1
|
Le Perf G, Faity G, Mottet D, Muthalib M, Laffont I, Bakhti K. Beyond Arm Capacity in Chronic Stroke: Evaluating Paretic Arm Non-Use Through Arm Efficiency-A Cross-Sectional Study. Neurorehabil Neural Repair 2024:15459683241303691. [PMID: 39995065 DOI: 10.1177/15459683241303691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
BACKGROUND After a stroke, the use of the paretic arm is determined by its capacity (what it can or cannot do). When both arms have capacity to perform a task, the choice of which arm to use must be based on another criterion, probably by comparing the efficiency of each arm. Two numerical models account for this: the capacity model (the paretic arm is chosen in preference) and the efficiency model (the most efficient arm is chosen). OBJECTIVE To numerically determine whether capacity or efficiency best predict the use of the paretic arm in activities of daily living. METHODS We performed numerical simulations to predict paretic arm use with either the capacity model or the efficiency model. We used the Bayesian Information Criterion (BIC) to compare the adequacy of the 2 models in predicting clinical and accelerometric data collected from 30 patients with chronic stroke. RESULTS The efficiency model predicted arm use in activities of daily living better than the capacity model (BIC = -66.95 vs -5.89; root mean square error = 0.26 vs 0.72). CONCLUSIONS The study highlights the importance of considering efficiency when assessing paretic arm non-use. Assessing individuals' arm efficiency should help personalize rehabilitation strategies after stroke.
Collapse
Affiliation(s)
- Gaël Le Perf
- EuroMov Digital Health in Motion, Univ. Montpellier, IMT Mines Ales, Montpellier, France
- Physical and Rehabilitation Medicine, Paul Coste-Floret Hospital, Lamalou-les-Bains, France
| | - Germain Faity
- EuroMov Digital Health in Motion, Univ. Montpellier, IMT Mines Ales, Montpellier, France
| | - Denis Mottet
- EuroMov Digital Health in Motion, Univ. Montpellier, IMT Mines Ales, Montpellier, France
| | - Makii Muthalib
- EuroMov Digital Health in Motion, Univ. Montpellier, IMT Mines Ales, Montpellier, France
- Physical and Rehabilitation Medicine, University Hospital Center of Montpellier, Montpellier, France
| | - Isabelle Laffont
- EuroMov Digital Health in Motion, Univ. Montpellier, IMT Mines Ales, Montpellier, France
- Physical and Rehabilitation Medicine, University Hospital Center of Montpellier, Montpellier, France
| | - Karima Bakhti
- EuroMov Digital Health in Motion, Univ. Montpellier, IMT Mines Ales, Montpellier, France
- Physical and Rehabilitation Medicine, University Hospital Center of Montpellier, Montpellier, France
| |
Collapse
|
2
|
Muller CO, Faity G, Muthalib M, Perrey S, Dray G, Xu B, Froger J, Mottet D, Laffont I, Delorme M, Bakhti K. Brain-movement relationship during upper-limb functional movements in chronic post-stroke patients. J Neuroeng Rehabil 2024; 21:188. [PMID: 39438994 PMCID: PMC11494975 DOI: 10.1186/s12984-024-01461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Following a stroke, brain activation reorganisation, movement compensatory strategies, motor performance and their evolution through rehabilitation are matters of importance for clinicians. Two non-invasive neuroimaging methods allow for recording task-related brain activation: functional near-infrared spectroscopy (fNIRS) and electroencephalography (fEEG), respectively based on hemodynamic response and neuronal electrical activity. Their simultaneous measurement during movements could allow a better spatiotemporal mapping of brain activation, and when associated to kinematic parameters could unveil underlying mechanisms of functional upper limb (UL) recovery. This study aims to depict the motor cortical activity patterns using combined fNIRS-fEEG and their relationship to motor performance and strategies during UL functional tasks in chronic post-stroke patients. METHODS Twenty-one healthy old adults and 21 chronic post-stroke patients were recruited and completed two standardised functional tasks of the UL: a paced-reaching task where they had to reach a target in front of them and a circular steering task where they had to displace a target using a hand-held stylus, as fast as possible inside a circular track projected on a computer screen. The activity of the bilateral motor cortices and motor performance were recorded simultaneously utilizing a fNIRS-fEEG and kinematics platform. RESULTS AND CONCLUSIONS Kinematic analysis revealed that post-stroke patients performed worse in the circular steering task and used more trunk compensation in both tasks. Brain analysis of bilateral motor cortices revealed that stroke individuals over-activated during the paretic UL reaching task, which was associated with more trunk usage and a higher level of impairment (clinical scores). This work opens up avenues for using such combined methods to better track and understand brain-movement evolution through stroke rehabilitation.
