1
|
Huang KC, Tawfik M, Samuel MA. Retinal ganglion cell circuits and glial interactions in humans and mice. Trends Neurosci 2024; 47:994-1013. [PMID: 39455342 PMCID: PMC11631666 DOI: 10.1016/j.tins.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Retinal ganglion cells (RGCs) are the brain's gateway for vision, and their degeneration underlies several blinding diseases. RGCs interact with other neuronal cell types, microglia, and astrocytes in the retina and in the brain. Much knowledge has been gained about RGCs and glia from mice and other model organisms, often with the assumption that certain aspects of their biology may be conserved in humans. However, RGCs vary considerably between species, which could affect how they interact with their neuronal and glial partners. This review details which RGC and glial features are conserved between mice, humans, and primates, and which differ. We also discuss experimental approaches for studying human and primate RGCs. These strategies will help to bridge the gap between rodent and human RGC studies and increase study translatability to guide future therapeutic strategies.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| | - Mohamed Tawfik
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| |
Collapse
|
2
|
Campbell PW, Govindaiah G, Guido W. Development of reciprocal connections between the dorsal lateral geniculate nucleus and the thalamic reticular nucleus. Neural Dev 2024; 19:6. [PMID: 38890758 PMCID: PMC11184795 DOI: 10.1186/s13064-024-00183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The thalamic reticular nucleus (TRN) serves as an important node between the thalamus and neocortex, regulating thalamocortical rhythms and sensory processing in a state dependent manner. Disruptions in TRN circuitry also figures prominently in several neurodevelopmental disorders including epilepsy, autism, and attentional defects. An understanding of how and when connections between TRN and 1st order thalamic nuclei, such as the dorsal lateral geniculate nucleus (dLGN), develop is lacking. We used the mouse visual thalamus as a model system to study the organization, pattern of innervation and functional responses between TRN and the dLGN. Genetically modified mouse lines were used to visualize and target the feedforward and feedback components of these intra-thalamic circuits and to understand how peripheral input from the retina impacts their development.Retrograde tracing of thalamocortical (TC) afferents through TRN revealed that the modality-specific organization seen in the adult, is present at perinatal ages and seems impervious to the loss of peripheral input. To examine the formation and functional maturation of intrathalamic circuits between the visual sector of TRN and dLGN, we examined when projections from each nuclei arrive, and used an acute thalamic slice preparation along with optogenetic stimulation to assess the maturation of functional synaptic responses. Although thalamocortical projections passed through TRN at birth, feedforward axon collaterals determined by vGluT2 labeling, emerged during the second postnatal week, increasing in density through the third week. Optogenetic stimulation of TC axon collaterals in TRN showed infrequent, weak excitatory responses near the end of week 1. During weeks 2-4, responses became more prevalent, grew larger in amplitude and exhibited synaptic depression during repetitive stimulation. Feedback projections from visual TRN to dLGN began to innervate dLGN as early as postnatal day 2 with weak inhibitory responses emerging during week 1. During week 2-4, inhibitory responses continued to grow larger, showing synaptic depression during repetitive stimulation. During this time TRN inhibition started to suppress TC spiking, having its greatest impact by week 4-6. Using a mutant mouse that lacks retinofugal projections revealed that the absence of retinal input led to an acceleration of TRN innervation of dLGN but had little impact on the development of feedforward projections from dLGN to TRN. Together, these experiments reveal how and when intrathalamic connections emerge during early postnatal ages and provide foundational knowledge to understand the development of thalamocortical network dynamics as well as neurodevelopmental diseases that involve TRN circuitry.
Collapse
Affiliation(s)
- Peter W Campbell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 511 S. Floyd St., Louisville, KY, 40292, USA
- Division of Neurology and Developmental Neurosciences, Baylor College of Medicine, Houston, USA
| | - Gubbi Govindaiah
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 511 S. Floyd St., Louisville, KY, 40292, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 511 S. Floyd St., Louisville, KY, 40292, USA.
| |
Collapse
|
3
|
Crombie D, Spacek MA, Leibold C, Busse L. Spiking activity in the visual thalamus is coupled to pupil dynamics across temporal scales. PLoS Biol 2024; 22:e3002614. [PMID: 38743775 PMCID: PMC11093384 DOI: 10.1371/journal.pbio.3002614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
The processing of sensory information, even at early stages, is influenced by the internal state of the animal. Internal states, such as arousal, are often characterized by relating neural activity to a single "level" of arousal, defined by a behavioral indicator such as pupil size. In this study, we expand the understanding of arousal-related modulations in sensory systems by uncovering multiple timescales of pupil dynamics and their relationship to neural activity. Specifically, we observed a robust coupling between spiking activity in the mouse dorsolateral geniculate nucleus (dLGN) of the thalamus and pupil dynamics across timescales spanning a few seconds to several minutes. Throughout all these timescales, 2 distinct spiking modes-individual tonic spikes and tightly clustered bursts of spikes-preferred opposite phases of pupil dynamics. This multi-scale coupling reveals modulations distinct from those captured by pupil size per se, locomotion, and eye movements. Furthermore, coupling persisted even during viewing of a naturalistic movie, where it contributed to differences in the encoding of visual information. We conclude that dLGN spiking activity is under the simultaneous influence of multiple arousal-related processes associated with pupil dynamics occurring over a broad range of timescales.
