1
|
Xu Y, Feng J, Hu Y, Chen L, Qin W, Chen C, Yan M, Guo H. Hub Metabolites Promote the Bioflocculant Production in a Biomass-Degrading Bacterium Pseudomonas boreopolis GO2. Microb Physiol 2024; 35:1-12. [PMID: 39616990 DOI: 10.1159/000542892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION The low yield of bioflocculants has been a bottleneck problem that limits their industrial applications. Understanding the metabolic mechanism of bacteria that produce bioflocculants could provide valuable insights and strategies to directly regulate their yield in future. METHODS To investigate the change of metabolites in the process of bioflocculant production by a biomass-degrading bacterium, Pseudomonas boreopolis GO2, an untargeted metabolome analysis was performed. RESULTS The results showed that metabolites significantly differed during the fermentation process when corn stover was used as the sole carbon source. The differential metabolites were divided into four co-expression modules based on the weighted gene co-expression network analysis. Among them, a module (yellow module) was closely related to the flocculating efficiency, and the metabolites in this module were mainly involved in carbohydrate, lipid, and amino acid metabolism. The top 30 metabolites with the highest degree in the yellow module were identified as hub metabolites for bioflocculant production. Finally, 10 hub metabolites were selected to perform the additional experiments, and the addition of L-rhamnose, tyramine, tryptophan, and glutaric acid alone all could significantly improve the flocculating efficiency of GO2 strain. CONCLUSION These results indicated that the hub metabolites were key for bioflocculant production in GO2 strain, and could help guide the improvement of high-efficiency and low-cost bioflocculant production.
Collapse
Affiliation(s)
- Yijie Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jiayin Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - YuXuan Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Chen Chen
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Zhejiang Mariculture Research Institute, Wenzhou, China
- Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Maocang Yan
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Zhejiang Mariculture Research Institute, Wenzhou, China
- Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Haipeng Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Girão M, Murillo-Alba J, Martín J, Pérez-Victoria I, Leite RB, Urbatzka R, Leão PN, Carvalho MF, Reyes F. Cellulamides: A New Family of Marine-Sourced Linear Peptides from the Underexplored Cellulosimicrobium Genus. Mar Drugs 2024; 22:268. [PMID: 38921579 PMCID: PMC11204466 DOI: 10.3390/md22060268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Bioprospecting the secondary metabolism of underexplored Actinomycetota taxa is a prolific route to uncover novel chemistry. In this work, we report the isolation, structure elucidation, and bioactivity screening of cellulamides A and B (1 and 2), two novel linear peptides obtained from the culture of the macroalga-associated Cellulosimicrobium funkei CT-R177. The host of this microorganism, the Chlorophyta Codium tomentosum, was collected in the northern Portuguese coast and, in the scope of a bioprospecting study focused on its associated actinobacterial community, strain CT-R177 was isolated, taxonomically identified, and screened for the production of antimicrobial and anticancer compounds. Dereplication of a crude extract of this strain using LC-HRMS(/MS) analysis unveiled a putative novel natural product, cellulamide A (1), that was isolated following mass spectrometry-guided fractionation. An additional analog, cellulamide B (2) was obtained during the chromatographic process and chemically characterized. The chemical structures of the novel linear peptides, including their absolute configurations, were elucidated using a combination of HRMS, 1D/2D NMR spectroscopy, and Marfey's analysis. Cellulamide A (1) was subjected to a set of bioactivity screenings, but no significant biological activity was observed. The cellulamides represent the first family of natural products reported from the Actinomycetota genus Cellulosimicrobium, showcasing not only the potential of less-explored taxa but also of host-associated marine strains for novel chemistry discovery.
Collapse
Affiliation(s)
- Mariana Girão
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (R.U.); (P.N.L.); (M.F.C.)
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - José Murillo-Alba
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, 18016 Armilla, Spain; (J.M.-A.); (J.M.); (I.P.-V.)
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, 18016 Armilla, Spain; (J.M.-A.); (J.M.); (I.P.-V.)
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, 18016 Armilla, Spain; (J.M.-A.); (J.M.); (I.P.-V.)
| | - Ricardo B. Leite
- Genomics Unit, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| | - Ralph Urbatzka
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (R.U.); (P.N.L.); (M.F.C.)
| | - Pedro N. Leão
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (R.U.); (P.N.L.); (M.F.C.)
| | - Maria F. Carvalho
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (R.U.); (P.N.L.); (M.F.C.)
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, 18016 Armilla, Spain; (J.M.-A.); (J.M.); (I.P.-V.)
| |
Collapse
|
3
|
Bahniuk MS, Alidina F, Tan X, Unsworth LD. The last 25 years of research on bioflocculants for kaolin flocculation with recent trends and technical challenges for the future. Front Bioeng Biotechnol 2022; 10:1048755. [PMID: 36507274 PMCID: PMC9731118 DOI: 10.3389/fbioe.2022.1048755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
The generation of kaolin-containing wastewater is an inevitable consequence in a number of industries including mining, wastewater treatment, and bitumen processing. In some cases, the production of kaolin tailings waste during the production of bitumen or phosphate is as high as 3 times greater than the actual produced product. The existing inventory of nearly five billion barrels of oil sands tailings alone represents a massive storage and reclamation challenge, as well as a significant economic and environmental liability. Current reclamation options like inorganic coagulants and organic synthetic polymers may settle kaolin effectively, but may themselves pose an additional environmental hazard. Bioflocculants are an emerging alternative, given the inherent safety and biodegradability of their bio-based compositions. This review summarizes the different research attempts towards a better bioflocculant of kaolin, with a focus on the bioflocculant source, composition, and effective flocculating conditions. Bacillus bacteria were the most prevalent single species for bioflocculant production, with wastewater also hosting a large number of bioflocculant-producing microorganisms while serving as an inexpensive nutrient. Effective kaolin flocculation could be obtained over a broad range of pH values (1-12) and temperatures (5-95°C). Uronic acid and glutamic acid were predominant sugars and amino acids, respectively, in a number of effective bioflocculants, potentially due to their structural and charge similarities to effective synthetic polymers like polyacrylamide. Overall, these results demonstrate that bioflocculants can be produced from a wide range of microorganisms, can be composed of polysaccharides, protein or glycoproteins and can serve as effective treatment options for kaolin. In some cases, the next obstacle to their wide-spread application is scaling to industrially relevant volumes and their deployment strategies.