Collapse
Affiliation(s)
- C O Muller
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
- Physical Rehabilitation and Medicine, CHU Montpellier, Montpellier, France
| | - G Faity
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - M Muthalib
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
- Physical Rehabilitation and Medicine, CHU Montpellier, Montpellier, France
- Silverline Research, Oxford, United Kingdom
| | - S Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - G Dray
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - B Xu
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - J Froger
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
- Physical Rehabilitation and Medicine, CHU Nîmes, Le Grau du Roi, Nîmes, France
| | - D Mottet
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - I Laffont
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
- Physical Rehabilitation and Medicine, CHU Montpellier, Montpellier, France
| | - M Delorme
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
- Physical Rehabilitation and Medicine, CHU Nîmes, Le Grau du Roi, Nîmes, France
| | - K Bakhti
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France.
- Physical Rehabilitation and Medicine, CHU Montpellier, Montpellier, France.
| |
Collapse
|
3
|
Cheng XP, Wang ZD, Zhou YZ, Zhan LQ, Wu D, Xie LL, Luo KL, He JP, Lin W, Ni J, Lv L, Chen XY. Effect of tDCS combined with virtual reality for post-stroke cognitive impairment: a randomized controlled trial study protocol. BMC Complement Med Ther 2024; 24:349. [PMID: 39358731 PMCID: PMC11448282 DOI: 10.1186/s12906-024-04658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Post-stroke cognitive impairment (PSCI) not only increases patient mortality and disability, but also adversely affects motor function and the ability to perform routine daily activities. Current therapeutic approaches for, PSCI lack specificity, primarily relying on and medication and traditional cognitive therapy supplemented by a limited array of tools. Both transcranial direct current stimulation (tDCS) and virtual reality (VR) training have demonstrated efficacy in improving cognitive performance among PSCI patients. Previous findings across various conditions suggest that implementing a therapeutic protocol combining tDCS and VR (tDCS - VR) may yield superior in isolation. Despite this, to our knowledge, no clinical investigation combining tDCS and VR for PSCI rehabilitation has been conducted. Thus, the purpose of this study is to explore the effects of tDCS - VR on PSCI rehabilitation. METHODS This 4-week, single-center randomized clinical trial protocol will recruit 200 patients who were randomly assigned to one of four groups: Group A (tDCS + VR), Group B (tDCS + sham VR), Group C (sham tDCS + VR), Group D (sham tDCS + sham VR). All four groups will receive conventional cognitive rehabilitation training. The primary outcome measurement utilizes the Mini-Mental State Examination (MMSE). Secondary outcome measures include the Montreal Cognitive Assessment, Frontal Assessment Battery, Clock Drawing Test, Digital Span Test, Logic Memory Test, and Modified Barthel Index. Additionally, S-YYZ-01 apparatus for diagnosis and treating language disorders assesses subjects' speech function. Pre- and post-four-week intervention assessments are conducted for all outcome measures. Functional near-infrared spectroscopy (fNIRS) is employed to observe changes in oxygenated hemoglobin (HbO), deoxy-hemoglobin (HbR), and total hemoglobin (HbT) in the cerebral cortex. DISCUSSION Our hypothesis posits that the tDCS - VR therapy, in opposed to individual tDCS or VR interventions, could enhance cognitive function, speech ability and daily living skills in PSCI patients while concurrently augmenting frontal cortical activity. This randomized study aims to provide a robust theoretical foundation supported by scientific evidence for the practical implementation of the tDCS - VR combination as a secure and efficient PSCI rehabilitation approach. TRIAL REGISTRATION Chictr.org.cn Identifier: ChiCTR2300070580. Registered on 17th April 2023.
Collapse
Affiliation(s)
- Xiao-Ping Cheng
- Department of Rehabilitation Medicine of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Zhao-Di Wang
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215008, China
| | - Yue-Zhu Zhou
- Department of Rehabilitation Medicine of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Li-Qiong Zhan
- Department of Rehabilitation Medicine of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Di Wu
- Department of Rehabilitation Medicine of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Li-Li Xie
- Department of Rehabilitation Medicine of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Kai-Liang Luo
- Department of Rehabilitation Medicine of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jin-Peng He
- Department of Rehabilitation Medicine, The First people's Hospital of Yancheng, Yancheng, China
- The School of Health, Fujian Medical University, Fuzhou, 350122, China
| | - Wei Lin
- Fujian Traditional Medical University, Fuzhou, 350122, China
| | - Jun Ni
- Department of Rehabilitation Medicine of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Lan Lv
- Department of Rehabilitation Medicine of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Xin-Yuan Chen
- Department of Rehabilitation Medicine of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Rehabilitation Medicine, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
4
|
Muller CO, Metais A, Boublay N, Breuil C, Deligault S, Di Rienzo F, Guillot A, Collet C, Krolak-Salmon P, Saimpont A. Anodal transcranial direct current stimulation does not enhance the effects of motor imagery training of a sequential finger-tapping task in young adults. J Sports Sci 2024:1-12. [PMID: 38574326 DOI: 10.1080/02640414.2024.2328418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
When applied over the primary motor cortex (M1), anodal transcranial direct current stimulation (a-tDCS) could enhance the effects of a single motor imagery training (MIt) session on the learning of a sequential finger-tapping task (SFTT). This study aimed to investigate the effect of a-tDCS on the learning of an SFTT during multiple MIt sessions. Two groups of 16 healthy young adults participated in three consecutive MIt sessions over 3 days, followed by a retention test 1 week later. They received active or sham a-tDCS during a MIt session in which they mentally rehearsed an eight-item complex finger sequence with their left hand. Before and after each session, and during the retention test, they physically repeated the sequence as quickly and accurately as possible. Both groups (i) improved their performance during the first two sessions, showing online learning; (ii) stabilised the level they reached during all training sessions, reflecting offline consolidation; and (iii) maintained their performance level one week later, showing retention. However, no significant difference was found between the groups, regardless of the MSL stage. These results emphasise the importance of performing several MIt sessions to maximise performance gains, but they do not support the additional effects of a-tDCS.
