1
|
Thomsen J, Lett S, Martens HJ, Sørensen H, Kelleher D, Tryfona T, Dupree P, Johansen KS. Enzymatic saccharification of peat polysaccharides is limited by accessibility. PLoS One 2025; 20:e0312219. [PMID: 40408618 PMCID: PMC12101845 DOI: 10.1371/journal.pone.0312219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 04/29/2025] [Indexed: 05/25/2025] Open
Abstract
Sphagnum peat bogs store a large fraction of biologically-bound carbon, due to a steady accumulation of plant material over millennia. The resistance of Sphagnum biomass to decay is poorly understood and of high importance for preservation efforts and climate models. Sphagnum peat mostly consists of the polysaccharide-rich cell wall of the moss but the mechanisms by which it resist degradation by microbes remain unclear. Here we show that enzymatic saccharification of peat polysaccharides including cellulose and other glucose-rich polysaccharides is predominantly limited by access to the substrate. The experimental approach involved biotechnological tools including hydrothermal pretreatment to disrupt and relocate cell wall components. This physical change was confirmed by confocal laser scanning microscopy. A cocktail of microbial enzymes (Cellic® CTec3) designed for industrial saccharification of lignocellulose of vascular plants was used to assess enzymatic digestibility of peat polysaccharides. The glucose yield increased from close to zero for untreated peat to 30% and 50% when pretreated at 160 and 180 °C. An overall catalytic rate constant for enzymatic glucose-release from peat-cellulose of 26.98 h-1 was calculated using a kinetic model. This is a similar or higher rate compared to cellulose from vascular plant tissues. With an iron content of 2 g/kg dry peat, oxidative inactivation of enzymes is an important factor to take into account. A high inactivation constant of 125.91 x10-3 h-1 was found for the used saccharification conditions, but the addition of catalase alleviated the oxidative inactivation and increased the glucose yield with 60% in peat pretreated at 180 °C. These findings show that molecular structures of Sphagnum peat which prevents access for cell wall degrading enzymes can be disrupted by hydrothermal pretreatment. This brings us closer to understanding peat recalcitrance and thus how very large amounts of organic carbon is stored.
Collapse
Affiliation(s)
- Jonas Thomsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Signe Lett
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Helle J. Martens
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Helle Sørensen
- Data Science Lab, Department of Mathematical Sciences, University of Copenhagen, København, Denmark
| | - Darragh Kelleher
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Theodora Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Katja S. Johansen
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Li H, Kang X, Yang M, Kasseney BD, Zhou X, Liang S, Zhang X, Wen JL, Yu B, Liu N, Zhao Y, Mo J, Currie CR, Ralph J, Yelle DJ. Molecular insights into the evolution of woody plant decay in the gut of termites. SCIENCE ADVANCES 2023; 9:eadg1258. [PMID: 37224258 DOI: 10.1126/sciadv.adg1258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/17/2023] [Indexed: 05/26/2023]
Abstract
Plant cell walls represent the most abundant pool of organic carbon in terrestrial ecosystems but are highly recalcitrant to utilization by microbes and herbivores owing to the physical and chemical barrier provided by lignin biopolymers. Termites are a paradigmatic example of an organism's having evolved the ability to substantially degrade lignified woody plants, yet atomic-scale characterization of lignin depolymerization by termites remains elusive. We report that the phylogenetically derived termite Nasutitermes sp. efficiently degrades lignin via substantial depletion of major interunit linkages and methoxyls by combining isotope-labeled feeding experiments and solution-state and solid-state nuclear magnetic resonance spectroscopy. Exploring the evolutionary origin of lignin depolymerization in termites, we reveal that the early-diverging woodroach Cryptocercus darwini has limited capability in degrading lignocellulose, leaving most polysaccharides intact. Conversely, the phylogenetically basal lineages of "lower" termites are able to disrupt the lignin-polysaccharide inter- and intramolecular bonding while leaving lignin largely intact. These findings advance knowledge on the elusive but efficient delignification in natural systems with implications for next-generation ligninolytic agents.
