1
|
Dai Y, Zhang X, Zhao K, Wang Y, Liu J, Gu J, Bai H, Hasegawa K, Wurita A. Detection and quantification of etomidate and metomidate in human hairs by ultraperformance liquid chromatography with triple quadrupole mass spectrometry (UPLC-MS/MS). Forensic Toxicol 2024; 42:232-241. [PMID: 38240998 DOI: 10.1007/s11419-023-00678-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/15/2023] [Indexed: 07/26/2024]
Abstract
PURPOSE Intravenous narcotic agents, such as etomidate and metomidate, has been widely spread and abused in the world, including in Korea and China; thus, it is important to establish validated and sensitive analytical method for these compounds. Human hair as a biological sample has various advantages, including a wide detection window of drugs, compared to other typical samples, such as urine and blood in investigation. The purpose of this communication is to develop a reliable and useful method for the simultaneous detection and quantification of etomidate and metomidate in human hair samples by ultraperformance liquid chromatography combined with triple quadrupole mass spectrometry (UPLC-MS/MS), and to apply it for authentic samples in abuse cases. METHODS The hair samples were washed with a detergent solution, followed by with water and acetone. After drying, they were cut into approximately 2 mm sections and then ground to powder by a low-temperature grinder. The 20 mg of hair powder plus internal standard in 1 mL of methanol was vortexed and then centrifuged to obtain the supernatant layer, followed by subjecting to analysis. RESULTS The coefficient of determination (r2) values of the calibration curves of etomidate and metomidate in the hair samples were both more than 0.99 in the range of 1-500 ng/mg and 1-500 pg/mg, respectively. The limits of detection and lower limits of quantification were 0.5 and 1 pg/mg, respectively, for the both target compounds. Other tested validation data were all satisfactory. Etomidate and metomidate could be detected in the all hair samples and cigarette oil, which were seized by the police. The concentrations of etomidate and metomidate obtained from 10 samples from suspects were 5.48-45.7 ng/mg and 3.60-377 pg/mg, respectively. The concentrations of etomidate and metomidate in the cigarette oil were 95.8 μg/mg and 2.8 μg/mg, respectively. CONCLUSIONS In this study, a simple and reliable analytical method for etomidate and metomidate in the human hair has been established. To the best of our knowledge, this is the first report to establish a method for the simultaneous detection and quantification of etomidate and metomidate in the human hair, and to apply it to authentic samples seized in authentic cases.
Collapse
Affiliation(s)
- Yinyin Dai
- Inner Mongolia Medical University, Hohhot, China
| | | | - Kundi Zhao
- Inner Mongolia Medical University, Hohhot, China
| | - Yue Wang
- Inner Mongolia Medical University, Hohhot, China
| | - Jinlei Liu
- Inner Mongolia Medical University, Hohhot, China
| | - Jie Gu
- Inner Mongolia Medical University, Hohhot, China
| | - Huiru Bai
- Inner Mongolia Medical University, Hohhot, China
| | | | - Amin Wurita
- Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
2
|
Kroon E, Cousijn J, Filbey F, Berchtold C, Binz TM, Kuhns L. Associations between hair-derived cannabinoid levels, self-reported use, and cannabis-related problems. Psychopharmacology (Berl) 2024; 241:1237-1244. [PMID: 38407636 PMCID: PMC11106191 DOI: 10.1007/s00213-024-06558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
RATIONALE As cannabis potency and cannabis use are increasing in newly legalized markets, it is increasingly important to measure and examine the effects of cannabinoid exposure. OBJECTIVES The current study aims to assess how hair-derived cannabinoid concentrations - offering insight into three-month cumulative exposure - are associated with common self-report measures of cannabis use and cannabis use-related problems. METHODS 74 near-daily dependent cannabis users self-reported their quantity of cannabis use, cannabis use-related problems, and estimated cannabis potency. Hair samples were provided to quantify Δ9-THC, CBD, and CBN using LC-MS/MS and THC-consumption was verified by analyzing THC-COOH in hair using GC-MS/MS. RESULTS Cannabinoids were detectable in 95.95% of the hair samples from individuals who tested positive on a urine screen for cannabis. Δ9-THC concentrations were positively associated with measures of self-reported potency (relative potency, potency category, and perceived 'high'), but Δ9-THC, CBD, CBN concentrations and THC/CBD ratio were not associated with self-reported quantity of use. Self-reported potency, but not hair-derived concentrations, were associated with withdrawal and craving. Self-reported quantity of cannabis use, but not cannabinoid concentrations, were associated with cannabis use-related problems. CONCLUSIONS The use of hair-derived cannabinoid quantification is supported for detecting cannabis use in near-daily users, but the lack of associations between hair-derived cannabinoid concentrations and self-report measures of use does not support the use of hair analyses alone for quantification of cannabinoid exposure. Further research comparing hair-derived cannabinoid concentrations with other biological matrices (e.g. plasma) and self-report is necessary to further evaluate the validity of hair analyses for this purpose.