Collapse
Affiliation(s)
- Camille O Muller
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Alès, Montpellier, France
| | - Angèle Metais
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Nawale Boublay
- Centre de Recherche Clinique Vieillissement Cerveau - Fragilité, Hospices Civils de Lyon, Lyon, France
| | - Caroline Breuil
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Sébastien Deligault
- Centre d'Etude et de Recherche Multimodal et Pluridisciplinaire en Imagerie du Vivant (CERMEP), Département de MagnétoEncéphalographie, Bron, France
| | - Franck Di Rienzo
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Aymeric Guillot
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Christian Collet
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Pierre Krolak-Salmon
- Centre de Recherche Clinique Vieillissement Cerveau - Fragilité, Hospices Civils de Lyon, Lyon, France
| | - Arnaud Saimpont
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| |
Collapse
|
5
|
Bernal-Jiménez JJ, Polonio-López B, Sanz-García A, Martín-Conty JL, Lerín-Calvo A, Segura-Fragoso A, Martín-Rodríguez F, Cantero-Garlito PA, Corregidor-Sánchez AI, Mordillo-Mateos L. Is the Combination of Robot-Assisted Therapy and Transcranial Direct Current Stimulation Useful for Upper Limb Motor Recovery? A Systematic Review with Meta-Analysis. Healthcare (Basel) 2024; 12:337. [PMID: 38338223 PMCID: PMC10855329 DOI: 10.3390/healthcare12030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Stroke is the third leading cause of disability in the world, and effective rehabilitation is needed to improve lost functionality post-stroke. In this regard, robot-assisted therapy (RAT) and transcranial direct current stimulation (tDCS) are promising rehabilitative approaches that have been shown to be effective in motor recovery. In the past decade, they have been combined to study whether their combination produces adjuvant and greater effects on stroke recovery. The aim of this study was to estimate the effectiveness of the combined use of RATs and tDCS in the motor recovery of the upper extremities after stroke. After reviewing 227 studies, we included nine randomised clinical trials (RCTs) in this study. We analysed the methodological quality of all nine RCTs in the meta-analysis. The analysed outcomes were deficit severity, hand dexterity, spasticity, and activity. The addition of tDCS to RAT produced a negligible additional benefit on the effects of upper limb function (SMD -0.09, 95% CI -0.31 to 0.12), hand dexterity (SMD 0.12, 95% CI -0.22 to 0.46), spasticity (SMD 0.04, 95% CI -0.24 to 0.32), and activity (SMD 0.66, 95% CI -1.82 to 3.14). There is no evidence of an additional effect when adding tDCS to RAT for upper limb recovery after stroke. Combining tDCS with RAT does not improve upper limb motor function, spasticity, and/or hand dexterity. Future research should focus on the use of RAT protocols in which the patient is given an active role, focusing on the intensity and dosage, and determining how certain variables influence the success of RAT.
Collapse
Affiliation(s)
- Juan J. Bernal-Jiménez
- Faculty of Health Sciences, University of Castilla-La Mancha, 45600 Talavera de la Reina, Spain; (J.J.B.-J.); (A.S.-G.); (J.L.M.-C.); (A.S.-F.); (P.A.C.-G.); (A.-I.C.-S.); (L.M.-M.)
- Technological Innovation Applied to Health Research Group (ITAS Group), Faculty of Health Sciences, University of de Castilla-La Mancha, 45600 Talavera de la Reina, Spain
| | - Begoña Polonio-López
- Faculty of Health Sciences, University of Castilla-La Mancha, 45600 Talavera de la Reina, Spain; (J.J.B.-J.); (A.S.-G.); (J.L.M.-C.); (A.S.-F.); (P.A.C.-G.); (A.-I.C.-S.); (L.M.-M.)
- Technological Innovation Applied to Health Research Group (ITAS Group), Faculty of Health Sciences, University of de Castilla-La Mancha, 45600 Talavera de la Reina, Spain
| | - Ancor Sanz-García
- Faculty of Health Sciences, University of Castilla-La Mancha, 45600 Talavera de la Reina, Spain; (J.J.B.-J.); (A.S.-G.); (J.L.M.-C.); (A.S.-F.); (P.A.C.-G.); (A.-I.C.-S.); (L.M.-M.)