Collapse
Affiliation(s)
- Hongjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China
| | - Mengyi Yang
- Xiaoshan Management Center of Termite Control, Hangzhou Xiaoshan Housing Security and Real Estate Management Service Center, Hangzhou 311200, China
| | - Boris Dodji Kasseney
- Department of Zoology, Faculty of Sciences, University of Lomé, 1BP1515 Lomé, Togo
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Shiyou Liang
- Agricultural Information Center of Pingyang, Renmin Road 71, Wenzhou 325400, China
| | - Xiaojie Zhang
- Quzhou Management Center of Termite Control, Quzhou Housing Security and Real Estate Management Service Center, Quzhou 311200, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing, Haidian District 100083, China
| | - Baoting Yu
- National Termite Control Center of China, Moganshan Road 695, Hangzhou 310011, China
| | - Ning Liu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China
| | - Jianchu Mo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Cameron R Currie
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706, USA
- David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison WI 53706, USA
| | - Daniel J Yelle
- US Forest Products Laboratory, Forest Service, Madison, WI 53726, USA
| |
Collapse
|
3
|
Santana MB, Soares LB, Zanella E, Fellipe da Silva M, Stambuk BU, Goldbeck R, Ambrosi A, Zielinski A, Poletto P, Ienczak JL. Hydrothermal pretreatment for the production of prebiotic oligosaccharides from tobacco stem. BIORESOURCE TECHNOLOGY 2023; 382:129169. [PMID: 37187330 DOI: 10.1016/j.biortech.2023.129169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Tobacco stem is an abundant and inexpensive renewable source to produce prebiotics by circular economy. In this study, hydrothermal pretreatments were evaluated on the release of xylooligosaccharides (XOS) and cello-oligosaccharides (COS) from the tobacco stem by a central composite rotational design associated with response surface methodology to evaluate the effects of temperature (161.72 to 218.3 °C) and solid load (SL) (2.93 to 17.07%). XOS were the main compounds released to the liquor. Desirability function was performed to maximize the production of XOS and minimize the effects of release of monosaccharides and degradation compounds. The result indicated yield of 96% w[XOS]/w[xylan] for 190 °C-2.93% SL. The highest value for COS and total oligomers content (COS + XOS) was 6.42 g/L and 17.7 g/L, respectively, for 190 °C-17.07% SL. The mass balance for the best yield XOS condition predicted 132 kg of XOS (X2-X6) from 1000 kg of tobacco stem.
Collapse
Affiliation(s)
- Marcel B Santana
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Lauren B Soares
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Eduardo Zanella
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Marcos Fellipe da Silva
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, Department of Food Engineering and Technology, University of Campinas, Campinas, Brazil
| | - Boris U Stambuk
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, Department of Food Engineering and Technology, University of Campinas, Campinas, Brazil
| | - Alan Ambrosi
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Acácio Zielinski
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Patrícia Poletto
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Jaciane L Ienczak
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
4
|
Tang Z, Wu C, Tang W, Ma C, He YC. A novel cetyltrimethylammonium bromide-based deep eutectic solvent pretreatment of rice husk to efficiently enhance its enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2023; 376:128806. [PMID: 36858123 DOI: 10.1016/j.biortech.2023.128806] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Deep eutectic solvent (DES) has caught widely attention of researchers in biomass pretreatment. As a highly efficient surfactant, cetyltrimethylammonium bromide (CTAB) was expected to be used for synthesizing new DESs with additional functions in pretreatment. In this work, an efficient pretreatment method using a mixture of CTAB and lactic acid (LA) as a novel functional DES was established to improve enzymatic digestion efficiency of rice husk (RH). The results showed that DES CTAB:LA effectively removed lignin (51.5%) and xylan (79.9%) and the enzymatic hydrolysis activity of CTAB:LA-treated RH was 5 times that of RH. Then, a series of characterization demonstrated that a substantial accessibility increased, a hydrophobicity and lignin surface area decreased, and great surface morphology alternation were observed on the treated RH, which explained the increase in enzymatic hydrolysis efficiency. Overall, the discovery of more functional DESs might be motivated and biorefinery pretreatment processes might be greatly promoted.