Collapse
Affiliation(s)
- Emese Kroon
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.
- Neuroscience of Addiction (NofA) Lab, Center for Substance Use and Addiction Research (CESAR), Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | - Janna Cousijn
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Neuroscience of Addiction (NofA) Lab, Center for Substance Use and Addiction Research (CESAR), Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Francesca Filbey
- Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Christian Berchtold
- Center for Forensic Hair Analytics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Tina M Binz
- Center for Forensic Hair Analytics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Lauren Kuhns
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
DeGregorio MW, Kao CJ, Wurz GT. Complexity of Translating Analytics to Recent Cannabis Use and Impairment. J AOAC Int 2024; 107:493-505. [PMID: 38410076 DOI: 10.1093/jaoacint/qsae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
While current analytical methodologies can readily identify cannabis use, definitively establishing recent use within the impairment window has proven to be far more complex, requiring a new approach. Recent studies have shown no direct relationship between impairment and Δ9-tetra-hydrocannabinol (Δ9-THC) concentrations in blood or saliva, making legal "per se" Δ9-THC limits scientifically unjustified. Current methods that focus on Δ9-THC and/or metabolite concentrations in blood, saliva, urine, or exhaled breath can lead to false-positive results for recent use due to the persistence of Δ9-THC well outside of the typical 3-4 h window of potential impairment following cannabis inhalation. There is also the issue of impairment due to other intoxicating substances-just because a subject exhibits signs of impairment and cannabis use is detected does not rule out the involvement of other drugs. Compounding the matter is the increasing popularity of hemp-derived cannabidiol (CBD) products following passage of the 2018 Farm Bill, which legalized industrial hemp in the United States. Many of these products contain varying levels of Δ9-THC, which can lead to false-positive tests for cannabis use. Furthermore, hemp-derived CBD is used to synthesize Δ8-THC, which possesses psychoactive properties similar to Δ9-THC and is surrounded by legal controversy. For accuracy, analytical methods must be able to distinguish the various THC isomers, which have identical masses and exhibit immunological cross-reactivity. A new testing approach has been developed based on exhaled breath and blood sampling that incorporates kinetic changes and the presence of key cannabinoids to detect recent cannabis use within the impairment window without the false-positive results seen with other methods. The complexity of determining recent cannabis use that may lead to impairment demands such a comprehensive method so that irresponsible users can be accurately detected without falsely accusing responsible users who may unjustly suffer harsh, life-changing consequences.