Collapse
|
4
|
Sodhi AS, Sharma N, Bhatia S, Verma A, Soni S, Batra N. Insights on sustainable approaches for production and applications of value added products. CHEMOSPHERE 2022; 286:131623. [PMID: 34346348 DOI: 10.1016/j.chemosphere.2021.131623] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The increasing demand for the development of sustainable strategies to utilize and process agro-industrial residues paves new paths for exploring innovative approaches in this area. Biotechnology based microbial transformations provide efficient, low cost and sustainable approaches for the production of value added products. The use of organic rich residues opens new avenues for the production of enzymes, pigments, biofuels, bioactive compounds, biopolymers etc. with vast industrial and therapeutic applications. Innovative technologies like strain improvement, enzyme immobilization, genome editing, morphological engineering, ultrasound/supercritical fluid/pulse electric field extraction, etc. can be employed. These will be helpful in achieving significant improvement in qualitative and quantitative parameters of the finished products. The global trend for the valorisation of biowaste has boosted the commercialization of these products which has transformed the markets by providing new investment opportunities. The upstream processing of raw materials using microbes poses a limitation in terms of product development and recovery which can be overcome by modifying the bioreactor design, physiological parameters or employing alternate technologies which will be discussed in this review. The other problems related to the processes include product stability, industrial applicability and cost competitiveness which needs to be addressed. This review comprehensively discusses the recent progress, avenues and challenges in the approaches aimed at valorisation of agro-industrial wastes along with possible opportunities in the bioeconomy.
Collapse
Affiliation(s)
- Abhinashi Singh Sodhi
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Neetu Sharma
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Sonu Bhatia
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Anoop Verma
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Sajeev Soni
- Department of Chemistry, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Navneet Batra
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India.
| |
Collapse
|
5
|
Verdel N, Rijavec T, Rybkin I, Erzin A, Velišček Ž, Pintar A, Lapanje A. Isolation, Identification, and Selection of Bacteria With Proof-of-Concept for Bioaugmentation of Whitewater From Wood-Free Paper Mills. Front Microbiol 2021; 12:758702. [PMID: 34671337 PMCID: PMC8521037 DOI: 10.3389/fmicb.2021.758702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
In the wood-free paper industry, whitewater is usually a mixture of additives for paper production. We are currently lacking an efficient, cost-effective purification technology for their removal. In closed whitewater cycles the additives accumulate, causing adverse production problems, such as the formation of slime and pitch. The aim of our study was to find an effective bio-based strategy for whitewater treatment using a selection of indigenous bacterial isolates. We first obtained a large collection of bacterial isolates and then tested them individually by simple plate and spectrophotometric methods for their ability to degrade the papermaking additives, i.e., carbohydrates, resin acids, alkyl ketene dimers, polyvinyl alcohol, latex, and azo and fluorescent dyes. We examined correlation between carbon source use, genera, and inoculum source of isolates using two multivariate methods: principal component analysis and FreeViz projection. Of the 318 bacterial isolates, we selected a consortium of four strains (Xanthomonadales bacterium sp. CST37-CF, Sphingomonas sp. BLA14-CF, Cellulosimicrobium sp. AKD4-BF and Aeromonas sp. RES19-BTP) that degrade the entire spectrum of tested additives by means of dissolved organic carbon measurements. A proof-of-concept study on a pilot scale was then performed by immobilizing the artificial consortium of the four strains and inserting them into a 33-liter, tubular flow-through reactor with a retention time of < 15 h. The consortium caused an 88% reduction in the COD of the whitewater, even after 21 days.
Collapse
Affiliation(s)
- Nada Verdel
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tomaž Rijavec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Iaroslav Rybkin
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anja Erzin
- Faculty of Chemistry and Chemical Technology, Graduate School, University of Ljubljana, Ljubljana, Slovenia
| | | | - Albin Pintar
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Aleš Lapanje
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
6
|
Li NJ, Lan Q, Wu JH, Liu J, Zhang XH, Zhang F, Yu HQ. Soluble microbial products from the white-rot fungus Phanerochaete chrysosporium as the bioflocculant for municipal wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146662. [PMID: 34030296 DOI: 10.1016/j.scitotenv.2021.146662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Soluble microbial products (SMP), a type of polymers released from microbial metabolism and decay, show great potential for wastewater treatment as bioflocculants; however, biogenic flocculant utilization is currently limited to bacterial SMP. In this study, SMP produced by Phanerochaete chrysosporium BKMF-1767 (SMP-P) was investigated to determine the application potential of fungal SMP. SMP-P exhibited high flocculation activity in kaolin suspension at a dosage range of 0.67-0.84 mg/L with Ca2+ assistance, comparable to that of commercial polyacrylamide. The high molecular weight polysaccharides (2.0 × 106-4.7 × 107 Da) in SMP-P, which enabled flocculation via the bridging mechanism and served as the dominant active constituent, were composed of glucose and arabinose at a molar ratio of 1: 0.03, with (1 → 4, 6)-linked glucose as the main backbone and a small proportion of branched structures. They contained hydroxyl and carboxyl, effective functional groups for the flocculation process, and displayed parallel self-orientation behavior in water. Efficient chemical oxygen demand removal was achieved during municipal wastewater treatment using SMP-P as the bioflocculant. This study demonstrates the feasibility of utilizing fugal SMP as bioflocculants and provides guidance for their practical application.
Collapse
Affiliation(s)
- Ning-Jie Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qi Lan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xue-Hong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Feng Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China.
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Extracellular Polymeric Substances (EPS) as Microalgal Bioproducts: A Review of Factors Affecting EPS Synthesis and Application in Flocculation Processes. ENERGIES 2021. [DOI: 10.3390/en14134007] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microalgae are natural resources of intracellular compounds with a wide spectrum of applications in, e.g., the food industry, pharmacy, and biofuel production. The extracellular polymeric substances (EPS) released by microalgal cells are a valuable bioproduct. Polysaccharides, protein, lipids, and DNA are the main constituents of EPS. This review presents the recent advances in the field of the determinants of the synthesis of extracellular polymeric substances by microalgal cells and the EPS structure. Physical and chemical culture conditions have been analyzed to achieve useful insights into the development of a strategy optimizing EPS production by microalgal cells. The application of microalgal EPS for flocculation and mechanisms involved in this process are also discussed in terms of biomass harvesting. Additionally, the ability of EPS to remove toxic heavy metals has been analyzed. With their flocculation and sorption properties, microalgal EPS are a promising bioproduct that can potentially be used in harvesting algal biomass and wastewater management.
Collapse
|
8
|
Liu C, Sun D, Liu J, Zhu J, Liu W. Recent advances and perspectives in efforts to reduce the production and application cost of microbial flocculants. BIORESOUR BIOPROCESS 2021; 8:51. [PMID: 38650196 PMCID: PMC10992557 DOI: 10.1186/s40643-021-00405-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023] Open
Abstract
Microbial flocculants are macromolecular substances produced by microorganisms. Due to its non-toxic, harmless, and biodegradable advantages, microbial flocculants have been widely used in various industrial fields, such as wastewater treatment, microalgae harvest, activated sludge dewatering, heavy metal ion adsorption, and nanoparticle synthesis, especially in the post-treatment process of fermentation with high safety requirement. However, compared with the traditional inorganic flocculants and organic polymeric flocculants, the high production cost is the main bottleneck that restricts the large-scale production and application of microbial flocculants. To reduce the production cost of microbial flocculant, a series of efforts have been carried out and some exciting research progresses have been achieved. This paper summarized the research advances in the last decade, including the screening of high-yield strains and the construction of genetically engineered strains, search of cheap alternative medium, the extraction and preservation methods, microbial flocculants production as an incidental product of other biological processes, combined use of traditional flocculant and microbial flocculant, and the production of microbial flocculant promoted by inducer. Moreover, this paper prospects the future research directions to further reduce the production cost of microbial flocculants, thereby promoting the industrial production and large-scale application of microbial flocculants.