Collapse
Affiliation(s)
- Zhengyu Tang
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, Jiangsu Province, PR China
| | - Changqing Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China
| | - Wei Tang
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, Jiangsu Province, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, Jiangsu Province, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China.
| |
Collapse
|
5
|
Xiao MZ, Hong S, Shen X, Du ZY, Yuan TQ. In vivo cadmium-assisted dilute acid pretreatment of the phytoremediation sweet sorghum for enzymatic hydrolysis and cadmium enrichment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121372. [PMID: 36858104 DOI: 10.1016/j.envpol.2023.121372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/28/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Phytoremediation with energy crops is considered an integrated technology that provides both environment and energy benefits. Herein, the sweet sorghum cultivated on Cd-contaminated farmland (1.21 mg/kg of Cd in the soil) showed promising phytoremediation potential, and the approach for utilizing sorghum stalks was explored. Sweet sorghum bagasse with Cd contamination was pretreated with dilute acid in order to improve enzymatic saccharification and achieve Cd recovery, resulting in harmless and value-added utilization. After pretreatment, hemicelluloses were dramatically degraded, and the lignocellulosic structures were partially deconstructed with xylan removal up to 98.1%. Under the optimal condition (0.75% H2SO4), the highest total sugar yield was 0.48 g/g of raw bagasse; and nearly 98% of Cd was enriched in the liquid phase. Compared with normal biomass, Cd reduced the biomass recalcitrance and further facilitated the deconstruction of biomass under super dilute acid conditions. This work provided an example for the subsequent valorization of Cd-containing biomass and Cd recovery, which will greatly facilitate the development of phytoremediation of heavy metal contaminated soil.
Collapse
Affiliation(s)
- Ming-Zhao Xiao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Si Hong
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Xiaojun Shen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Zhi-Yan Du
- Yuan Longping High-tech Agriculture Co., Ltd, Changsha, 410000, China
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
6
|
Gong WH, Zhang C, He JW, Gao YY, Li YJ, Zhu MQ, Wen JL. A synergistic hydrothermal-deep eutectic solvents (DES) pretreatment for acquiring xylooligosaccharides and lignin nanoparticles from Eucommia ulmoides wood. Int J Biol Macromol 2022; 209:188-197. [DOI: 10.1016/j.ijbiomac.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/21/2022] [Accepted: 04/02/2022] [Indexed: 12/23/2022]
|
7
|
Yue P, Hu Y, Tian R, Bian J, Peng F. Hydrothermal pretreatment for the production of oligosaccharides: A review. BIORESOURCE TECHNOLOGY 2022; 343:126075. [PMID: 34606922 DOI: 10.1016/j.biortech.2021.126075] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Oligosaccharides are low-molecular-weight carbohydrates with crucial physical, chemical, and physiological properties, which are increasingly important in the fields of food, pharmaceuticals, cosmetics, and biomedicine. Pretreating biomass in a cost-effective way is a significant challenge for oligosaccharides research. Hydrothermal pretreatment is a potentially eco-friendly technology to obtain oligosaccharides by deconstructing biomass. In this work, we compared the differences between hydrothermal pretreatment and the traditional pretreatment method. The fundamentals and classification of hydrothermal pretreatment, as well as the latest studies on hydrothermal preparation of oligosaccharides, were further reviewed and evaluated to provide a theoretical basis for the production and application of oligosaccharides. Some challenges and future trends to develop green and large-scale hydrothermal pretreatment were proposed for the production of oligosaccharides.
Collapse
Affiliation(s)
- Panpan Yue
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Yajie Hu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Rui Tian
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
8
|
Wang ZK, Huang C, Zhong JL, Wang Y, Tang L, Li B, Sheng JJ, Chen L, Sun S, Shen X. Valorization of Chinese hickory shell as novel sources for the efficient production of xylooligosaccharides. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:226. [PMID: 34838122 PMCID: PMC8626943 DOI: 10.1186/s13068-021-02076-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Chinese hickory shell, a by-product of the food industry, is still not utilized and urgent to develop sustainable technologies for its valorization. This research focuses on the systematical evaluation of degraded products and xylooligosaccharide production with high yield from the shell via hydrothermal process. The pretreatment was carried out in a bath pressurized reactor at 140-220 °C for 0.5-2 h. The results indicated that the pretreatment condition strongly affected the chemical structures and compositions of the liquid fraction. The maximum yield of XOS (55.3 wt%) with limitation of by-products formation was achieved at 160 °C for 2 h. High temperature (220 °C) and short time (0.5 h) contributed to hydrolysis of xylooligosaccharide with high DP to yield 37.5 wt% xylooligosaccharide with DP from 2 to 6. Xylooligosaccharide obtained mainly consisted of xylan with branches according to the HSQC NMR analysis. Overall, the production of XOS with a high yield from food waste will facilitate the valorization of food waste in the biorefinery industry.