Collapse
Affiliation(s)
- Michael W DeGregorio
- RCU Labs, Inc., 408 Sunrise Ave, Roseville, CA 95661-4123, United States
- Professor Emeritus, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Chiao-Jung Kao
- RCU Labs, Inc., 408 Sunrise Ave, Roseville, CA 95661-4123, United States
| | - Gregory T Wurz
- RCU Labs, Inc., 408 Sunrise Ave, Roseville, CA 95661-4123, United States
| |
Collapse
|
4
|
Kale R, Chaturvedi D, Dandekar P, Jain R. Analytical techniques for screening of cannabis and derivatives from human hair specimens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1133-1149. [PMID: 38314866 DOI: 10.1039/d3ay00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cannabis and associated substances are some of the most frequently abused drugs across the globe, mainly due to their anxiolytic and euphorigenic properties. Nowadays, the analysis of hair samples has been given high importance in forensic and analytical sciences and in clinical studies because they are associated with a low risk of infection, do not require complicated storage conditions, and offer a broad window of non-invasive detection. Analysis of hair samples is very easy compared to the analysis of blood, urine, and saliva samples. This review places particular emphasis on methodologies of analyzing hair samples containing cannabis, with a special focus on the preparation of samples for analysis, which involves screening and extraction techniques, followed by confirmatory assays. Through this manuscript, we have presented an overview of the available literature on the screening of cannabis using mass spectroscopy techniques. We have presented a detailed overview of the advantages and disadvantages of this technique, to establish it as a suitable method for the analysis of cannabis from hair samples.
Collapse
Affiliation(s)
- Rohit Kale
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India.
| | - Deepa Chaturvedi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| | - Ratnesh Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
5
|
Ieritano C, Thomas P, Hopkins WS. Argentination: A Silver Bullet for Cannabinoid Separation by Differential Mobility Spectrometry. Anal Chem 2023. [PMID: 37224077 DOI: 10.1021/acs.analchem.3c01241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
As the legality of cannabis continues to evolve globally, there is a growing demand for methods that can accurately quantitate cannabinoids found in commercial products. However, the isobaric nature of many cannabinoids, along with variations in extraction methods and product formulations, makes cannabinoid quantitation by mass spectrometry (MS) challenging. Here, we demonstrate that differential mobility spectrometry (DMS) and tandem-MS can distinguish a set of seven cannabinoids, five of which are isobaric: Δ9-tetrahydrocannabinol (Δ9-THC), Δ8-THC, exo-THC, cannabidiol, cannabichromene, cannabinol, and cannabigerol. Analytes were detected as argentinated species ([M + Ag]+), which, when subjected to collision-induced dissociation, led to the unexpected discovery that argentination promotes distinct fragmentation patterns for each cannabinoid. The unique fragment ions formed were rationalized by discerning fragmentation mechanisms that follow each cannabinoid's MS3 behavior. The differing fragmentation behaviors between species suggest that argentination can distinguish cannabinoids by tandem-MS, although not quantitatively as some cannabinoids produce small amounts of a fragment ion that is isobaric with the major fragment generated by another cannabinoid. By adding DMS to the tandem-MS workflow, it becomes possible to resolve each cannabinoid in a pure N2 environment by deconvoluting the contribution of each cannabinoid to a specific fragmentation channel. To this end, we used DMS in conjunction with a multiple reaction monitoring workflow to assess cannabinoid levels in two cannabis extracts. Our methodology exhibited excellent accuracy, limits of detection (10-20 ppb depending on the cannabinoid), and linearity during quantitation by standard addition (R2 > 0.99).