Collapse
Affiliation(s)
- Davide Crombie
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Martin A. Spacek
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
| | - Christian Leibold
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
- Fakultät für Biologie & Bernstein Center Freiburg, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Laura Busse
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
- Bernstein Center for Computational Neuroscience, Munich, Germany
| |
Collapse
|
4
|
Qin Y, Ahmadlou M, Suhai S, Neering P, de Kraker L, Heimel JA, Levelt CN. Thalamic regulation of ocular dominance plasticity in adult visual cortex. eLife 2023; 12:RP88124. [PMID: 37796249 PMCID: PMC10554735 DOI: 10.7554/elife.88124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Experience-dependent plasticity in the adult visual system is generally thought of as a cortical process. However, several recent studies have shown that perceptual learning or monocular deprivation can also induce plasticity in the adult dorsolateral geniculate nucleus (dLGN) of the thalamus. How plasticity in the thalamus and cortex interact in the adult visual system is ill-understood. To assess the influence of thalamic plasticity on plasticity in primary visual cortex (V1), we made use of our previous finding that during the critical period ocular dominance (OD) plasticity occurs in dLGN and requires thalamic synaptic inhibition. Using multielectrode recordings we find that this is also true in adult mice, and that in the absence of thalamic inhibition and plasticity, OD plasticity in adult V1 is absent. To study the influence of V1 on thalamic plasticity, we silenced V1 and show that during the critical period, but not in adulthood, the OD shift in dLGN is partially caused by feedback from V1. We conclude that during adulthood the thalamus plays an unexpectedly dominant role in experience-dependent plasticity in V1. Our findings highlight the importance of considering the thalamus as a potential source of plasticity in learning events that are typically thought of as cortical processes.
Collapse
Affiliation(s)
- Yi Qin
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
- University of StrasbourgStrasbourgFrance
| | - Mehran Ahmadlou
- Circuits, Structure and Function Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
| | - Samuel Suhai
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
| | - Paul Neering
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
| | - Leander de Kraker
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
| | - J Alexander Heimel
- Circuits, Structure and Function Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
| | - Christiaan N Levelt
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University AmsterdamAmsterdamNetherlands
| |
Collapse
|
5
|
Huerga-Gómez I, Martini FJ, López-Bendito G. Building thalamic neuronal networks during mouse development. Front Neural Circuits 2023; 17:1098913. [PMID: 36817644 PMCID: PMC9936079 DOI: 10.3389/fncir.2023.1098913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The thalamic nuclear complex contains excitatory projection neurons and inhibitory local neurons, the two cell types driving the main circuits in sensory nuclei. While excitatory neurons are born from progenitors that reside in the proliferative zone of the developing thalamus, inhibitory local neurons are born outside the thalamus and they migrate there during development. In addition to these cell types, which occupy most of the thalamus, there are two small thalamic regions where inhibitory neurons target extra-thalamic regions rather than neighboring neurons, the intergeniculate leaflet and the parahabenular nucleus. Like excitatory thalamic neurons, these inhibitory neurons are derived from progenitors residing in the developing thalamus. The assembly of these circuits follows fine-tuned genetic programs and it is coordinated by extrinsic factors that help the cells find their location, associate with thalamic partners, and establish connections with their corresponding extra-thalamic inputs and outputs. In this review, we bring together what is currently known about the development of the excitatory and inhibitory components of the thalamocortical sensory system, in particular focusing on the visual pathway and thalamic interneurons in mice.
