1
|
Chen Y, Li M, Liu X, Duan Q, Xiao L, Wang L, Huang C, Song H, Cao Y. Establishment of CRISPR-STAR System to Realise Simultaneous Transcriptional Activation and Repression in Yarrowia lipolytica. Microb Biotechnol 2025; 18:e70151. [PMID: 40275527 PMCID: PMC12021669 DOI: 10.1111/1751-7915.70151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
The ability to regulate gene expression in multiple directions is crucial to maximise the production of microbial cell factories. However, the lack of a regulatory tool that can simultaneously activate and repress multiple genes restricts the manipulation diversity of Yarrowia lipolytica, which is an industrial workhorse for bioproduction. To address this issue, we developed a CRISPR scaffold RNAs (scRNAs)-mediated transcriptional activation and repression (CRISPR-STAR) platform. Firstly, we evaluated different methods for bidirectional regulation using CRISPR on both endogenous and synthetic promoters in Y. lipolytica, and chose the utilisation of orthogonal scRNAs to recruit activation and inhibition domains. Secondly, CRISPR-STAR was optimised by the introduction of alternative dCas proteins, scRNA structures and activators. 2.6-fold and 54.9-fold activation were achieved for synthetic and endogenous promoters, respectively, when the VPR transcriptional activator was recruited via MS2 hairpin. The repression of several genes was successfully achieved, with repression levels ranging from 3% to 32%, when the MXI1 transcriptional repressor was recruited via PP7 hairpin. Finally, CRISPR-STAR was applied to enhance fatty alcohol production by activating the FAR gene (encodes fatty acyl-CoA reductase) and repression of the PEX10 gene (encodes an integral membrane protein required for peroxisome biogenesis and matrix protein import). Compared to the non-targeting control, the bidirectionally regulated strain showed a 55.7% increase in yield to 778.8 mg/L. Our findings demonstrate that the CRISPR-STAR platform enables multi-mode regulation of genes, offering engineering opportunities to improve the productive performance of Y. lipolytica.
Collapse
Affiliation(s)
- Yaru Chen
- State Key Laboratory of Synthetic BiologyTianjin UniversityTianjinChina
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Mengxu Li
- State Key Laboratory of Synthetic BiologyTianjin UniversityTianjinChina
| | - Xuanwei Liu
- State Key Laboratory of Synthetic BiologyTianjin UniversityTianjinChina
| | - Qiyang Duan
- State Key Laboratory of Synthetic BiologyTianjin UniversityTianjinChina
| | - Lin Xiao
- State Key Laboratory of Synthetic BiologyTianjin UniversityTianjinChina
| | - Luxin Wang
- State Key Laboratory of Synthetic BiologyTianjin UniversityTianjinChina
| | - Congcong Huang
- State Key Laboratory of Synthetic BiologyTianjin UniversityTianjinChina
| | - Hao Song
- State Key Laboratory of Synthetic BiologyTianjin UniversityTianjinChina
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Yingxiu Cao
- State Key Laboratory of Synthetic BiologyTianjin UniversityTianjinChina
| |
Collapse
|
2
|
Li X, de Assis Souza R, Heinemann M. The rate of glucose metabolism sets the cell morphology across yeast strains and species. Curr Biol 2025; 35:788-798.e4. [PMID: 39879976 DOI: 10.1016/j.cub.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/31/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Yeasts are a diverse group of unicellular fungi that have developed a wide array of phenotypes and traits over 400 million years of evolution. However, we still lack an understanding of the biological principles governing the range of cell morphologies, metabolic modes, and reproductive strategies yeasts display. In this study, we explored the relationship between cell morphology and metabolism in sixteen yeast strains across eleven species. We performed a quantitative analysis of the physiology and morphology of these strains and discovered a strong correlation between the glucose uptake rate (GUR) and the surface-area-to-volume ratio. 14C-glucose uptake experiments demonstrated that the GUR for a given strain is governed either by glucose transport capacity or glycolytic rate, indicating that it is rather the rate of glucose metabolism in general that correlates with cell morphology. Furthermore, perturbations in glucose metabolism influenced cell sizes, whereas manipulating cell size did not affect GUR, suggesting that glucose metabolism determines cell size rather than the reverse. Across the strains tested, we also found that the rate of glucose metabolism influenced ethanol production rate, biomass yield, and carbon dioxide transfer rate. Overall, our findings demonstrate that the rate of glucose metabolism is a key factor shaping yeast cell morphology and physiology, offering new insights into the fundamental principles of yeast biology.