Collapse
Affiliation(s)
- Christian Ieritano
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada
| | - Patrick Thomas
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada
- Centre for Eye and Vision Research, 17W Hong Kong Science Park, New Territories 999077, Hong Kong
| |
Collapse
|
6
|
Detection of the Synthetic Cannabinoids AB-CHMINACA, ADB-CHMINACA, MDMB-CHMICA, and 5F-MDMB-PINACA in Biological Matrices: A Systematic Review. BIOLOGY 2022; 11:biology11050796. [PMID: 35625524 PMCID: PMC9139075 DOI: 10.3390/biology11050796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Synthetic cannabinoids were originally developed for scientific research and potential therapeutic agents. However, clandestine laboratories synthesize them and circumvent legal barriers by falsely marketing them as incense or herbal products. They have serious adverse effects, and new derivatives are continuously found in the market, making their detection difficult due to the lack of comparative standards. Human matrices are used to identify the type of synthetic cannabinoid and the time of its consumption. This review discusses the use of hair, oral fluid, blood, and urine in the detection and quantification of some of the major synthetic cannabinoids. Based on the results, some recommendations can be followed, for example, the use of hair to detect chronic and retrospective consumption (although sensitive to external contamination) and oral fluid or blood for the simultaneous detection of the parent compounds and their metabolites. If longer detection times than blood or oral fluid are needed, urine is the matrix of choice, although its pH may intervene in the analysis. This work highlights the use of new techniques, such as high-resolution mass spectrometry, to avoid the use of previous standards and to monitor new trends in the drug market. Abstract New synthetic cannabinoids (SCs) are emerging rapidly and continuously. Biological matrices are key for their precise detection to link toxicity and symptoms to each compound and concentration and ascertain consumption trends. The objective of this study was to determine the best human biological matrices to detect the risk-assessed compounds provided by The European Monitoring Centre for Drugs and Drug Addiction: AB-CHMINACA, ADB-CHMNACA, MDMB-CHMICA, and 5F-MDMB-PINACA. We carried out a systematic review covering 2015 up to the present date, including original articles assessing detection in antemortem human biological matrices with detailed validation information of the technique. In oral fluid and blood, SC parent compounds were found in oral fluid and blood at low concentrations and usually with other substances; thus, the correlation between SCs concentrations and severity of symptoms could rarely be established. When hair is used as the biological matrix, there are difficulties in excluding passive contamination when evaluating chronic consumption. Detection of metabolites in urine is complex because it requires prior identification studies. LC-MS/MS assays were the most widely used approaches for the selective identification of SCs, although the lack of standard references and the need for revalidation with the continuous emergence of new SCs are limiting factors of this technique. A potential solution is high-resolution mass spectrometry screening, which allows for non-targeted detection and retrospective data interrogation.
Collapse
|
7
|
Maciel EVS, Lanças FM. A cartridge-based device for automated analyses of solid matrices by online sample prep-capillary LC-MS/MS. Anal Bioanal Chem 2022; 414:2725-2737. [PMID: 35106613 DOI: 10.1007/s00216-022-03916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Sample preparation is an essential step focused on eliminating interfering compounds while pre-concentrating the analytes. However, its multiple steps are laborious, time-consuming, and a source of errors. Currently, automated approaches represent a promising alternative to overcome these drawbacks. Similarly, miniaturisation has been considered an ideal strategy for creating greener analytical workflows. The combination of these concepts is currently highly desired by analytical chemists. However, most automated and miniaturised sample preparation techniques are primarily concerned with liquid samples, while solids are frequently overlooked. We present an approach based on a cartridge packed with solids (soil samples) coupled with a capillary LC-MS, combining sample preparation and analytical steps into a unique platform. As a proof-of-concept, nine pesticides used in sugarcane crops were extracted and analysed by our proposed method. For optimisation, a fractional factorial design (25-1) was performed with the following variables: aqueous dilution of the sample (V1), extraction strength (V2), matrix washing time (V3), extraction flow (V4), and analytical flow (V5). After, the most influential ones (V1, V2, and V3) were taken into a central composite design (23) to select their best values. Under optimised conditions, the method reported linear ranges between 10 and 125 ng g-1 with R2 > 0.985. Accuracy and precision were in accordance with the values established by the International Council for Harmonisation (Q2(R1)). Therefore, the proposed approach was effective in extracting and analysing selected pesticides in soil samples. Also, we carried out initial qualitative tests for pesticides in honeybees to see if there is the possibility to apply our method in other solids.
Collapse
Affiliation(s)
- Edvaldo Vasconcelos Soares Maciel
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, Av. Trabalhador São-Carlense, 400, São Carlos, SP, Postal Code: 13566590, Brazil
| | - Fernando Mauro Lanças
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, Av. Trabalhador São-Carlense, 400, São Carlos, SP, Postal Code: 13566590, Brazil.