Collapse
Affiliation(s)
- Zhi-Kun Wang
- Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, College of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jun-Lei Zhong
- Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, College of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Yi Wang
- Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, College of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Lv Tang
- Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, College of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Bing Li
- Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, College of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Jian-Jun Sheng
- Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, College of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Liang Chen
- Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, College of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China.
| | - Shaolong Sun
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, Shandong, China.
| | - XiaoJun Shen
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
9
|
Zhang C, Ma CY, Xu LH, Wu YY, Wen JL. The effects of mild Lewis acids-catalyzed ethanol pretreatment on the structural variations of lignin and cellulose conversion in balsa wood. Int J Biol Macromol 2021; 183:1362-1370. [PMID: 34000315 DOI: 10.1016/j.ijbiomac.2021.05.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022]
Abstract
Ethanol organosolv pretreatment is a green and effective deconstruction process for main components in lignocellulose biomass. Herein, balsa wood was firstly subjected to a modified ethanol/water solution (EWS) pretreatment with different Lewis acids catalysts (AlCl3, CuCl2, FeCl3) at 140-180 °C. The delignification ratios and structural characteristics of the dissociated lignin, enzymatic hydrolysis of cellulose in the pretreated substrates as well as the degradation products from hemicellulose during the pretreatment process were comprehensively investigated. Results showed that dissociation and depolymerization of lignin fragments was robust in AlCl3-catalyzed pretreatment than those by CuCl2 and FeCl3-catalyzed pretreatment. In detail, the results showed that the optimal delignification ratio and removal of the hemicelluloses occurred in AlCl3-catalyzed pretreatment. Moreover, the structural characterizations of lignin fractions by 2D-HSQC, 31P NMR and GPC also revealed that the obtained lignin has the advantages of small and homogeneous molecules as well as abundant functional groups. As a result of adequate removal of hemicellulose and lignin, the enzymatic digestibility of cellulose in the pretreated residue was significantly elevated. In short, the above findings are also in line with the concept of maximizing the utilization of bioresources, which will be beneficial for value-added applications of balsa wood in the biorefinery.
Collapse
Affiliation(s)
- Chen Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Cheng-Ye Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Ling-Hua Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Yu-Ying Wu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
10
|
Ling R, Wu W, Yuan Y, Wei W, Jin Y. Investigation of choline chloride-formic acid pretreatment and Tween 80 to enhance sugarcane bagasse enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2021; 326:124748. [PMID: 33508645 DOI: 10.1016/j.biortech.2021.124748] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
In this study, a pretreatment that consisting of choline chloride (ChCl) and formic acid (FA) were performed to improve sugarcane bagasse (SCB) enzymatic hydrolysis. Results showed that the ChCl-FA pretreatment exhibited an extraordinary ability to selectively extract hemicellulose (~95.6%) and degrade a large number of lignin (~72.6%) at 110 °C for 120 min, which enhanced the enzymatic hydrolysis of pretreated SCB. Besides, the impact of various additives on pretreated substrate enzymatic hydrolysis confirmed that Tween 80 was the best enzymatic additive, which could significantly improve the glucose produced from pretreated SCB and remarkably reduce the hydrolysis time (from 72 h to 48 h) and enzyme dosage (from 20 FPU/g pretreated solid to 10 FPU/g pretreated solid). In summary, the coupling of ChCl-FA pretreatment and Tween 80 exhibited a promising way to enhance the sugar release from SCB.
Collapse
Affiliation(s)
- Rongxin Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China
| | - Yufeng Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China
| | - Weiqi Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| |
Collapse
|
11
|
Environmentally Friendly Approach for the Production of Glucose and High-Purity Xylooligosaccharides from Edible Biomass Byproducts. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Xylooligosaccharides (XOS) production from sweet sorghum bagasse (SSB) has been barely studied using other edible biomasses. Therefore, we evaluated the XOS content as well as its purity by comparing the content of total sugars from SSB. An environmentally friendly approach involving autohydrolysis was employed, and the reaction temperature and time had variations in order to search for the conditions that would yield high-purity XOS. After autohydrolysis, the remaining solid residues, the glucan-rich fraction, were used as substrates to be enzymatically hydrolyzed for glucose conversion. The highest XOS was observed for total sugars (68.7%) at 190 °C for 5 min among the autohydrolysis conditions. However, we also suggested two alternative conditions, 180 °C for 20 min and 190 °C for 15 min, because the former condition might have the XOS at a low degree of polymerization with a high XOS ratio (67.6%), while the latter condition presented a high glucose to total sugar ratio (91.4%) with a moderate level XOS ratio (64.4%). Although it was challenging to conclude on the autohydrolysis conditions required to obtain the best result of XOS content and purity and glucose yield, this study presented approaches that could maximize the desired product from SSB, and additional processes to reduce these differences in conditions may warrant further research.