- Technological Innovation Applied to Health Research Group (ITAS Group), Faculty of Health Sciences, University of de Castilla-La Mancha, 45600 Talavera de la Reina, Spain
| | - José L. Martín-Conty
- Faculty of Health Sciences, University of Castilla-La Mancha, 45600 Talavera de la Reina, Spain; (J.J.B.-J.); (A.S.-G.); (J.L.M.-C.); (A.S.-F.); (P.A.C.-G.); (A.-I.C.-S.); (L.M.-M.)
- Technological Innovation Applied to Health Research Group (ITAS Group), Faculty of Health Sciences, University of de Castilla-La Mancha, 45600 Talavera de la Reina, Spain
| | - Alfredo Lerín-Calvo
- Neruon Neurobotic S.L., 28015 Madrid, Spain;
- Department of Physiotherapy, Faculty of Health Sciences, University La Salle, 28023 Madrid, Spain
| | - Antonio Segura-Fragoso
- Faculty of Health Sciences, University of Castilla-La Mancha, 45600 Talavera de la Reina, Spain; (J.J.B.-J.); (A.S.-G.); (J.L.M.-C.); (A.S.-F.); (P.A.C.-G.); (A.-I.C.-S.); (L.M.-M.)
- Technological Innovation Applied to Health Research Group (ITAS Group), Faculty of Health Sciences, University of de Castilla-La Mancha, 45600 Talavera de la Reina, Spain
| | - Francisco Martín-Rodríguez
- Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain;
- Advanced Life Support, Emergency Medical Services (SACYL), 47007 Valladolid, Spain
| | - Pablo A. Cantero-Garlito
- Faculty of Health Sciences, University of Castilla-La Mancha, 45600 Talavera de la Reina, Spain; (J.J.B.-J.); (A.S.-G.); (J.L.M.-C.); (A.S.-F.); (P.A.C.-G.); (A.-I.C.-S.); (L.M.-M.)
- Technological Innovation Applied to Health Research Group (ITAS Group), Faculty of Health Sciences, University of de Castilla-La Mancha, 45600 Talavera de la Reina, Spain
| | - Ana-Isabel Corregidor-Sánchez
- Faculty of Health Sciences, University of Castilla-La Mancha, 45600 Talavera de la Reina, Spain; (J.J.B.-J.); (A.S.-G.); (J.L.M.-C.); (A.S.-F.); (P.A.C.-G.); (A.-I.C.-S.); (L.M.-M.)
- Technological Innovation Applied to Health Research Group (ITAS Group), Faculty of Health Sciences, University of de Castilla-La Mancha, 45600 Talavera de la Reina, Spain
| | - Laura Mordillo-Mateos
- Faculty of Health Sciences, University of Castilla-La Mancha, 45600 Talavera de la Reina, Spain; (J.J.B.-J.); (A.S.-G.); (J.L.M.-C.); (A.S.-F.); (P.A.C.-G.); (A.-I.C.-S.); (L.M.-M.)
- Technological Innovation Applied to Health Research Group (ITAS Group), Faculty of Health Sciences, University of de Castilla-La Mancha, 45600 Talavera de la Reina, Spain
| |
Collapse
|
6
|
Cuesta-Vargas AI, Fuentes-Abolafio IJ, García-Conejo C, Díaz-Balboa E, Trinidad-Fernández M, Gutiérrez-Sánchez D, Escriche-Escuder A, Cobos-Palacios L, López-Sampalo A, Pérez-Ruíz JM, Roldán-Jiménez C, Pérez-Velasco MA, Mora-Robles J, López-Carmona MD, Pérez-Cruzado D, Martín-Martín J, Pérez-Belmonte LM. Effectiveness of a cardiac rehabilitation program on biomechanical, imaging, and physiological biomarkers in elderly patients with heart failure with preserved ejection fraction (HFpEF): FUNNEL + study protocol. BMC Cardiovasc Disord 2023; 23:550. [PMID: 37950216 PMCID: PMC10638727 DOI: 10.1186/s12872-023-03555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Patients with heart failure with preserved ejection fraction (HFpEF) have a low functional status, which in turn is a risk factor for hospital admission and an important predictor of survival in HFpEF. HFpFE is a heterogeneous syndrome and recent studies have suggested an important role for careful, pathophysiological-based phenotyping to improve patient characterization. Cardiac rehabilitation has proven to be a useful tool in the framework of secondary prevention in patients with HFpEF. Facilitating decision-making and implementing cardiac rehabilitation programs is a challenge in public health systems for HFpEF management. The FUNNEL + study proposes to evaluate the efficacy of an exercise and education-based cardiac rehabilitation program on biomechanical, physiological, and imaging biomarkers in patients with HFpEF. METHODS A randomised crossover clinical trial is presented among people older than 70 years with a diagnosis of HFpEF. The experimental group will receive a cardiac rehabilitation intervention for 12 weeks. Participants in the control group will receive one educational session per week for 12 weeks on HFpEF complications, functional decline, and healthy lifestyle habits. VO2peak is the primary outcome. Biomechanical, imaging and physiological biomarkers will be assessed as secondary outcomes. Outcomes will be assessed at baseline, 12 weeks, and 24 weeks. DISCUSSION Identifying objective functional parameters indicative of HFpEF and the subsequent development of functional level stratification based on functional impairment ("biomechanical phenotypes") may help clinicians identify cardiac rehabilitation responders and non-responders and make future clinical decisions. In this way, future pharmacological and non-pharmacological interventions, such as exercise, could be improved and tailored to improve quality of life and prognosis and reducing patients' hospital readmissions, thereby reducing healthcare costs. TRIAL REGISTRATION NCT05393362 (Clinicaltrials.gov).
