xu B, He L, Liu H, Ping N, Wu D, Wen F, Li C, Xu P. RNA-binding protein RBM5 plays an essential role in acute myeloid leukemia by activating the oncogenic protein HOXA9. Genome Biol 2024; 25:16. [PMID: 38216972 PMCID: PMC10785552 DOI: 10.1186/s13059-023-03149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND The oncogenic protein HOXA9 plays a critical role in leukemia transformation and maintenance, and its aberrant expression is a hallmark of most aggressive acute leukemia. Although inhibiting the upstream regulators of HOXA9 has been proven as a significant therapeutic intervention, the comprehensive regulation network controlling HOXA9 expression in leukemia has not been systematically investigated. RESULTS Here, we perform genome-wide CRISPR/Cas9 screening in the HOXA9-driven reporter acute leukemia cells. We identify a poorly characterized RNA-binding protein, RBM5, as the top candidate gene required to maintain leukemia cell fitness. RBM5 is highly overexpressed in acute myeloid leukemia (AML) patients compared to healthy individuals. RBM5 loss triggered by CRISPR knockout and shRNA knockdown significantly impairs leukemia maintenance in vitro and in vivo. Through domain CRISPR screening, we reveal that RBM5 functions through a noncanonical transcriptional regulation circuitry rather than RNA splicing, such an effect depending on DNA-binding domains. By integrative analysis and functional assays, we identify HOXA9 as the downstream target of RBM5. Ectopic expression of HOXA9 rescues impaired leukemia cell proliferation upon RBM5 loss. Importantly, acute protein degradation of RBM5 through auxin-inducible degron system immediately reduces HOXA9 transcription. CONCLUSIONS We identify RBM5 as a new upstream regulator of HOXA9 and reveal its essential role in controlling the survival of AML. These functional and molecular mechanisms further support RBM5 as a promising therapeutic target for myeloid leukemia treatment.
Collapse
Affiliation(s)
- Mengli Zhang
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Xiaowen Chen
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen Institute of Pediatrics, 7019 Yi Tian Road, Shenzhen, 518038, China
| | - Ye Xin
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yingcai Jin
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jianxiang Zhang
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xue Yang
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xinfeng Chen
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Zhenling Liu
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Liusheng He
- Core Facility of Flow Cytometry, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Hong Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Nana Ping
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Feiqiu Wen
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen Institute of Pediatrics, 7019 Yi Tian Road, Shenzhen, 518038, China
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Peng Xu
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
7
|
Price E, Fedida LM, Pugacheva EM, Ji YJ, Loukinov D, Lobanenkov VV. An updated catalog of CTCF variants associated with neurodevelopmental disorder phenotypes. Front Mol Neurosci 2023; 16:1185796. [PMID: 37324587 PMCID: PMC10264798 DOI: 10.3389/fnmol.2023.1185796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction CTCF-related disorder (CRD) is a neurodevelopmental disorder (NDD) caused by monoallelic pathogenic variants in CTCF. The first CTCF variants in CRD cases were documented in 2013. To date, 76 CTCF variants have been further described in the literature. In recent years, due to the increased application of next-generation sequencing (NGS), growing numbers of CTCF variants are being identified, and multiple genotype-phenotype databases cataloging such variants are emerging. Methods In this study, we aimed to expand the genotypic spectrum of CRD, by cataloging NDD phenotypes associated with reported CTCF variants. Here, we systematically reviewed all known CTCF variants reported in case studies and large-scale exome sequencing cohorts. We also conducted a meta-analysis using public variant data from genotype-phenotype databases to identify additional CTCF variants, which we then curated and annotated. Results From this combined approach, we report an additional 86 CTCF variants associated with NDD phenotypes that have not yet been described in the literature. Furthermore, we describe and explain inconsistencies in the quality of reported variants, which impairs the reuse of data for research of NDDs and other pathologies. Discussion From this integrated analysis, we provide a comprehensive and annotated catalog of all currently known CTCF mutations associated with NDD phenotypes, to aid diagnostic applications, as well as translational and basic research.
Collapse
|