Collapse
Affiliation(s)
- Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
9
|
Nunes HMAR, Vieira IMM, Santos BLP, Silva DP, Ruzene DS. Biosurfactants produced from corncob: a bibliometric perspective of a renewable and promising substrate. Prep Biochem Biotechnol 2021; 52:123-134. [PMID: 34081569 DOI: 10.1080/10826068.2021.1929319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The reuse of agro-industrial waste has been a recurring issue since the 20th century. With a composition rich in carbohydrates and because of the massive amount of residue produced daily all over the world, corncob became a low-cost and suitable substrate to produce high added-value compounds. Biosurfactants are bioproducts of versatile applications due to their chemical structure with hydrophilic and hydrophobic regions. The current work performed a bibliometric analysis to identify research related to the synthesis of biosurfactants using corncob as substrate. Despite the high availability of corncobs, only nine articles were found in Scopus and Web of Science using different pretreatment processes and microorganisms. After an initial screening, data regarding research organizations, scientific journals, citations, countries, institutions, and keywords were analyzed. Results indicated that corncobs were also used to produce enzymes, adsorbents, activated carbon, and furfural. The presented evaluation updated the status of art, identifying a serious need for more research, especially because of corncob's high potential to provide fermentable sugars and the wide range of variables influencing fermentation processes that still need to be studied. A future association of this low-cost substrate with other methods can result in a promising scenario for technology transference.
Collapse
Affiliation(s)
| | - Isabela Maria Monteiro Vieira
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, Brazil.,Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Brenda Lohanny Passos Santos
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, Brazil.,Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Daniel Pereira Silva
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, Brazil.,Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Denise Santos Ruzene
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, Brazil.,Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, Brazil
| |
Collapse
|
10
|
Ray A, Banerjee S, Das D. Microalgal bio-flocculation: present scenario and prospects for commercialization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26294-26312. [PMID: 33797715 DOI: 10.1007/s11356-021-13437-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The need for sustainable production of renewable biofuel has been a global concern in the recent times. Overcoming the tailbacks of the first- and second-generation biofuels, third-generation biofuel using microalgae as feedstock has emerged as a plausible alternative. It has an added advantage of preventing any greenhouse gas (GHG) emissions with simultaneous carbon dioxide sequestration. Dewatering of microalgal culture is one of the many concerns regarding industrial-scale biofuel production. The small size of microalgae and dilute nature of its growth cultures creates huge operational cost during biomass separation, limiting economic feasibility of algae-based fuels. Considering the recovery efficiency, operation economics, technological feasibility and cost-effectiveness, bio-flocculation is a promising method of harvesting. Moreover, advantage of bio-flocculation over other conventional methods is that it does not incur the addition of any external chemical flocculants. This article reviews the current status of bio-flocculation technique for harvesting microalgae at industrial scale. The various microbial strains that can be prospective bioflocculants have been reviewed along with its application and advantages over chemical flocculants. Also, this article proposes that the primary focus of an appropriate harvesting technique should depend on the final utilization of the harvested biomass. This review article attempts to bring forth the beneficial aspects of microbial aided microalgal harvesting with a special attention on genetically modified self-flocculation microalgae.
Collapse
Affiliation(s)
- Ayusmita Ray
- P K Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sanjukta Banerjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Debabrata Das
- P K Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
11
|
A state-of-the-art review on the synthetic mechanisms, production technologies, and practical application of polyunsaturated fatty acids from microalgae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102281] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Hua JQ, Zhang R, Chen RP, Liu GX, Yin K, Yu L. Energy-saving preparation of a bioflocculant under high-salt condition by using strain Bacillus sp. and the interaction mechanism towards heavy metals. CHEMOSPHERE 2021; 267:129324. [PMID: 33352365 DOI: 10.1016/j.chemosphere.2020.129324] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
A highly efficient bioflocculant, i.e., Na-Bsp was successfully prepared by using a tolerant strain-Bacillus sp. under high-salt condition without sterilization. Salt-containing medium was not infected by other strains throughout the whole incubation period in 168 h. The as-prepared Na-Bsp was found to be cation-dependent, exhibiting high flocculant efficiency (FE) i.e., 97.69 ± 0.61%, towards kaolin particles by aid of Fe3+. High FE values were well maintained under a wide pH range and/or boiled water treatment, likely because of the main constituent of polysaccharide. The presence of hydroxyl, carboxyl, and amine groups on the bioflocculant surface were possibly responsible for strong interactions with heavy metals. The adsorption capacities of Pb2+, Cu2+ and Cr6+ were 1000.0, 434.8 and 384.6 mg g-1, respectively. The changing of structure and configuration of bioflocculant during the metal adsorption were explored by the scanning electron microscope with electron energy loss spectroscopy and three-dimensional excitation-emission fluorescence spectrometry. This study provided a novel production method, whereby the conventional sterilization could be avoided, which is of great environmental significance for steam-saving. Furthermore, the as-prepared Na-Bsp exhibited high adsorption capacities toward heavy metals, which sheds lights on its potential usage as an alternative adsorbent.
Collapse
Affiliation(s)
- Jing-Qiu Hua
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; School of Environmental Science, Nanjing XiaoZhuang University, Nanjing, 211171, China
| | - Rui Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Rong-Ping Chen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Guang-Xiang Liu
- School of Environmental Science, Nanjing XiaoZhuang University, Nanjing, 211171, China
| | - Ke Yin
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; School of Environmental Science, Nanjing XiaoZhuang University, Nanjing, 211171, China.
| |
Collapse
|
13
|
Marine Actinobacteria Bioflocculant: A Storehouse of Unique Biotechnological Resources for Wastewater Treatment and Other Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The bioactive compounds produced by actinobacteria have played a major role in antimicrobials, bioremediation, biofuels, enzymes, and anti-cancer activities. Biodegradable microbial flocculants have been produced by bacteria, algae, and fungi. Microbial bioflocculants have also attracted biotechnology importance over chemical flocculants as a result of degradability and environmentally friendly attributes they possess. Though, freshwater actinobacteria flocculants have been explored in bioflocculation. Yet, there is a paucity of information on the application of actinobacteria flocculants isolated from the marine environment. Similarly, marine habitats that supported the biodiversity of actinobacteria strains in the field of biotechnology have been underexplored in bioflocculation. Hence, this review reiterates the need to optimize culture conditions and other parameters that affect bioflocculant production by using a response surface model or artificial neural network.