| |
Collapse
|
8
|
Detection and quantification of psychotropic drug etaqualone in human hair using GC-MS/MS. Leg Med (Tokyo) 2021; 53:101964. [PMID: 34521032 DOI: 10.1016/j.legalmed.2021.101964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
Abstract
In this study, sensitive analytical procedure for detection and quantification of etaqualone in human hair samples using gas chromatography tandem mass spectrometry (GC-MS/MS) was newly established, and applied it to authentic human samples obtained from an abuser. In this method, the hair samples were treated with hydrochloric acid and then extracted with ethyl ether. The ether layer was dried in a warm water bath, and the residue was reconstituted in ethyl acetate, followed by GC-MS/MS analysis. Multiple reaction monitoring (MRM) mode was used for data collection, and quantitative analysis was performed using internal standard method. Good linear relationship within the concentration range of 1-100 pg/mg were obtained in calibrators for the hair samples showing its correlation coefficient value was 0.9993. The lower limit of quantitation in this study was 1 pg/mg and the recovery rate examined ranged from 100.4% to 108.5%. The intra-day precision and accuracy were less than 5.0% and 5.8%, respectively. The inter-day precision and accuracy were lower than 6.4% and 4.6%, respectively. Using this established method, etaqualone could be detected in the hair sample obtained from a suspected user to be level of 65.2 pg/mg. It should be expected that the method established in this study would contribute to rapid detection and identification of psychotropic drug etaqualone among multiple fields including forensic investigation, clinical application and of course public health matters.
Collapse
|
9
|
Alternative matrices in forensic toxicology: a critical review. Forensic Toxicol 2021; 40:1-18. [DOI: 10.1007/s11419-021-00596-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022]
Abstract
Abstract
Purpose
The use of alternative matrices in toxicological analyses has been on the rise in clinical and forensic settings. Specimens alternative to blood and urine are useful in providing additional information regarding drug exposure and analytical benefits. The goal of this paper is to present a critical review on the most recent literature regarding the application of six common alternative matrices, i.e., oral fluid, hair, sweat, meconium, breast milk and vitreous humor in forensic toxicology.
Methods
The recent literature have been searched and reviewed for the characteristics, advantages and limitations of oral fluid, hair, sweat, meconium, breast milk and vitreous humor and its applications in the analysis of traditional drugs of abuse and novel psychoactive substances (NPS).
Results
This paper outlines the properties of six biological matrices that have been used in forensic analyses, as alternatives to whole blood and urine specimens. Each of this matrix has benefits in regards to sampling, extraction, detection window, typical drug levels and other aspects. However, theses matrices have also limitations such as limited incorporation of drugs (according to physical–chemical properties), impossibility to correlate the concentrations for effects, low levels of xenobiotics and ultimately the need for more sensitive analysis. For more traditional drugs of abuse (e.g., cocaine and amphetamines), there are already data available on the detection in alternative matrices. However, data on the determination of emerging drugs such as the NPS in alternative biological matrices are more limited.
Conclusions
Alternative biological fluids are important specimens in forensic toxicology. These matrices have been increasingly reported over the years, and this dynamic will probably continue in the future, especially considering their inherent advantages and the possibility to be used when blood or urine are unavailable. However, one should be aware that these matrices have limitations and particular properties, and the findings obtained from the analysis of these specimens may vary according to the type of matrix. As a potential perspective in forensic toxicology, the topic of alternative matrices will be continuously explored, especially emphasizing NPS.