Collapse
Affiliation(s)
- Xiang Li
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Robson de Assis Souza
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands; Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
3
|
Saha TR, Kang NK, Lee EY. Advanced metabolic Engineering strategies for the sustainable production of free fatty acids and their derivatives using yeast. J Biol Eng 2024; 18:73. [PMID: 39731138 DOI: 10.1186/s13036-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
The biological production of lipids presents a sustainable method for generating fuels and chemicals. Recognized as safe and enhanced by advanced synthetic biology and metabolic engineering tools, yeasts are becoming versatile hosts for industrial applications. However, lipids accumulate predominantly as triacylglycerides in yeasts, which are suboptimal for industrial uses. Thus, there have been efforts to directly produce free fatty acids and their derivatives in yeast, such as fatty alcohols, fatty aldehydes, and fatty acid ethyl esters. This review offers a comprehensive overview of yeast metabolic engineering strategies to produce free fatty acids and their derivatives. This study also explores current challenges and future perspectives for sustainable industrial lipid production, particularly focusing on engineering strategies that enable yeast to utilize alternative carbon sources such as CO2, methanol, and acetate, moving beyond traditional sugars. This review will guide further advancements in employing yeasts for environmentally friendly and economically viable lipid production technologies.
Collapse
Affiliation(s)
- Tisa Rani Saha
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Nam Kyu Kang
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Yongin- si, Gyeonggi-do, 17104, Republic of Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
4
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
5
|
Coradetti ST, Adamczyk PA, Liu D, Gao Y, Otoupal PB, Geiselman GM, Webb-Robertson BJM, Burnet MC, Kim YM, Burnum-Johnson KE, Magnuson J, Gladden JM. Engineering transcriptional regulation of pentose metabolism in Rhodosporidium toruloides for improved conversion of xylose to bioproducts. Microb Cell Fact 2023; 22:144. [PMID: 37537586 PMCID: PMC10398944 DOI: 10.1186/s12934-023-02148-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Efficient conversion of pentose sugars remains a significant barrier to the replacement of petroleum-derived chemicals with plant biomass-derived bioproducts. While the oleaginous yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) has a relatively robust native metabolism of pentose sugars compared to other wild yeasts, faster assimilation of those sugars will be required for industrial utilization of pentoses. To increase the rate of pentose assimilation in R. toruloides, we leveraged previously reported high-throughput fitness data to identify potential regulators of pentose catabolism. Two genes were selected for further investigation, a putative transcription factor (RTO4_12978, Pnt1) and a homolog of a glucose transceptor involved in carbon catabolite repression (RTO4_11990). Overexpression of Pnt1 increased the specific growth rate approximately twofold early in cultures on xylose and increased the maximum specific growth by 18% while decreasing accumulation of arabitol and xylitol in fast-growing cultures. Improved growth dynamics on xylose translated to a 120% increase in the overall rate of xylose conversion to fatty alcohols in batch culture. Proteomic analysis confirmed that Pnt1 is a major regulator of pentose catabolism in R. toruloides. Deletion of RTO4_11990 increased the growth rate on xylose, but did not relieve carbon catabolite repression in the presence of glucose. Carbon catabolite repression signaling networks remain poorly characterized in R. toruloides and likely comprise a different set of proteins than those mainly characterized in ascomycete fungi.