Collapse
|
14
|
Zhong C, Sun S, Zhang D, Liu L, Zhou S, Zhou J. Production of a bioflocculant from ramie biodegumming wastewater using a biomass-degrading strain and its application in the treatment of pulping wastewater. CHEMOSPHERE 2020; 253:126727. [PMID: 32289609 DOI: 10.1016/j.chemosphere.2020.126727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/29/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
The major bottleneck for industrial applications of microbial flocculants is the high production cost. Here, a novel bacterium, Diaphorobacter nitroreducens R9, was isolated that can secret ligninase and cellulase and simultaneously produce bioflocculants (MBF-9) through conversion of ramie biomass. The production of MBF-9 was closely related to the ligninase and cellulase activities of D. nitroreducens. Both ligninase and cellulase showed peak activity at pH 8.5 and 6.0 and retained approximately 80% of cellulase activity and 95% of ligninase activity at pH 8.0. The optimal production conditions with the highest bioflocculant yield (3.86 g/L degumming wastewater) were determined at a fermentation time of 48 h, fermentation temperature of 30 °C, inoculum size of 4.0%, CODCr of ramie degumming wastewater of 1500 mg/L and initial pH of 8.0. In addition, MBF-9 removed 96.2% turbidity, 79.5% chemical oxygen demand (COD), 59.2% lignin, and 63.1% sugar from the pulping wastewater at an MBF-9 dosage of 831.57 mg/L.
Collapse
Affiliation(s)
- Chunying Zhong
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China; Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Chemistry and Biology Science College, Hubei University of Education, Wuhan, 430205, China
| | - Su Sun
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dajie Zhang
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China.
| | - Liu Liu
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Shen Zhou
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Jiangang Zhou
- Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, China.
| |
Collapse
|
15
|
Liu W, Dong Z, Sun D, Dong Q, Wang S, Zhu J, Liu C. Production of bioflocculant using feather waste as nitrogen source and its use in recycling of straw ash-washing wastewater with low-density and high pH property. CHEMOSPHERE 2020; 252:126495. [PMID: 32199160 DOI: 10.1016/j.chemosphere.2020.126495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Straw ash-washing wastewater is generated in the process of straw combustion power generation and potash fertilizer production. The suspended solid particles in straw ash-washing wastewater are hard to be settled down due to its low-density and high pH properties which inhibit the application of traditional chemical flocculants. Bioflocculant has good advantages in flocculating activity, biodegradability and adaptability of wastewater pH fluctuation. However, high production cost limited the large-scale applications of bioflocculant in wastewater treatment. In this study, the feasibility of using feather waste as cheap alternative nitrogen source of alkaliphilic Bacillus agaradhaerens C9 to produce bioflocculant was investigated. The results showed that strain C9 could simultaneously produce keratinase and bioflocculant, and thereby producing bioflocculant (named as BFF) using feather waste as cheap nitrogen source. The optimal fermentation conditions for enzymatic hydrolysis of feather waste and BFF production was 40 g/L feather wastes, 16 g/L glucose, 37 °C and pH 9.5, and the highest yield of 2.5 g/L was obtained. Moreover, BFF was used to flocculate straw ash-washing wastewater which exhibits low-density and high pH properties, and the highest flocculating rate of 93.1% was achieved when 6.0 mg/L BFF was added. This study reported for the first time that feather waste was used as inexpensive alternative nitrogen source for producing bioflocculant which could treat straw ash-washing wastewater, thereby promoting the resourceful utilization of feather waste and the reuse of straw ash-washing wastewater.
Collapse
Affiliation(s)
- Weijie Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Zhen Dong
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Di Sun
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Qinxin Dong
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xian, 710069, Shaanxi Province, China
| | - Jingrong Zhu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Cong Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| |
Collapse
|
16
|
Qi X, Zheng Y, Tang N, Zhou J, Sun S. Bioconversion of citrus peel wastes into bioflocculants and their application in the removal of microcystins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136885. [PMID: 32041043 DOI: 10.1016/j.scitotenv.2020.136885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
In this study, the mechanism for converting citrus peel wastes (CPW) into bioflocculants using Alcaligenes faecalis subsp. phenolicus ZY-16 was analysed. The results demonstrated that the ZY-16 strain could produce various lignocellulolytic enzymes, containing cellulase, hemicellulase, pectinase, protease, and ligninase, enhancing the hydrolysis of citrus peel wastes. Molecular distillation removes antimicrobial limonene, which could inhibit bioflocculant production. The optimal fermentation conditions with the highest bioflocculant yield (3.49 g/L) were 38.79 g/L of CPW, 35.54 °C, and pH 4.48. Furthermore, the bioflocculant was used to eliminate microcystins for the first time, and the highest removal efficiency (90.05%) was achieved at a pH of 3.0, after 800 mg/L of bioflocculant was added into the microcystins solution (10 mg/L) for 60 min. Therefore, this paper demonstrated that CPW could be a cost-effective feedstock for the production of bioflocculants, which have potential application in microcystin removal.
Collapse
Affiliation(s)
- Xiaoli Qi
- College of Life Sciences, Jiamusi University, Jiamusi 154007, China; School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Yongliang Zheng
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China
| | - Ningjia Tang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Jiangang Zhou
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China.
| | - Su Sun
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Yu L, Hua JQ, Fan HC, George O, Lu Y. Simultaneous nitriles degradation and bioflocculant production by immobilized K. oxytoca strain in a continuous flow reactor. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121697. [PMID: 31767504 DOI: 10.1016/j.jhazmat.2019.121697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
High cost is one of the limiting factors in the industrial production of bioflocculant. Simultaneous preparation of bioflocculant from the contaminants in wastewater was considered as a potential approach to reduce the production cost. In this study, butyronitrile and succinonitrile were verified as sole nitrogen sources for the growth of strain K. oxytoca GS-4-08 in batch experiments. Moreover, more than 90 % of the mixed nitriles could be degraded in a continuous flow reactor, and the bioflocculant could be prepared simultaneously in the effluent. All the as-prepared bioflocculants exhibited high flocculation efficiencies of over 90 % toward Kaolin solution. FTIR and XPS results further unveiled that, the bioflocculant samples with abundance of carboxyl, amine and hydroxyl groups may play an important role on adsorption of Pd2+. The adsorption process could be well simulated by Freundlich model, and the Kf values were as high as 452.8 mg1-1/n l1/n g-1. The results obtained in this study not only confirm the technical feasibility for preparation of bioflocculant from various single nitrile and/or mixed nitriles, but also promise its economic feasibility.