Collapse
Affiliation(s)
- Antonio Ignacio Cuesta-Vargas
- Grupo de Investigación Clinimetría F14, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Bionand)), IBIMA Plataforma-Bionand, Málaga, 29590, Spain.
- Departamento de Fisioterapia, Facultad de Ciencias de La Salud, Universidad de Málaga, Andalucía Tech, Málaga, 29071, Spain.
| | - Iván José Fuentes-Abolafio
- Grupo de Investigación Clinimetría F14, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Bionand)), IBIMA Plataforma-Bionand, Málaga, 29590, Spain
| | - Celia García-Conejo
- Grupo de Investigación Clinimetría F14, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Bionand)), IBIMA Plataforma-Bionand, Málaga, 29590, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de La Salud, Universidad de Málaga, Andalucía Tech, Málaga, 29071, Spain
| | - Estíbaliz Díaz-Balboa
- Departamento de Fisioterapia, Facultad de Ciencias de La Salud, Universidad de Málaga, Andalucía Tech, Málaga, 29071, Spain
- Universidade da Coruña, Departamento de Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, 15071 A, Coruña, Spain
- Grupo de Cardiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706, A Coruña, Santiago de Compostela, Spain
| | - Manuel Trinidad-Fernández
- Grupo de Investigación Clinimetría F14, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Bionand)), IBIMA Plataforma-Bionand, Málaga, 29590, Spain
| | - Daniel Gutiérrez-Sánchez
- Grupo de Investigación Clinimetría F14, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Bionand)), IBIMA Plataforma-Bionand, Málaga, 29590, Spain
- Departamento de Enfermería, Facultad de Ciencias de La Salud, Universidad de Málaga, 29071, Andalucía TechMálaga, Spain
| | - Adrián Escriche-Escuder
- Grupo de Investigación Clinimetría F14, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Bionand)), IBIMA Plataforma-Bionand, Málaga, 29590, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de La Salud, Universidad de Málaga, Andalucía Tech, Málaga, 29071, Spain
| | - Lidia Cobos-Palacios
- Grupo de Investigación Clinimetría F14, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Bionand)), IBIMA Plataforma-Bionand, Málaga, 29590, Spain
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Almudena López-Sampalo
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Jose Maria Pérez-Ruíz
- Servicio de Cardiologia, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Cristina Roldán-Jiménez
- Grupo de Investigación Clinimetría F14, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Bionand)), IBIMA Plataforma-Bionand, Málaga, 29590, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de La Salud, Universidad de Málaga, Andalucía Tech, Málaga, 29071, Spain
| | - Miguel Angel Pérez-Velasco
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Javier Mora-Robles
- Grupo de Investigación Clinimetría F14, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Bionand)), IBIMA Plataforma-Bionand, Málaga, 29590, Spain
- Servicio de Cardiologia, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Mª Dolores López-Carmona
- Grupo de Investigación Clinimetría F14, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Bionand)), IBIMA Plataforma-Bionand, Málaga, 29590, Spain
- Servicio de Cardiologia, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - David Pérez-Cruzado
- Grupo de Investigación Clinimetría F14, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Bionand)), IBIMA Plataforma-Bionand, Málaga, 29590, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de La Salud, Universidad de Málaga, Andalucía Tech, Málaga, 29071, Spain
| | - Jaime Martín-Martín
- Grupo de Investigación Clinimetría F14, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Bionand)), IBIMA Plataforma-Bionand, Málaga, 29590, Spain
- Area de Medicina Legal, Departamento de Anatomia Humana, Facultad de Medicina, Universidad de Málaga, Andalucía Tech, 29071, Málaga, Spain
| | - Luis Miguel Pérez-Belmonte
- Grupo de Investigación Clinimetría F14, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Bionand)), IBIMA Plataforma-Bionand, Málaga, 29590, Spain
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Chen YW, Li KY, Lin CH, Hung PH, Lai HT, Wu CY. The effect of sequential combination of mirror therapy and robot-assisted therapy on motor function, daily function, and self-efficacy after stroke. Sci Rep 2023; 13:16841. [PMID: 37803096 PMCID: PMC10558527 DOI: 10.1038/s41598-023-43981-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023] Open
Abstract
Robot-assisted therapy and mirror therapy are both effective in promoting upper limb function after stroke and combining these two interventions might yield greater therapeutic effects. We aimed to examine whether using mirror therapy as a priming strategy would augment therapeutic effects of robot-assisted therapy. Thirty-seven chronic stroke survivors (24 male/13 female; age = 49.8 ± 13.7 years) were randomized to receive mirror therapy or sham mirror therapy prior to robot-assisted therapy. All participants received 18 intervention sessions (60 min/session, 3 sessions/week). Outcome measures were evaluated at baseline and after the 18-session intervention. Motor function was assessed using Fugl-Meyer Assessment and Wolf Motor Function Test. Daily function was assessed using Nottingham Extended Activities of Daily Living Scale. Self-efficacy was assessed using Stroke Self-Efficacy Questionnaires and Daily Living Self-Efficacy Scale. Data was analyzed using mixed model analysis of variance. Both groups demonstrated statistically significant improvements in measures of motor function and daily function, but no significant between-group differences were found. Participants who received mirror therapy prior to robot-assisted therapy showed greater improvements in measures of self-efficacy, compared with those who received sham mirror therapy. Our findings suggest that sequentially combined mirror therapy with robot-assisted therapy could be advantageous for enhancing self-efficacy post-stroke.Trial registration: ClinicalTrials.gov Identifier: NCT03917511. Registered on 17/04/2019, https://clinicaltrials.gov/ct2/show/ NCT03917511.