Collapse
|
12
|
Wang ZK, Li H, Lin XC, Tang L, Chen JJ, Mo JW, Yu RS, Shen XJ. Novel recyclable deep eutectic solvent boost biomass pretreatment for enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2020; 307:123237. [PMID: 32229409 DOI: 10.1016/j.biortech.2020.123237] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 05/12/2023]
Abstract
Deep eutectic solvent (DES) with protonic acid shows the great potential for biomass valorization. However, the acid corrosion and recycling are still severe challenges in biorefinery. Herein, a novel DES by coordinating FeCl3 in choline chloride/glycerol DES was designed for effective and recyclable pretreatment. As compared to DESs with FeCl2, ZnCl2, AlCl3 and CuCl2, DES with FeCl3 approvingly retained most of cellulose in pretreated Hybrid Pennisetum (95.2%). Meanwhile, the cellulose saccharification significantly increased to 99.5%, which was six-fold higher than that of raw biomass. The excellent pretreatment performance was mainly attributed to the high removal of lignin (78.88 wt%) and hemicelluloses (93.63 wt%) under the synergistic effect of Lewis acid and proper hydrogen-bond interaction of DES with FeCl3. Furthermore, almost all cellulose still can be converted into glucose after five recycling process. Overall, the process demonstrated designed pretreatment was great potential for the low-cost biorefinery and boost the biofuel development.
Collapse
Affiliation(s)
- Zhi-Kun Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China; Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Lin'an, Zhejiang 311300, PR China
| | - Hanyin Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xin-Chun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China
| | - Lv Tang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Lin'an, Zhejiang 311300, PR China
| | - Jun-Jie Chen
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Lin'an, Zhejiang 311300, PR China
| | - Jia-Wei Mo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Lin'an, Zhejiang 311300, PR China
| | - Ri-Sheng Yu
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Lin'an, Zhejiang 311300, PR China
| | - Xiao-Jun Shen
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Lin'an, Zhejiang 311300, PR China; Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
13
|
Xu J, Dai L, Zhang C, Gui Y, Yuan L, Lei Y, Fan B. Ionic liquid-aided hydrothermal treatment of lignocellulose for the synergistic outputs of carbon dots and enhanced enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2020; 305:123043. [PMID: 32114304 DOI: 10.1016/j.biortech.2020.123043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
How to propel an efficient exploitation of waste streams is a pivotal tache for the long-range augment of hydrothermal biomass valorization. A facile approach was proposed to simultaneously produce carbon dots (CDs), fermentable sugar, and cellulose enzymatic lignin from agricultural straw with the aid of ionic liquid (IL, 1-aminoethyl-3-methylimidazolium nitrate, [C2NH2MIm][NO3]) catalyzed hydrothermal treatment. The graphite N-doped CDs with bright-blue fluorescence, which was mainly derived from the incorporation of hemicellulose (e.g. xylooligosaccharides), lignin and [C2NH2MIm][NO3], exhibited an average-diameter of 8.14 nm. The exfoliation of amorphous parts and robust fibers was formed to improve cellulose digestibility from 14.7 to 81.6%. The efficient recovery and checkup of lignin pave a way for its potential depolymerization into arenes. This protocol offers a significant benefit for large-scale hydrothermal biorefinery where reduction of process waste is a prime concern, and leads to high-value products (i.e., CDs and lignin) that also fosters the feasibility of bioethanol.
Collapse
Affiliation(s)
- Jikun Xu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chuntao Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yang Gui
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lan Yuan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yang Lei
- Center for Energy Resources Engineering, Department of Chemistry, Technical University of Denmark, Lyngby 2800, Denmark
| | - Baoan Fan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
14
|
Ruiz HA, Conrad M, Sun SN, Sanchez A, Rocha GJM, Romaní A, Castro E, Torres A, Rodríguez-Jasso RM, Andrade LP, Smirnova I, Sun RC, Meyer AS. Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. BIORESOURCE TECHNOLOGY 2020; 299:122685. [PMID: 31918970 DOI: 10.1016/j.biortech.2019.122685] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Different pretreatments strategies have been developed over the years mainly to enhance enzymatic cellulose degradation. In the new biorefinery era, a more holistic view on pretreatment is required to secure optimal use of the whole biomass. Hydrothermal pretreatment technology is regarded as very promising for lignocellulose biomass fractionation biorefinery and to be implemented at the industrial scale for biorefineries of second generation and circular bioeconomy, since it does not require no chemical inputs other than liquid water or steam and heat. This review focuses on the fundamentals of hydrothermal pretreatment, structure changes of biomass during this pretreatment, multiproduct strategies in terms of biorefinery, reactor technology and engineering aspects from batch to continuous operation. The treatise includes a case study of hydrothermal biomass pretreatment at pilot plant scale and integrated process design.