Collapse
Affiliation(s)
- Lei Yu
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Jing-Qiu Hua
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hong-Cheng Fan
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Oduro George
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Lu
- Institute of Engineering, Architecture & Information Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
18
|
Chen S, Sun S, Zhong C, Wang T, Zhang Y, Zhou J. Bioconversion of lignocellulose and simultaneous production of cellulase, ligninase and bioflocculants by Alcaligenes faecalis-X3. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Mohammed JN, Wan Dagang WRZ. Implications for industrial application of bioflocculant demand alternatives to conventional media: waste as a substitute. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1807-1822. [PMID: 32144213 DOI: 10.2166/wst.2020.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The biodegradability and safety of the bioflocculants make them a potential alternative to non-biodegradable chemical flocculants for wastewater treatment. However, low yield and production cost has been reported to be the limiting factor for large scale bioflocculant production. Although the utilization of cheap nutrient sources is generally appealing for large scale bioproduct production, exploration to meet the demand for them is still low. Although much progress has been achieved at laboratory scale, Industrial production and application of bioflocculant is yet to be viable due to cost of the production medium and low yield. Thus, the prospects of bioflocculant application as an alternative to chemical flocculants is linked to evaluation and utilization of cheap alternative and renewable nutrient sources. This review evaluates the latest literature on the utilization of waste/wastewater as an alternative substitute for conventional expensive nutrient sources. It focuses on the mechanisms and metabolic pathways involved in microbial flocculant synthesis, culture conditions and nutrient requirements for bioflocculant production, pre-treatment, and also optimization of waste substrate for bioflocculant synthesis and bioflocculant production from waste and their efficiencies. Utilization of wastes as a microbial nutrient source drastically reduces the cost of bioflocculant production and increases the appeal of bioflocculant as a cost-effective alternative to chemical flocculants.
Collapse
Affiliation(s)
- Jibrin Ndejiko Mohammed
- Department of Microbiology, Ibrahim Badamasi Babangida University, PMB11, Lapai, Niger State, Nigeria; Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor, Malaysia E-mail:
| | | |
Collapse
|
20
|
Qi Z, Zhu Y, Guo H, Chen Y, Zhao Y, Zhou Y, Wang X, Yang Y, Qin W, Shao Q. Production of glycoprotein bioflocculant from untreated rice straw by a CAZyme-rich bacterium, Pseudomonas sp. HP2. J Biotechnol 2019; 306:185-192. [PMID: 31629784 DOI: 10.1016/j.jbiotec.2019.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
It has been reported that certain biomass-degrading bacteria can produce bioflocculant through directly utilizing untreated biomass as carbon source. However, little is known about the synthesis mechanism of bioflocculant in these bacteria. In this study, a biomass-degrading bacterium Pseudomonas sp. HP2 showing excellent production ability of bioflocculant was isolated from the forest soil. The HP2 strain secreted alkali-thermo-tolerant CMCase and xylanase, with the maximum activities of 0.06 and 1.07 U ml-1, respectively, when the untreated rice straw was used as carbon source. The maximum flocculating efficiency with the value of 92.5% was produced from untreated rice straw by HP2 strain. Component analysis showed that this bioflocculant was abundant in the amino acids and monosaccharides with the total contents of 384.9 and 478.3 mg g-1 dry bioflocculant, respectively. The most amino acid and monosaccharide in this bioflocculant were proline and rhamnose, which accounted for 26.5% and 33.3% of total amino acids and total monosaccharides, respectively. To explore the synthesis mechanism of bioflocculant in HP2, the genome of HP2 strain was measured by Illumina HiSeq PE150 platform. The results showed that the genome of HP2 strain possessed abundant CAZy family related genes, which may play an important role in biomass degradation and bioflocculant synthesis.
Collapse
Affiliation(s)
- Zhenyu Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yueyue Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Haipeng Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yifan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yueji Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xinyue Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yuxiao Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON, P7B 5E1 Canada
| | - Qianjun Shao
- Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
21
|
Liu W, Dong Z, Sun D, Chen Y, Wang S, Zhu J, Liu C. Bioconversion of kitchen wastes into bioflocculant and its pilot-scale application in treating iron mineral processing wastewater. BIORESOURCE TECHNOLOGY 2019; 288:121505. [PMID: 31128543 DOI: 10.1016/j.biortech.2019.121505] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
In this study, the feasibility of converting kitchen waste into bioflocculant using Bacillus agaradhaerens C9 was analyzed. The result showed that strain C9 could secrete various degrading enzymes, including amylase, protease, lipase, cellulase, xylanase and pectinase, promoting the hydrolysis of kitchen waste. Strong alkaline fermentation condition was able to induce the bioflocculant production, and inhibit the growth of contaminated bacteria, which avoids the sterilization process of kitchen waste. The optimum fermentation condition for enzymatic hydrolysis and bioflocculant production was 40 g/L kitchen waste, 37 °C, pH 9.5, and the highest bioflocculant yield of 6.92 g/L was achieved. Furthermore, bioflocculant was applied to treat pilot-scale (30 L) of mineral processing wastewater for the first time, and the removal rate of 92.35% was observed when 9 mg/L bioflocculant was added into wastewater. Therefore, this study could promote the resource utilization of kitchen waste and recycling of mineral processing wastewater.
Collapse
Affiliation(s)
- Weijie Liu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Zhen Dong
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Di Sun
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Ying Chen
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xian 710069, Shanxi Province, China
| | - Jingrong Zhu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Cong Liu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China.
| |
Collapse
|
22
|
Fan HC, Yu J, Chen RP, Yu L. Preparation of a bioflocculant by using acetonitrile as sole nitrogen source and its application in heavy metals removal. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:242-247. [PMID: 30308363 DOI: 10.1016/j.jhazmat.2018.09.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 05/24/2023]
Abstract
A novel bioflocculant, A-GS408, produced by Klebsiella oxytoca GS-4-08 cultured in acetonitrile (ACN) as sole nitrogen source was investigated in this study. A complete degradation of 1 g l-1 of ACN was achieved in 350 h, and 4.6 g of crude A-GS408 can be obtained in one litter of synthetic medium. The as-prepared bioflocculant exhibits good flocculation efficiency (over 90%) toward Kaolin solution with the aid of Fe3+. Chemical analysis showed that the bioflocculant was mainly composed of polysaccharides (46.3%) and proteins (20.6%). FTIR and XPS results indicated the abundant carboxyl, amine and hydroxyl groups in A-GS408 s, which play an important role on Pd2+ and Cu2+ adsorption. The adsorption of heavy metals can be well stimulated by Freundlich isotherm equation, and the Kf was up to 439.2 mg1-1/n l1/n g-1 and 112.2 mg1-1/n l1/n g-1 for Pb2+ and Cu2+, respectively. The kinetic fitting results proved that the adsorption of heavy metals by A-GS408 was chemisorption. This study may provide a new method for preparation of bioflocculant, which can not only degrade toxic compound i.e., acetonitrile, but also can reuse considerable nitrogen source from nitrile-containing wastewater.