Collapse
Affiliation(s)
- Yen-Wei Chen
- Department of Physical Therapy, College of Medical and Health Science, Asia University, NO.500, Lioufeng Rd., Wufeng, Taichung, 41354, Taiwan
| | - Kuan-Yi Li
- Department of Occupational Therapy and Graduate Institute of Behavioral Science, College of Medicine, Chang Gung University, No.259, Wenhua 1St Rd., Guishan Dist., Taoyuan City, 33302, Taiwan
| | - Chu-Hsu Lin
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Chiayi, No.8, Sec. W., Jiapu Rd., Puzi City, Chiayi County, 61363, Taiwan
| | - Pei-Hsuan Hung
- Department of Physical Medicine and Rehabilitation, Jiannren Hospital, No. 136, Nanyang Rd., Nanzi Dist., Kaohsiung City, 811504, Taiwan
| | - Hui-Tzu Lai
- Department of Physical Medicine and Rehabilitation, LO-Sheng Hospital Ministry of Health and Welfare, No.794, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 24257, Taiwan
| | - Ching-Yi Wu
- Department of Occupational Therapy and Graduate Institute of Behavioral Science, College of Medicine, Chang Gung University, No.259, Wenhua 1St Rd., Guishan Dist., Taoyuan City, 33302, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Kim H, Lee G, Lee J, Kim YH. Alterations in learning-related cortical activation and functional connectivity by high-definition transcranial direct current stimulation after stroke: an fNIRS study. Front Neurosci 2023; 17:1189420. [PMID: 37332855 PMCID: PMC10275383 DOI: 10.3389/fnins.2023.1189420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/04/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Motor learning is a key component of stroke neurorehabilitation. High-definition transcranial direct current stimulation (HD-tDCS) was recently developed as a tDCS technique that increases the accuracy of current delivery to the brain using arrays of small electrodes. The purpose of this study was to investigate whether HD-tDCS alters learning-related cortical activation and functional connectivity in stroke patients using functional near-infrared spectroscopy (fNIRS). Methods Using a sham-controlled crossover study design, 16 chronic stroke patients were randomly assigned to one of two intervention conditions. Both groups performed the sequential finger tapping task (SFTT) on five consecutive days, either with (a) real HD-tDCS or (b) with sham HD-tDCS. HD-tDCS (1 mA for 20 min, 4 × 1) was administered to C3 or C4 (according to lesion side). fNIRS signals were measured during the SFTT with the affected hand before (baseline) and after each intervention using fNIRS measurement system. Cortical activation and functional connectivity of NIRS signals were analyzed using a statistical parametric mapping open-source software package (NIRS-SPM), OptoNet II®. Results In the real HD-tDCS condition, oxyHb concentration increased significantly in the ipsilesional primary motor cortex (M1). Connectivity between the ipsilesional M1 and the premotor cortex (PM) was noticeably strengthened after real HD-tDCS compared with baseline. Motor performance also significantly improved, as shown in response time during the SFTT. In the sham HD-tDCS condition, functional connectivity between contralesional M1 and sensory cortex was enhanced compared with baseline. There was tendency toward improvement in SFTT response time, but without significance. Discussion The results of this study indicated that HD-tDCS could modulate learning-related cortical activity and functional connectivity within motor networks to enhance motor learning performance. HD-tDCS can be used as an additional tool for enhancing motor learning during hand rehabilitation for chronic stroke patients.