Collapse
Affiliation(s)
- Irene Huerga-Gómez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | | | | |
Collapse
|
6
|
Govindaiah G, Fox MA, Guido W. Pattern of Driver-Like Input onto Neurons of the Mouse Ventral Lateral Geniculate Nucleus. eNeuro 2023; 10:ENEURO.0386-22.2022. [PMID: 36609305 PMCID: PMC9850909 DOI: 10.1523/eneuro.0386-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
The ventral lateral geniculate nucleus (vLGN) is a retinorecipient region of thalamus that contributes to a number of complex visual behaviors. Retinal axons that target vLGN terminate exclusively in the external subdivision (vLGNe), which is also transcriptionally and cytoarchitectonically distinct from the internal subdivision (vLGNi). While recent studies shed light on the cell types and efferent projections of vLGNe and vLGNi, we have a crude understanding of the source and nature of the excitatory inputs driving postsynaptic activity in these regions. Here, we address this by conducting in vitro whole-cell recordings in acutely prepared thalamic slices and using electrical and optical stimulation techniques to examine the postsynaptic excitatory activity evoked by the activation of retinal or cortical layer V input onto neurons in vLGNe and vLGNi. Activation of retinal afferents by electrical stimulation of optic tract or optical stimulation of retinal terminals resulted in robust driver-like excitatory activity in vLGNe. Optical activation of corticothalamic terminals from layer V resulted in similar driver-like activity in both vLGNe and vLGNi. Using a dual-color optogenetic approach, we found that many vLGNe neurons received convergent input from these two sources. Both individual pathways displayed similar driver-like properties, with corticothalamic stimulation leading to a stronger form of synaptic depression than retinogeniculate stimulation. We found no evidence of convergence in vLGNi, with neurons only responding to corticothalamic stimulation. These data provide insight into the influence of excitatory inputs to vLGN and reveal that only neurons in vLGNe receive convergent input from both sources.
Collapse
Affiliation(s)
- Gubbi Govindaiah
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Michael A. Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia 24061
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| |
Collapse
|
7
|
Sokhadze G, Campbell PW, Charalambakis N, Govindaiah G, Guido W, McGee AW. Cre driver mouse lines for thalamocortical circuit mapping. J Comp Neurol 2022; 530:1049-1063. [PMID: 34545582 PMCID: PMC9891227 DOI: 10.1002/cne.25248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 02/04/2023]
Abstract
Subpopulations of neurons and associated neural circuits can be targeted in mice with genetic tools in a highly selective manner for visualization and manipulation. However, there are not well-defined Cre "driver" lines that target the expression of Cre recombinase to thalamocortical (TC) neurons. Here, we characterize three Cre driver lines for the nuclei of the dorsal thalamus: Oligodendrocyte transcription factor 3 (Olig3)-Cre, histidine decarboxylase (HDC)-Cre, and corticotropin-releasing hormone (CRH)-Cre. We examined the postnatal distribution of Cre expression for each of these lines with the Cre-dependent reporter CAG-tdTomato (Ai9). Cre-dependent expression of tdTomato reveals that Olig3-Cre expresses broadly within the thalamus, including TC neurons and interneurons, while HDC-Cre and CRH-Cre each have unique patterns of expression restricted to TC neurons within and across the sensory relay nuclei of the dorsal thalamus. Cre expression is present by the time of natural birth in all three lines, underscoring their utility for developmental studies. To demonstrate the utility of these Cre drivers for studying sensory TC circuitry, we targeted the expression of channelrhodopsin-2 to thalamus from the CAG-COP4*H134R/EYFP (Ai32) allele with either HDC-Cre or CRH-Cre. Optogenetic activation of TC afferents in primary visual cortex was sufficient to measure frequency-dependent depression. Thus, these Cre drivers provide selective Cre-dependent gene expression in thalamus suitable for both anatomical and functional studies.
Collapse
Affiliation(s)
- Guela Sokhadze
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Peter W Campbell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Naomi Charalambakis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Gubbi Govindaiah
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Aaron W McGee
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
8
|
Sokhadze G, Whyland KL, Bickford ME, Guido W. The organization of cholinergic projections in the visual thalamus of the mouse. J Comp Neurol 2022; 530:1081-1098. [PMID: 34448209 DOI: 10.1002/cne.25235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/11/2022]
Abstract
Cholinergic projections from the brainstem serve as important modulators of activity in visual thalamic nuclei such as the dorsal lateral geniculate nucleus (dLGN). While these projections have been studied in several mammals, a comprehensive examination of their organization in the mouse is lacking. We used the retrograde transport of viruses or cholera toxin subunit B (CTB) injected in the dLGN, immunocytochemical labeling with antibodies against choline acetyltransferase (ChAT), brain nitric oxide synthase (BNOS), and vesicular acetylcholine transporter (VAChT), ChAT-Cre mice crossed with a reporter line (Ai9), as well as brainstem virus injections in ChAT-Cre mice to examine the pattern of thalamic innervation from cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg), laterodorsal tegmental nucleus (LDTg), and the parabigeminal nucleus (PBG). Retrograde tracing demonstrated that the dLGN receives input from the PPTg, LDTg, and PBG. Viral tracing in ChAT-Cre mice and retrograde tracing combined with immunocytochemistry revealed that many of these inputs originate from cholinergic neurons in the PBG and PPTg. Most notable was an extensive cholinergic projection from the PBG which innervated most of the contralateral dLGN, with an especially dense concentration in the dorsolateral shell, as well as a small region in the dorsomedial pole of the ipsilateral dLGN. The PPTg was found to provide a sparse somewhat diffuse innervation of the ipsilateral dLGN. Neurons in the PPTg co-expressed ChAT, BNOS, and VAChT, whereas PBG neurons expressed ChAT, but not BNOS or VAChT. These results highlight the presence of distinct cholinergic populations that innervate the mouse dLGN.