Collapse
Affiliation(s)
- Héctor A Ruiz
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico.
| | - Marc Conrad
- Hamburg University of Technology (TUHH), Institute of Thermal Separation Processes, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Arturo Sanchez
- Laboratorio de Futuros en Bioenergía, Unidad Guadalajara de Ingeniería Avanzada, Centro de Investigación y Estudios Avanzados (CINVESTAV), Zapopan, Jalisco, Mexico
| | - George J M Rocha
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-100, Brazil
| | - Aloia Romaní
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Center for Advanced Studies in Energy and Environment (CEAEMA), University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Ana Torres
- Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República, Montevideo 11300, Uruguay
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Liliane P Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-100, Brazil; Postgraduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Irina Smirnova
- Hamburg University of Technology (TUHH), Institute of Thermal Separation Processes, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Run-Cang Sun
- Center for Lignocellulose Science and Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
15
|
Harith ZT, Charalampopoulos D, Chatzifragkou A. Rapeseed meal hydrolysate as substrate for microbial astaxanthin production. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107330] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Carbon microspheres prepared from the hemicelluloses-rich pre-hydrolysis liquor for contaminant removal. Carbohydr Polym 2019; 213:296-303. [DOI: 10.1016/j.carbpol.2019.02.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/03/2019] [Accepted: 02/09/2019] [Indexed: 12/18/2022]
|
17
|
Salmela M, Lehtinen T, Efimova E, Santala S, Santala V. Alkane and wax ester production from lignin‐related aromatic compounds. Biotechnol Bioeng 2019; 116:1934-1945. [DOI: 10.1002/bit.27005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/29/2019] [Accepted: 04/18/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Milla Salmela
- Faculty of Engineering and Natural Sciences, Hervanta CampusTampere UniversityTampere Finland
| | - Tapio Lehtinen
- Faculty of Engineering and Natural Sciences, Hervanta CampusTampere UniversityTampere Finland
| | - Elena Efimova
- Faculty of Engineering and Natural Sciences, Hervanta CampusTampere UniversityTampere Finland
| | - Suvi Santala
- Faculty of Engineering and Natural Sciences, Hervanta CampusTampere UniversityTampere Finland
| | - Ville Santala
- Faculty of Engineering and Natural Sciences, Hervanta CampusTampere UniversityTampere Finland
| |
Collapse
|
18
|
Chen T, Li Z, Zhang X, Min D, Wu Y, Wen J, Yuan T. Effects of Hydrothermal Pretreatment on the Structural Characteristics of Organosolv Lignin from Triarrhena lutarioriparia. Polymers (Basel) 2018; 10:E1157. [PMID: 30961082 PMCID: PMC6403627 DOI: 10.3390/polym10101157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/26/2018] [Accepted: 10/14/2018] [Indexed: 11/16/2022] Open
Abstract
The effects of hydrothermal pretreatment (170⁻180 °C, 30⁻60 min) on the structural characteristics of enzymatic and extracted lignin from Triarrhena lutarioriparia (TL) during the integrated delignification process have been comprehensively investigated. Ion chromatography and NMR characterization showed that liquid products after mild hydrothermal process (170 °C, 30 min) were mainly composed of xylooligosaccharide (XOS) with different degrees of polymerization (DP ≥ 2). In addition, the structural changes of lignin during hydrothermal pretreatment and organic acid delignification process have been demonstrated by quantitative 2D heteronuclear single quantum coherence (2D-HSQC) and 31P-NMR techniques. Results showed that the structural changes of lignin (e.g., cleavage of β-O-4 linkages) induced by the hydrothermal pretreatment will facilitate the subsequent organic acid delignification process, and acetylated lignin could be obtained with a considerable yield, which can be used in lignin-based composite and candidate feedstock for catalytic upgrading of lignin. In short, the proposed process facilitates the producing of XOS and acetylated lignin for lignin valorization.