Collapse
Affiliation(s)
- Heegoo Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Gihyoun Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
- Department of Physical and Rehabilitation Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jungsoo Lee
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
- Department of Physical and Rehabilitation Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Haeundae Sharing and Happiness Hospital, Pusan, Republic of Korea
| |
Collapse
|
9
|
Dusfour G, Mottet D, Muthalib M, Laffont I, Bakhti K. Comparison of wrist actimetry variables of paretic upper limb use in post stroke patients for ecological monitoring. J Neuroeng Rehabil 2023; 20:52. [PMID: 37106460 PMCID: PMC10134627 DOI: 10.1186/s12984-023-01167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND To date, many wrist actimetric variables dedicated to measuring the upper limbs (UL) in post-stroke patients have been developed but very few comparisons have been made between them. The objective of this study was to compare different actimetric variables of the ULs between a stroke and healthy population. METHODS Accelerometers were worn continuously for a period of 7 days on both wrists of 19 post-stroke hemiparetic patients as well as 11 healthy subjects. Various wrist actimetry variables were calculated, including the Jerk ratio 50 (JR50, cumulative probability that the Jerk Ratio is between 1 and 2), absolute (FuncUse30) and relative (FuncUseRatio30) amounts of functional use of movements of the ULs with angular amplitude greater than 30°, and absolute (UH) and relative (UseHoursRatio) use hours. RESULTS FuncUse30, FuncUseRatio30, UH, UseHoursRatio and JR50 of the paretic UL of stroke patients were significantly lower than in the non-dominant UL of healthy subjects. Comparing the ratio variables in stroke patients, FuncUseRatio30 was significantly lower than UseHoursRatio and JR50, suggesting a more clinically sensitive variable to monitor. In an exploratory analysis, FuncUseRatio tends to decrease with angular range of motion for stroke patients while it remains stable and close to 1 for healthy subjects. UseHoursRatio, FuncUseRatio30 and JR50 show linear correlation with Fugl-Meyer score (FM), with r2 equal to 0.53, 0.35 and 0.21, respectively. CONCLUSION This study determined that the FuncUseRatio30 variable provides the most sensitive clinical biomarker of paretic UL use in post-stroke patients, and that FuncUseHours-angular range of motion relationship allows the identification of the UL behaviour of each patient. This ecological information on the level of functional use of the paretic UL can be used to improve follow-up and develop patient-specific therapy.
Collapse
Affiliation(s)
- Gilles Dusfour
- CARTIGEN, University Hospital of Montpellier, Montpellier, France.
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Alès, Montpellier, France.
| | - Denis Mottet
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Alès, Montpellier, France
| | - Makii Muthalib
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Alès, Montpellier, France
- Physical and Rehabilitation Medicine, Montpellier University Hospital (CHU), Montpellier, France
| | - Isabelle Laffont
- CARTIGEN, University Hospital of Montpellier, Montpellier, France
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Alès, Montpellier, France
- Physical and Rehabilitation Medicine, Montpellier University Hospital (CHU), Montpellier, France
| | - Karima Bakhti
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Alès, Montpellier, France
- Physical and Rehabilitation Medicine, Montpellier University Hospital (CHU), Montpellier, France
| |
Collapse
|
10
|
Muller CO, Perrey S, Bakhti K, Muthalib M, Dray G, Xu B, Mottet D, Laffont I. Aging effects on electrical and hemodynamic responses in the sensorimotor network during unilateral proximal upper limb functional tasks. Behav Brain Res 2023; 443:114322. [PMID: 36731658 DOI: 10.1016/j.bbr.2023.114322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/04/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023]
Abstract
Healthy aging leads to poorer performance in upper limb (UL) daily living movements. Understanding the neural correlates linked with UL functional movements may help to better understand how healthy aging affects motor control. Two non-invasive neuroimaging methods allow for monitoring the movement-related brain activity: functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG), respectively based on the hemodynamic response and electrical activity of brain regions. Coupled, they provide a better spatiotemporal mapping. The aim of this study was to evaluate the effect of healthy aging on the bilateral sensorimotor (SM1) activation patterns of functional proximal UL movements. Twenty-one young and 21 old healthy participants realized two unilateral proximal UL movements during: i) a paced reaching target task and ii) a circular steering task to capture the speed-accuracy trade-off. Combined fNIRS-EEG system was synchronised with movement capture system to record SM1 activation while moving. The circular steering task performance was significantly lower for the older group. The rate of increase in hemodynamic response was longer in the older group with no difference on the amplitude of fNIRS signal for the two tasks. The EEG results showed aging related reduction of the alpha-beta rhythms synchronisation but no desynchronisation modification. In conclusion, this study uncovers the age-related changes in brain electrical and hemodynamic response patterns in the bilateral sensorimotor network during two functional proximal UL movements using two complementary neuroimaging methods. This opens up the possibility to utilise combined fNIRS-EEG for monitoring the movement-related neuroplasticity in clinical practice.