Collapse
Affiliation(s)
- Guela Sokhadze
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Kyle L Whyland
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Martha E Bickford
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
9
|
Abstract
Retinal ganglion cells (RGCs) serve as a crucial communication channel from the retina to the brain. In the adult, these cells receive input from defined sets of presynaptic partners and communicate with postsynaptic brain regions to convey features of the visual scene. However, in the developing visual system, RGC interactions extend beyond their synaptic partners such that they guide development before the onset of vision. In this Review, we summarize our current understanding of how interactions between RGCs and their environment influence cellular targeting, migration and circuit maturation during visual system development. We describe the roles of RGC subclasses in shaping unique developmental responses within the retina and at central targets. Finally, we highlight the utility of RNA sequencing and genetic tools in uncovering RGC type-specific roles during the development of the visual system.
Collapse
Affiliation(s)
- Shane D'Souza
- The Visual Systems Group, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - Richard A Lang
- The Visual Systems Group, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
10
|
Okigawa S, Yamaguchi M, Ito KN, Takeuchi RF, Morimoto N, Osakada F. Cell type- and layer-specific convergence in core and shell neurons of the dorsal lateral geniculate nucleus. J Comp Neurol 2020; 529:2099-2124. [PMID: 33236346 DOI: 10.1002/cne.25075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/27/2022]
Abstract
Over 40 distinct types of retinal ganglion cells (RGCs) generate parallel processing pathways in the visual system. In mice, two subdivisions of the dorsal lateral geniculate nucleus (dLGN), the core and the shell, organize distinct parallel channels to transmit visual information from the retina to the primary visual cortex (V1). To investigate how the dLGN core and shell differentially integrate visual information and other modalities, we mapped synaptic input sources to each dLGN subdivision at the cell-type level with G-deleted rabies viral vectors. The monosynaptic circuit tracing revealed that dLGN core neurons received inputs from alpha-RGCs, Layer 6 neurons of the V1, the superficial and intermediate layers of the superior colliculus (SC), the internal ventral LGN, the lower layer of the external ventral LGN (vLGNe), the intergeniculate leaf, the thalamic reticular nucleus (TRN), and the pretectal nucleus (PT). Conversely, shell neurons received inputs from alpha-RGCs and direction-selective ganglion cells of the retina, Layer 6 neurons of the V1, the superficial layer of the SC, the superficial and lower layers of the vLGNe, the TRN, the PT, and the parabigeminal nucleus. The present study provides anatomical evidence of the cell type- and layer-specific convergence in dLGN core and shell neurons. These findings suggest that dLGN core neurons integrate and process more multimodal information along with visual information than shell neurons and that LGN core and shell neurons integrate different types of information, send their own convergent information to discrete populations of the V1, and differentially contribute to visual perception and behavior.
Collapse
Affiliation(s)
- Sayumi Okigawa
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Masahiro Yamaguchi
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Kei N Ito
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Ryosuke F Takeuchi
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Nao Morimoto
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.,Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.,Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan.,PRESTO/CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
11
|
Su J, Charalambakis NE, Sabbagh U, Somaiya RD, Monavarfeshani A, Guido W, Fox MA. Retinal inputs signal astrocytes to recruit interneurons into visual thalamus. Proc Natl Acad Sci U S A 2020; 117:2671-2682. [PMID: 31964831 PMCID: PMC7007527 DOI: 10.1073/pnas.1913053117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inhibitory interneurons comprise a fraction of the total neurons in the visual thalamus but are essential for sharpening receptive field properties and improving contrast-gain of retinogeniculate transmission. During early development, these interneurons undergo long-range migration from germinal zones, a process regulated by the innervation of the visual thalamus by retinal ganglion cells. Here, using transcriptomic approaches, we identified a motogenic cue, fibroblast growth factor 15 (FGF15), whose expression in the visual thalamus is regulated by retinal input. Targeted deletion of functional FGF15 in mice led to a reduction in thalamic GABAergic interneurons similar to that observed in the absence of retinal input. This loss may be attributed, at least in part, to misrouting of interneurons into nonvisual thalamic nuclei. Unexpectedly, expression analysis revealed that FGF15 is generated by thalamic astrocytes and not retino-recipient neurons. Thus, these data show that retinal inputs signal through astrocytes to direct the long-range recruitment of interneurons into the visual thalamus.
Collapse
Affiliation(s)
- Jianmin Su
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
| | - Naomi E Charalambakis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Ubadah Sabbagh
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Rachana D Somaiya
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Aboozar Monavarfeshani
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202;
| | - Michael A Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016;
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| |
Collapse
|