Collapse
Affiliation(s)
- Tianying Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Zhiwen Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Douyong Min
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, China.
| | - Yuying Wu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Tongqi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
19
|
Surek E, Buyukkileci AO. Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell. Carbohydr Polym 2017; 174:565-571. [DOI: 10.1016/j.carbpol.2017.06.109] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/30/2017] [Accepted: 06/27/2017] [Indexed: 11/26/2022]
|
20
|
Li P, Cai D, Zhang C, Li S, Qin P, Chen C, Wang Y, Wang Z. Comparison of two-stage acid-alkali and alkali-acid pretreatments on enzymatic saccharification ability of the sweet sorghum fiber and their physicochemical characterizations. BIORESOURCE TECHNOLOGY 2016; 221:636-644. [PMID: 27693729 DOI: 10.1016/j.biortech.2016.09.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 06/06/2023]
Abstract
Two-stage acid/alkali pretreatment was used to enhance the saccharification efficiency of sweet sorghum fiber. The physicochemical characterizations of the pretreated fibers were evaluated by SEM, FTIR and XRD. The acid and alkali sequence in the two-stage pretreatment process was compared, and their dosage was optimized. The results indicated that the two-stage pretreatment showed better saccharification performance when compared with conventional single stage pretreatment. And compared with the acid-alkali sequence, the alkali-acid sequence achieved higher glucose yield (0.23g·g-1) under the optimized conditions, which was 1.64 and 1.21 times higher than that of the single stage and the acid-alkali pretreatments, respectively. Overall, the two-stage pretreatment process is a promising approach to achieve high fermentable glucose conversion rate of cellulosic material.
Collapse
Affiliation(s)
- Ping Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changwei Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Shufeng Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Changjing Chen
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yong Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zheng Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
21
|
Sun S, Chen W, Tang J, Wang B, Cao X, Sun S, Sun RC. Synergetic effect of dilute acid and alkali treatments on fractional application of rice straw. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:217. [PMID: 27777619 PMCID: PMC5069894 DOI: 10.1186/s13068-016-0632-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/04/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND The biorefinery based on an effective and economical process is to fractionate the three primary constituents (cellulose, hemicelluloses, and lignin) from lignocellulosic biomass, in which the constituents can be respectively converted into high-value-added products. In this study, a successive treatment with dilute acid (0.25-1.0 % aqueous H2SO4, 100-150 °C, 0.5-3.0 h) and alkali (1.5 % aqueous NaOH, 80 °C, 3 h) was performed to produce xylooligosaccharides (XOS), high-purity lignin, and cellulose-rich substrates to produce glucose for ethanol production from rice straw (RS). RESULTS During the dilute acid pretreatment, the maximum production of XOS (12.8 g XOS/100 g RS) with a relatively low level of byproducts was achieved at a relatively low temperature (130 °C) and a low H2SO4 concentration (0.5 %) for a reaction time of 2.0 h. During the alkali post-treatment, 14.2 g lignin with a higher purity of 99.2 % and 30.3 g glucose with a higher conversion rate by enzymatic hydrolysis were obtained from the successively treated substrates with 100 g RS as starting material. As the pretreatment temperature, H2SO4 concentration, or time increased, more β-O-4 linkages in lignins were cleaved, which resulted in an increase of phenolic OH groups in lignin macromolecules. The signal intensities of G2 and G6 in HSQC spectra gradually reduced and vanished, indicating that a condensation reaction probably occurred at C-2 and C-6 of guaiacyl with the side chains of other lignin. CONCLUSIONS The present study demonstrated that the successive treatments with dilute acid and alkali had a synergetic effect on the fractionation of the three main constituents in RS. It is believed that the results obtained will enhance the availability of the combined techniques in the lignocellulosic biorefinery for the application of the main components, cellulose, hemicelluloses, and lignin as biochemical and biofuels.