Collapse
Affiliation(s)
- C O Muller
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France; Physical Rehabilitation and Medicine, CHU Montpellier, Montpellier, France.
| | - S Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - K Bakhti
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France; Physical Rehabilitation and Medicine, CHU Montpellier, Montpellier, France; Clinical Research and Epidemiology unit, CHU Montpellier, Univ Montpellier, Montpellier, France
| | - M Muthalib
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France; Physical Rehabilitation and Medicine, CHU Montpellier, Montpellier, France; Silverline Research, Brisbane, Australia
| | - G Dray
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - B Xu
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - D Mottet
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - I Laffont
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France; Physical Rehabilitation and Medicine, CHU Montpellier, Montpellier, France
| |
Collapse
|
11
|
Li C, Tu S, Xu S, Zhang Y, Yan Z, Jia J, Tian S. Research Hotspots and Frontiers of Transcranial Direct Current Stimulation in Stroke: A Bibliometric Analysis. Brain Sci 2022; 13:brainsci13010015. [PMID: 36671997 PMCID: PMC9856087 DOI: 10.3390/brainsci13010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/26/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Over the past decade, many studies in the field of transcranial direct current stimulation (tDCS) in stroke have been published in scholarly journals. However, a scientometric analysis focusing on tDCS after stroke is still missing. The purpose of this study is to deliver a bibliometric analysis to investigate the global hotspots and frontiers in the domain of tDCS in stroke from 2012 to 2021. Methods: Articles and reviews related to tDCS in stroke were retrieved and obtained from the Web of Science core collection database from 2012 to 2021. Data visualization and analysis were conducted by using CiteSpace, VOSviewer, and Microsoft Excel 2019. Results: Finally, 371 publications were included in the scientometric analysis, including 288 articles and 83 reviews. The results showed that the number of publications per year increased from 15 to 68 in the last 10 years. Neurosciences was the main research hotspot category (n = 201). Frontiers in Human Neuroscience was the most published journal with 14 papers. The most productive author, institution, and country were Fregni F (n = 13), the League of European Research Universities (n = 37), and the United States of America (n = 98), respectively. A burstness analysis of keywords and the literature indicated that current studies in the field of tDCS in stroke focused on poststroke aphasia, tDCS combined with robotic therapy, and anatomical parameters. Conclusion: The research of tDCS in stroke is predicted to remain a research hotspot in the future. We recommend investigating the curative effect of other different tDCS closed-loop rehabilitation methods for different stroke dysfunctions. In conclusion, this bibliometric study presented the hotspots and trends of tDCS in stroke over the last decade, which may help researchers manage their further studies.
Collapse
Affiliation(s)
- Chong Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200040, China
| | - Shuting Tu
- Institute of Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shuo Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yongli Zhang
- Institute of Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Zhijie Yan
- The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Correspondence: (J.J.); (S.T.)
| | - Shiliu Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200040, China
- Key Laboratory of Exercise and Health Science of Ministry of Education, Shanghai University of Sport, Shanghai 200433, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200031, China
- Fujian Sports Vocational Education and Technical College, Fuzhou 350003, China
- Correspondence: (J.J.); (S.T.)
| |
Collapse
|
12
|
Virtual reality and serious game therapy for post-stroke individuals: A preliminary study with humanized rehabilitation approach protocol humanized rehabilitation approach. Complement Ther Clin Pract 2022; 49:101681. [DOI: 10.1016/j.ctcp.2022.101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
13
|
Kim H, Kim J, Lee G, Lee J, Kim YH. Task-Related Hemodynamic Changes Induced by High-Definition Transcranial Direct Current Stimulation in Chronic Stroke Patients: An Uncontrolled Pilot fNIRS Study. Brain Sci 2022; 12:453. [PMID: 35447985 PMCID: PMC9028267 DOI: 10.3390/brainsci12040453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
High-definition transcranial direct current stimulation (HD-tDCS) has recently been proposed as a tDCS approach that can be used on a specific cortical region without causing undesirable stimulation effects. In this uncontrolled pilot study, the cortical hemodynamic changes caused by HD-tDCS applied over the ipsilesional motor cortical area were investigated in 26 stroke patients. HD-tDCS using one anodal and four cathodal electrodes at 1 mA was administered for 20 min to C3 or C4 in four daily sessions. Cortical activation was measured as changes in oxyhemoglobin (oxyHb) concentration, as found using a functional near-infrared spectroscopy (fNIRS) system during the finger tapping task (FTT) with the affected hand before and after HD-tDCS. Motor-evoked potential and upper extremity functions were also measured before (T0) and after the intervention (T1). A group statistical parametric mapping analysis showed that the oxyHb concentration increased during the FTT in both the affected and unaffected hemispheres before HD-tDCS. After HD-tDCS, the oxyHb concentration increased only in the affected hemisphere. In a time series analysis, the mean and integral oxyHb concentration during the FTT showed a noticeable decrease in the channel closest to the hand motor hotspot (hMHS) in the affected hemisphere after HD-tDCS compared with before HD-tDCS, in accordance with an improvement in the function of the affected upper extremity. These results suggest that HD-tDCS might be helpful to rebalance interhemispheric cortical activity and to reduce the hemodynamic burden on the affected hemisphere during hand motor tasks. Noticeable changes in the area adjacent to the affected hMHS may imply that personalized HD-tDCS electrode placement is needed to match each patient's individual hMHS location.
Collapse
Affiliation(s)
- Heegoo Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.K.); (J.K.); (G.L.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
| | - Jinuk Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.K.); (J.K.); (G.L.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
| | - Gihyoun Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.K.); (J.K.); (G.L.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
| | - Jungsoo Lee
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.K.); (J.K.); (G.L.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
- Department of Medical Device Management & Research, Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
| |
Collapse
|