Collapse
Affiliation(s)
- Hong-Cheng Fan
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jing Yu
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Rong-Ping Chen
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Lei Yu
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing, 210037, China; Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
23
|
Qiao N, Gao M, Zhang X, Du Y, Fan X, Wang L, Liu N, Yu D. Trichosporon fermentans biomass flocculation from soybean oil refinery wastewater using bioflocculant produced from Paecilomyces sp. M2-1. Appl Microbiol Biotechnol 2019; 103:2821-2831. [PMID: 30680435 DOI: 10.1007/s00253-019-09643-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/01/2019] [Accepted: 01/06/2019] [Indexed: 12/20/2022]
Abstract
The soybean oil refinery (SOR) wastewater contains a high concentration of chemical oxygen demand (COD) and lipid, so the direct emissions of SOR wastewater will result in environmental pollution and waste of resources. Oleaginous yeast Trichosporon fermentans can consume organic materials in SOR wastewater to synthesize microbial oil, which achieves the purpose of SOR wastewater resource utilization. The effective harvesting technology of oleaginous yeasts can improve the utilization efficiency. In this study, Paecilomyces sp. M2-1 with high flocculating activity was isolated. The flocculants produced by M2-1 (MBF2-1) include 75% (w/w) polysaccharides, rely on cations, and display the flocculation percentage of above 77% in the range of pH 2-11. Especially under alkaline conditions, the flocculation percentage can be kept above 97%. The results of scanning electron microscope observation and zeta potential measurements suggested that the bridging, net trapping, and sweeping were the main flocculation mechanism of MBF2-1. MBF2-1 could flocculate T. fermentans that was used to reduce the organic matter in SOR wastewater and to produce microbial oil. Under the optimum conditions, the flocculation percentage of MBF2-1 against T. fermentans from SOR wastewater can reach 95%. Fatty acid content percent in microbial oil from T. fermentans was not almost affected by flocculation of MBF2-1. Moreover, MBF2-1 can further remove 55% and 53% of COD and oil content in the fermented SOR wastewater, respectively. The properties and high flocculating percentage displayed by MBF2-1 indicated its potential application prospect in oleaginous yeast harvest and food industry wastewater treatment.
Collapse
Affiliation(s)
- Nan Qiao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.,School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
| | - Mingxing Gao
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
| | - Xiuzhen Zhang
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, China
| | - Yundi Du
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
| | - Xue Fan
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
| | - Lei Wang
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, China
| | - Na Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
| | - Dayu Yu
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, China.
| |
Collapse
|
24
|
Xia X, Lan S, Li X, Xie Y, Liang Y, Yan P, Chen Z, Xing Y. Characterization and coagulation-flocculation performance of a composite flocculant in high-turbidity drinking water treatment. CHEMOSPHERE 2018; 206:701-708. [PMID: 29783055 DOI: 10.1016/j.chemosphere.2018.04.159] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Klebsiella variicola B16, a microbial bioflocculant (MBF-B16)-producing bacteria, was isolated and identified by its 16S rRNA sequence, biochemical properties, and physiological characteristics. The effects of culture conditions on MBF-B16 production, including carbon source, nitrogen source, C/N ratio, initial pH, and culture temperature, were investigated in this study. Results showed that 6.96 g of MBF-B16 could be extracted from a 1-L culture broth under optimized conditions. Chemical analysis showed that polysaccharide and protein were the main components. The neutral sugar consisted of galactose only, which was proposed in Klebsiella genus for the first time. In addition, a composite flocculant (CF) that contains polyaluminum ferric chloride (PAFC) and MBF-B16 for the removal of turbidity and SS in drinking water was optimized by response surface methodology. CF could reduce PAFC dosage by about 56.2-72%. Charge neutralization and adsorption bridging effect were the primary flocculation mechanisms.
Collapse
Affiliation(s)
- Xiang Xia
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Shuhuan Lan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Yifei Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China.
| | - Yajie Liang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Peihan Yan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Zhengyang Chen
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (SEKL-SW), Chengdu University of Technology State Environmental Protection, Chengdu University of Technology, 610059, Chengdu, PR China
| | - Yunxiao Xing
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Sichuan, PR China
| |
Collapse
|
25
|
|
26
|
Bhatia SK, Bhatia RK, Choi YK, Kan E, Kim YG, Yang YH. Biotechnological potential of microbial consortia and future perspectives. Crit Rev Biotechnol 2018; 38:1209-1229. [PMID: 29764204 DOI: 10.1080/07388551.2018.1471445] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Design of a microbial consortium is a newly emerging field that enables researchers to extend the frontiers of biotechnology from a pure culture to mixed cultures. A microbial consortium enables microbes to use a broad range of carbon sources. It provides microbes with robustness in response to environmental stress factors. Microbes in a consortium can perform complex functions that are impossible for a single organism. With advancement of technology, it is now possible to understand microbial interaction mechanism and construct consortia. Microbial consortia can be classified in terms of their construction, modes of interaction, and functions. Here we discuss different trends in the study of microbial functions and interactions, including single-cell genomics (SCG), microfluidics, fluorescent imaging, and membrane separation. Community profile studies using polymerase chain-reaction denaturing gradient gel electrophoresis (PCR-DGGE), amplified ribosomal DNA restriction analysis (ARDRA), and terminal restriction fragment-length polymorphism (T-RFLP) are also reviewed. We also provide a few examples of their possible applications in areas of biopolymers, bioenergy, biochemicals, and bioremediation.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , South Korea.,b Institute for Ubiquitous Information Technology and Application , Konkuk University , Seoul , South Korea
| | - Ravi Kant Bhatia
- c Department of Biotechnology , Himachal Pradesh University , Shimla , India
| | - Yong-Keun Choi
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , South Korea.,d Texas A&M AGRILIFE Research & Extension Center , Texas A&M University , Stephenville , TX , USA
| | - Eunsung Kan
- d Texas A&M AGRILIFE Research & Extension Center , Texas A&M University , Stephenville , TX , USA
| | - Yun-Gon Kim
- e Department of Chemical Engineering , Soongsil University , Seoul , South Korea
| | - Yung-Hun Yang
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , South Korea.,b Institute for Ubiquitous Information Technology and Application , Konkuk University , Seoul , South Korea
| |
Collapse
|
27
|
Guo H, Hong C, Zhang C, Zheng B, Jiang D, Qin W. Bioflocculants' production from a cellulase-free xylanase-producing Pseudomonas boreopolis G22 by degrading biomass and its application in cost-effective harvest of microalgae. BIORESOURCE TECHNOLOGY 2018; 255:171-179. [PMID: 29414164 DOI: 10.1016/j.biortech.2018.01.082] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
The major problem for industrial application of bioflocculants is its high production cost. Here, a novel bacterium Pseudomonas boreopolis G22, which can secret a cellulase-free xylanase and simultaneously produce bioflocculants (MBF-G22) through directly converting untreated biomass, was isolated. The bioflocculants' production of G22 was closely related to its xylanase activity, hydrolysis ability of biomass and the hemicellulose loss caused by G22. The optimal fermentation conditions with the highest bioflocculants' yield (3.75 mg g-1 dry biomass) were obtained at the fermentation time of 96 h, incubation temperature of 30 °C, inoculum concentration of 1.0% and biomass concentration of 1.0% in an initial pH value of 7.0. MBF-G22 mainly consisted of polysaccharides (63.3%) with a molecular weight of 3.982 × 106 Da and showed the highest flocculating efficiency of 97.1% at a dosage of 3.5 mg L-1. In addition, MBF-G22 showed high flocculating efficiency of microalgae (95.7%) at a dosage of 80 mg L-1.