Collapse
|
10
|
Binkowska AA, Jakubowska N, Gaca M, Galant N, Piotrowska-Cyplik A, Brzezicka A. Not Just a Pot: Visual Episodic Memory in Cannabis Users and Polydrug Cannabis Users: ROC and ERP Preliminary Investigation. Front Hum Neurosci 2021; 15:677793. [PMID: 34177497 PMCID: PMC8226271 DOI: 10.3389/fnhum.2021.677793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background While research has consistently identified an association between long-term cannabis use and memory impairments, few studies have examined this relationship in a polydrug context (i.e., when combining cannabis with other substances). Aims: In this preliminary study, we used event-related potentials to examine the recognition process in a visual episodic memory task in cannabis users (CU) and cannabis polydrug users (PU). We hypothesized that CU and PU will have both-behavioral and psychophysiological-indicators of memory processes affected, compared to matched non-using controls with the PU expressing more severe changes. Methods 29 non-using controls (CG), 24 CU and 27 PU were enrolled into the study. All participants completed a visual learning recognition task while brain electrical activity was recorded. Event-related potentials were calculated for familiar (old) and new images from a signal recorded during a subsequent recognition test. We used receiver operating characteristic curves for behavioral data analysis. Results The groups did not differ in memory performance based on receiver operating characteristic method in accuracy and discriminability indicators nor mean reaction times for old/new images. The frontal old/new effect expected from prior research was observed for all participants, while a parietal old/new effect was not observed. While, the significant differences in the late parietal component (LPC) amplitude was observed between CG and PU but not between CG and CU nor CU and PU. Linear regression analysis was used to examine the mean amplitude of the LPC component as a predictor of memory performance accuracy indicator. LPC amplitude predicts recognition accuracy only in the CG. Conclusion The results showed alterations in recognition memory processing in CU and PU groups compared to CG, which were not manifested on the behavioral level, and were the most prominent in cannabis polydrug users. We interpret it as a manifestation of the cumulative effect of multiple drug usage in the PU group.
Collapse
Affiliation(s)
| | - Natalia Jakubowska
- SWPS University of Social Sciences and Humanities, Warsaw, Poland.,Polish-Japanese Academy of Information Technology, Warsaw, Poland
| | - Maciej Gaca
- Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | | | | | - Aneta Brzezicka
- SWPS University of Social Sciences and Humanities, Warsaw, Poland.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
11
|
Analysis of cannabinoids in conventional and alternative biological matrices by liquid chromatography: Applications and challenges. J Chromatogr A 2021; 1651:462277. [PMID: 34091369 DOI: 10.1016/j.chroma.2021.462277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/24/2022]
Abstract
Cannabis is by far the most widely abused illicit drug globe wide. The analysis of its main psychoactive components in conventional and non-conventional biological matrices has recently gained a great attention in forensic toxicology. Literature states that its abuse causes neurocognitive impairment in the domains of attention and memory, possible macrostructural brain alterations and abnormalities of neural functioning. This suggests the necessity for the development of a sensitive and a reliable analytical method for the detection and quantification of cannabinoids in human biological specimens. In this review, we focus on a number of analytical methods that have, so far, been developed and validated, with particular attention to the new "golden standard" method of forensic analysis, liquid chromatography mass spectrometry or tandem mass spectrometry. In addition, this review provides an overview of the effective and selective methods used for the extraction and isolation of cannabinoids from (i) conventional matrices, such as blood, urine and oral fluid and (ii) alternative biological matrices, such as hair, cerumen and meconium.
Collapse
|
12
|
Ramzy V, Priefer R. THC detection in the breath. Talanta 2021; 222:121528. [PMID: 33167238 DOI: 10.1016/j.talanta.2020.121528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 01/13/2023]
Abstract
Cannabis legalization and common use has further driven the need for accurate THC detection and analysis for roadside testing. While reliable and accurate techniques, such as mass spectrometry (MS) exist for the analysis of THC, the market lacks technologies that are portable and can be utilized outside of a laboratory setting. Innovations utilizing unique technologies have steadily been increasing. These include carbon nanotubes, specifically semiconductor-enriched single-walled carbon nanotube (s-SWCNT) chemiresistors and carbon nanotubes with integrated molecularly imprinted polymers (MIPs), giant magnetoresistive (GMR) biosensors, capillary electrophoresis (CE) with ultraviolet light-emitting diode-induced native fluorescence (UV-LEDIF), and electrochemical detection with the use of screen printed carbon electrodes and N-(4-amino-3-methoxyphenyl)-methanesulfonamide. Finally, a novel device has been recently launched to detect THC in the breath with the use of TLC and fluorescent probes. This review highlights the technologies that have been, and are being, explored to ultimately lead to a portable road-side test for THC once further testing in practice has been completed.
Collapse
Affiliation(s)
- Veronika Ramzy
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, 02115, USA
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, 02115, USA.
| |
Collapse
|