Collapse
Affiliation(s)
- Shaolong Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Weijing Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Jianing Tang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Bing Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Xuefei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Shaoni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Run-Cang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
22
|
Wang ZW, Zhu MQ, Li MF, Wang JQ, Wei Q, Sun RC. Comprehensive evaluation of the liquid fraction during the hydrothermal treatment of rapeseed straw. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:142. [PMID: 27418947 PMCID: PMC4944426 DOI: 10.1186/s13068-016-0552-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/23/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND The requirement for efficient and green conversion technologies has prompted hydrothermal processing as a promising treatment option for sustainable biorefinery industry. The treatment has been applied to process plenty of lignocellulose materials, yielding abundant high value-degraded products, especially the products in the liquid fraction. Therefore, it is essential to systematically evaluate the degraded products in aqueous fraction by comprehensive analysis and structural characterization during the treatment. RESULTS Rapeseed straw was hydrothermally treated at temperature ranging from 145 to 205 °C for various retention time (15, 30, 60 and 120 min), and the degraded polysaccharides and lignin products in aqueous phase were systematically evaluated by comprehensive analysis and structural characterization. Results showed that with an increase of severity, the polymers were gradually depolymerized resulting in a decrease of the molecular weight from 8430 (log R 0 3.26) to 2130 g/mol (log R 0 5.08), an increase of oligosaccharides from 19.44 (log R 0 2.88) to 99.94 g/kg (log R 0 4.32) and an increase of monosaccharides from 0.91 (log R 0 2.88) to 30.43 g/kg (log R 0 4.37). With the increase of monosaccharide degradation components (8.26 to 125.68 g/kg), the saccharides gradually decreased after its maximum value. The maximum yield of oligosaccharides (99.94 g/kg) accompanying a relatively low level of monosaccharides (17.77 g/kg) was obtained at a high temperature (190 °C) for a short reaction time (15 min). The degraded polysaccharides had a linear backbone of (1 → 4)-linked β-d-xylopyranosyl xylan decorated with branches based on 2D NMR spectra analysis. Lignin was strongly condensed with a decrease of S/G ratio as the severity increased. The yields of the degraded constitutions have a incomplete linear correlation with the treatment severity. CONCLUSIONS The liquid fractions obtained from hydrothermal treatment were subjected to comprehensive analysis and structural characterization. Results indicated that hydrothermal treatment had a significant influence on the composition and structure of the polysaccharides and lignin in the aqueous phase. The treatment could be adopted to obtain XOS-rich fraction with limited formation of by-products. In addition, the result was expected to further reveal the mechanisms of hydrothermal treatment on rapeseed straw and to facilitate the value-added applications of agricultural residues in the biorefinery industry.
Collapse
Affiliation(s)
- Zhi-Wen Wang
- />College of Forestry, Northwest A&F University, Yangling, 712100 China
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Ming-Qiang Zhu
- />College of Forestry, Northwest A&F University, Yangling, 712100 China
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Ming-Fei Li
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Jun-Qi Wang
- />College of Forestry, Northwest A&F University, Yangling, 712100 China
| | - Qin Wei
- />College of Forestry, Northwest A&F University, Yangling, 712100 China
| | - Run-Cang Sun
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
23
|
Yu Q, Zhuang X, Yuan Z, Kong X, Qi W, Wang W, Wang Q, Tan X. Influence of lignin level on release of hemicellulose-derived sugars in liquid hot water. Int J Biol Macromol 2015; 82:967-72. [PMID: 26484600 DOI: 10.1016/j.ijbiomac.2015.10.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 11/26/2022]
Abstract
Lignin layers surrounding hemicelluloses and cellulose in the plant cell walls protect them from deconstruction. This recalcitrance to sugar release is a major limitation for cost-effective industrial conversion of lignocellulosic biomass to biofuels. Many literatures had reported the contribution of lignin removal to cellulose accessibility to enzyme, but less to the hemicellulose hydrolysis. Herein, beech xylan with lignin addition, partly delignified sugarcane bagasse (SB), energy sorghum hybrids (ESH) were treated in liquid hot water (LHW) to investigate the effect of lignin on hemicellulose decomposition. The addition of lignin can enhance the low degree of polymerization of xylooligomers production resulted from the acid catalyzed cleavage of lignin-derived acidic products. However, a negative correlation was observed initially between the lignin level and the total xylose yield from ESH. Furthermore, samples with lignin addition or high lignin content had a great resistant to harsh reaction environment, about 93.5% total xylose lost but only 52.3% released due to the lack of lignin protection for the sample with 100% lignin removal.
Collapse
Affiliation(s)
- Qiang Yu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Xinshu Zhuang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhenhong Yuan
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Xiaoying Kong
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wei Qi
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wen Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qiong Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academic of Sciences, Beijing 100039, China
| | - Xuesong Tan
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|