Collapse
Affiliation(s)
- Haipeng Guo
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Chuntao Hong
- Academy of Agricultural Sciences of Ningbo City, Ningbo 315040, China
| | - Cheng Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China
| | - Dean Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada.
| |
Collapse
|
28
|
Srivastava A, Seo SH, Ko SR, Ahn CY, Oh HM. Bioflocculation in natural and engineered systems: current perspectives. Crit Rev Biotechnol 2018; 38:1176-1194. [DOI: 10.1080/07388551.2018.1451984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ankita Srivastava
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seong-Hyun Seo
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
29
|
Xia X, Liang Y, Lan S, Li X, Xie Y, Yuan W. Production and flocculating properties of a compound biopolymer flocculant from corn ethanol wastewater. BIORESOURCE TECHNOLOGY 2018; 247:924-929. [PMID: 30060431 DOI: 10.1016/j.biortech.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/27/2017] [Accepted: 10/01/2017] [Indexed: 06/08/2023]
Abstract
A compound biopolymer flocculant (CBF) produced using corn ethanol wastewater as substrate was investigated. After optimization of culture conditions, 3.08 g/L of purified CBF was extracted from the culture broth following 48 h of cultivation. The CBF macromolecule is mainly composed of protein (15.9%) and polysaccharide (81.8%). The polysaccharide component includes neutral sugars (28.92%), amino sugars (4.04%) and uronic acid (11.69%), with the neutral sugars being glucose, mannose, and lactose at a molar ratio of 4.1:1.5:1.9. CBF is pH tolerant from 3.0 to 12.0 and thermal tolerant from 20 to 100 °C, allowing for its application over a wide range of conditions. Furthermore, the Langmuir model better describes CBF adsorption on kaolin clay, as compared to the Freundlich model. Charge neutralization and bridging mechanisms are the primary flocculation mechanisms. In addition, CBF shows a high methylene blue removal efficiency. These results indicate that this compound biopolymer flocculant has great potential in dye wastewater treatment.
Collapse
Affiliation(s)
- Xiang Xia
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Yajie Liang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Shuhuan Lan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Yifei Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China.
| | - Wei Yuan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| |
Collapse
|
30
|
Characterization of a novel bioflocculant from a marine bacterium and its application in dye wastewater treatment. BMC Biotechnol 2017; 17:84. [PMID: 29149843 PMCID: PMC5693566 DOI: 10.1186/s12896-017-0404-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/31/2017] [Indexed: 01/15/2023] Open
Abstract
Background The identification of microorganisms with excellent flocculant-producing capability and optimization of the fermentation process are necessary for the wide-scale application of bioflocculants. Thus, we evaluated the flocculant-producing ability of a novel strain identified by the screening of marine bacteria, and we report for the first time the properties of the bioflocculant produced by Alteromonas sp. in the treatment of dye wastewater. Results A bioflocculant-producing bacterium was isolated from seawater and identified as Alteromonas sp. CGMCC 10612. The optimal carbon and nitrogen sources for the strain were 30 g/L glucose and 1.5 g/L wheat flour. In a 2-L fermenter, the flocculating activity and bioflocculant yield reached maximum values of 2575.4 U/mL and 11.18 g/L, respectively. The bioflocculant was separated and showed good heat and pH stability. The purified bioflocculant was a proteoglycan consisting of 69.61% carbohydrate and 21.56% protein (wt/wt). Infrared spectrometry further indicated the presence of hydroxyl, carboxyl and amino groups preferred for flocculation. The bioflocculant was a nanoparticle polymer with an average mass of 394,000 Da. The purified bioflocculant was able to remove Congo Red, Direct Black and Methylene Blue at efficiencies of 98.5%, 97.9% and 72.3% respectively. Conclusions The results of this study indicated that the marine strain Alteromonas sp. is a good candidate for the production of a novel bioflocculant and suggested its potential industrial utility for biotechnological processes. Electronic supplementary material The online version of this article (10.1186/s12896-017-0404-z) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Liu C, You Y, Zhao R, Sun D, Zhang P, Jiang J, Zhu A, Liu W. Biosurfactant production from Pseudomonas taiwanensis L1011 and its application in accelerating the chemical and biological decolorization of azo dyes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:8-15. [PMID: 28689070 DOI: 10.1016/j.ecoenv.2017.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Dye dispersion and the interaction efficiency between azoreductases and dye molecules are rate-limiting steps for the decolorization of azo dyes. In this study, a biosurfactant-producing strain, Pseudomonas taiwanensis L1011, was isolated from crude oil. To increase the yield of the biosurfactant BS-L1011 from P. taiwanensis L1011, culture conditions were optimized including temperature, initial pH, carbon source, nitrogen source and C/N ratio. A maximum yield of 1.12g/L of BS-L1011 was obtained using D-mannitol as carbon source and yeast extract/urea as compound nitrogen source with C/N ratio of 10/4, pH 7.0 and 28°C. BS-L1011 exhibited a low critical micelle concentration (CMC) of 10.5mg/L and was able to reduce the surface tension of water to 25.8±0.1 mN/m. BS-L1011 was stable over a wide range of temperatures, pH values and salt concentrations. The biosurfactant is reported for the first time to accelerate chemical decolorization of Congo red by sodium hypochlorite, and biological decolorization of Amaranth by Bacillus circulans BWL1061, thus showing a potential in the treatment of dyeing wastewater.
Collapse
Affiliation(s)
- Cong Liu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu Province, China
| | - Yanting You
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu Province, China
| | - Ruofei Zhao
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu Province, China
| | - Di Sun
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu Province, China
| | - Peng Zhang
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu Province, China
| | - Jihong Jiang
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu Province, China
| | - Aihua Zhu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu Province, China
| | - Weijie Liu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu Province, China.
| |
Collapse
|
32
|
Complete Genome Sequence of a Novel Bioflocculant-Producing Strain, Microbacterium paludicola CC3. GENOME ANNOUNCEMENTS 2017; 5:5/38/e01008-17. [PMID: 28935746 PMCID: PMC5609425 DOI: 10.1128/genomea.01008-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Microbacterium paludicola CC3 exhibits the capability to produce polysaccharide bioflocculants. Here, we report the whole-genome sequence of M. paludicola CC3, which may be helpful in understanding the genetic basis of the biosynthesis of polysaccharide bioflocculants as well as in promoting its production and application in industrial fields.
Collapse
|
33
|
Muthulakshmi L, Nellaiah H, Kathiresan T, Rajini N, Christopher F. Identification and production of bioflocculants by Enterobacter sp. and Bacillus sp. and their characterization studies. Prep Biochem Biotechnol 2017; 47:458-467. [DOI: 10.1080/10826068.2017.1292287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- L. Muthulakshmi
- Department of Biotechnology, Kalasalingam University, Virudhunagar, Tamilnadu, India
| | - H. Nellaiah
- Research and Development Department, Bangalore Biotech Labs (BiOZEEN), Bangalore, India
| | - T. Kathiresan
- Department of Biotechnology, Kalasalingam University, Virudhunagar, Tamilnadu, India
| | - N. Rajini
- Department of Mechanical Engineering, Kalasalingam University, Virudhunagar, Tamilnadu, India
| | - Fenila Christopher
- Department of Mechanical Engineering, University of West Hungary, Szombathely, Hungary
| |
Collapse
|
34
|
Guo H, Hong C, Zheng B, Lu F, Jiang D, Qin W. Bioflocculants' production in a biomass-degrading bacterium using untreated corn stover as carbon source and use of bioflocculants for microalgae harvest. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:306. [PMID: 29270220 PMCID: PMC5738095 DOI: 10.1186/s13068-017-0987-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/01/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Bioflocculation has been developed as a cost-effective and environment-friendly method to harvest multiple microalgae. However, the high production cost of bioflocculants makes it difficult to scale up. In the current study, low-cost bioflocculants were produced from untreated corn stover by a biomass-degrading bacterium Pseudomonas sp. GO2. RESULTS Pseudomonas sp. GO2 showed excellent production ability of bioflocculants through directly hydrolyzing various biomasses. The untreated corn stover was selected as carbon source for bioflocculants' production due to its highest flocculating efficiency compared to that when using other biomasses as carbon source. The effects of fermentation parameters on bioflocculants' production were optimized via response surface methodology. According to the optimal model, an ideal flocculating efficiency of 99.8% was obtained with the fermentation time of 130.46 h, initial pH of 7.46, and biomass content of 0.64%. The relative importance of carboxymethyl cellulase and xylanase accounted for 51.8% in the process of bioflocculants' production by boosted regression tree analysis, further indicating that the bioflocculants were mainly from the hydrolysates of biomass. Biochemical analysis showed that it contained 59.0% polysaccharides with uronic acid (34.2%), 32.1% protein, and 6.1% nucleic acid in the bioflocculants, which had an average molecular weight as 1.33 × 106 Da. In addition, the bioflocculants showed the highest flocculating efficiency at a concentration of 12.5 mg L-1 and were stable over broad ranges of pH and temperature. The highest flocculating efficiencies obtained for Chlorella zofingiensis and Neochloris oleoabundans were 77.9 and 88.9%, respectively. CONCLUSIONS The results indicated that Pseudomonas sp. GO2 can directly utilize various untreated lignocellulolytic biomasses to produce low-cost bioflocculants, which showed the high efficiency to harvest two green microalgae in a low GO2 fermentation broth/algal culture ratio.
Collapse
Affiliation(s)
- Haipeng Guo
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1 Canada
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Chuntao Hong
- Academy of Agricultural Sciences of Ningbo City, Ningbo, 315040 China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300 China
| | - Fan Lu
- School of Biological Engineering, Hubei University of Technology, Wuhan, 430068 China
| | - Dean Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1 Canada
| |
Collapse
|
35
|
Liu W, Hao Y, Jiang J, Zhu A, Zhu J, Dong Z. Production of a bioflocculant from Pseudomonas veronii L918 using the hydrolyzate of peanut hull and its application in the treatment of ash-flushing wastewater generated from coal fired power plant. BIORESOURCE TECHNOLOGY 2016; 218:318-25. [PMID: 27372012 DOI: 10.1016/j.biortech.2016.06.108] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 05/12/2023]
Abstract
In this study, bioflocculant produced by Pseudomonas veronii L918 was applied to treat ash-flushing wastewater. The strain L918 could convert the hydrolyzate of peanut hull into bioflocculant, which can effectively reduce the production cost of bioflocculant. The yield of 3.39g/L bioflocculant MBF-L918 was achieved when 300mL/L peanut hull hydrolyzate was used as carbon source. The bioflocculant MBF-L918 contains 77.14% polysaccharides and 4.84% proteins, and the molecular weight (MW) of MBF-L918 is 24.77kDa. Furthermore, MBF-L918 showed good flocculating efficiency of 92.51% to ash-flushing wastewater when 2.83mg/L MBF-L918 was added, and thus achieved the recycling of ash-flushing wastewater. This study reported for the first time that the bioflocculant was produced using peanut hull hydrolyzate and effectively applied in the treatment of coal ash-flushing wastewater.
Collapse
Affiliation(s)
- Weijie Liu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China.
| | - Yan Hao
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Jihong Jiang
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Aihua Zhu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Jingrong Zhu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Zhen Dong
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| |
Collapse
|
36
|
Zhao H, Zhong C, Chen H, Yao J, Tan L, Zhang Y, Zhou J. Production of bioflocculants prepared from formaldehyde wastewater for the potential removal of arsenic. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 172:71-76. [PMID: 26921567 DOI: 10.1016/j.jenvman.2016.02.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
A novel bioflocculant (MBF-79) prepared using formaldehyde wastewater as carbon resource was investigated in the study. The optimal conditions for bioflocculant production were determined to be an inoculum size of 7.0%, initial pH of 6.0, and formaldehyde concentration of 350 mg/L. An MBF-79 of 8.97 g/L was achieved as the maximum yield. Three main elements, namely C, H, and O, were present in MBF-79 with relative weigh percentages of 39.17%, 6.74%, and 34.55%, respectively. The Gel permeation chromatography analysis indicated that the approximate molecular weight (MW) of MBF-79 was 230 kDa. MBF-79 primarily comprised polysaccharide (71.2%) and protein (27.9%). Additionally, conditions for the removal of arsenic by MBF-79 were found to be MBF-79 at 120 mg/L, an initial pH 7.0, and a contact time 60 min. Under the optimal conditions, the removal efficiencies of arsenate (0.5 mg/L) and arsenite (0.5 mg/L) were 98.9% and 84.6%, respectively. Overall, these findings indicate bioflocculation offers an effective alternative method of decreasing arsenic during water treatment.
Collapse
Affiliation(s)
- Haijuan Zhao
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; School of Mathematics and Economics, Hubei University of Education, Wuhan 430205, China
| | - Chunying Zhong
- Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients, Chemistry and Biology Science College, Hubei University of Education, Wuhan 430205, China
| | - Honggao Chen
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Jie Yao
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Liqing Tan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Youlang Zhang
- Department of Political Science, Texas A&M University, College Station, 77843, USA
| | - Jiangang Zhou
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China.
| |
Collapse
|