Collapse
Affiliation(s)
- Samuel T. Coradetti
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA USA
- Present Address: Agricultural Research Service, United States Department of Agriculture, Ithaca, NY USA
| | - Paul A. Adamczyk
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA USA
| | - Di Liu
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA USA
| | - Yuqian Gao
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Pacific Northwest National Laboratory, Richland, WA USA
| | - Peter B. Otoupal
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA USA
| | - Gina M. Geiselman
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA USA
| | | | | | - Young-Mo Kim
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Pacific Northwest National Laboratory, Richland, WA USA
| | - Kristin E. Burnum-Johnson
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Pacific Northwest National Laboratory, Richland, WA USA
| | - Jon Magnuson
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Pacific Northwest National Laboratory, Richland, WA USA
| | - John M. Gladden
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA USA
- Joint BioEnergy Institute, Emeryville, CA USA
| |
Collapse
|
6
|
Werner F, Schwardmann LS, Siebert D, Rückert-Reed C, Kalinowski J, Wirth MT, Hofer K, Takors R, Wendisch VF, Blombach B. Metabolic engineering of Corynebacterium glutamicum for fatty alcohol production from glucose and wheat straw hydrolysate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:116. [PMID: 37464396 DOI: 10.1186/s13068-023-02367-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Fatty acid-derived products such as fatty alcohols (FAL) find growing application in cosmetic products, lubricants, or biofuels. So far, FAL are primarily produced petrochemically or through chemical conversion of bio-based feedstock. Besides the well-known negative environmental impact of using fossil resources, utilization of bio-based first-generation feedstock such as palm oil is known to contribute to the loss of habitat and biodiversity. Thus, the microbial production of industrially relevant chemicals such as FAL from second-generation feedstock is desirable. RESULTS To engineer Corynebacterium glutamicum for FAL production, we deregulated fatty acid biosynthesis by deleting the transcriptional regulator gene fasR, overexpressing a fatty acyl-CoA reductase (FAR) gene of Marinobacter hydrocarbonoclasticus VT8 and attenuating the native thioesterase expression by exchange of the ATG to a weaker TTG start codon. C. glutamicum ∆fasR cg2692TTG (pEKEx2-maqu2220) produced in shaking flasks 0.54 ± 0.02 gFAL L-1 from 20 g glucose L-1 with a product yield of 0.054 ± 0.001 Cmol Cmol-1. To enable xylose utilization, we integrated xylA encoding the xylose isomerase from Xanthomonas campestris and xylB encoding the native xylulose kinase into the locus of actA. This approach enabled growth on xylose. However, adaptive laboratory evolution (ALE) was required to improve the growth rate threefold to 0.11 ± 0.00 h-1. The genome of the evolved strain C. glutamicum gX was re-sequenced, and the evolved genetic module was introduced into C. glutamicum ∆fasR cg2692TTG (pEKEx2-maqu2220) which allowed efficient growth and FAL production on wheat straw hydrolysate. FAL biosynthesis was further optimized by overexpression of the pntAB genes encoding the membrane-bound transhydrogenase of E. coli. The best-performing strain C. glutamicum ∆fasR cg2692TTG CgLP12::(Ptac-pntAB-TrrnB) gX (pEKEx2-maqu2220) produced 2.45 ± 0.09 gFAL L-1 with a product yield of 0.054 ± 0.005 Cmol Cmol-1 and a volumetric productivity of 0.109 ± 0.005 gFAL L-1 h-1 in a pulsed fed-batch cultivation using wheat straw hydrolysate. CONCLUSION The combination of targeted metabolic engineering and ALE enabled efficient FAL production in C. glutamicum from wheat straw hydrolysate for the first time. Therefore, this study provides useful metabolic engineering principles to tailor this bacterium for other products from this second-generation feedstock.
Collapse
Affiliation(s)
- Felix Werner
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, 94315, Straubing, Germany
| | - Lynn S Schwardmann
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Daniel Siebert
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, 94315, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | | | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Marie-Theres Wirth
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, 94315, Straubing, Germany
| | - Katharina Hofer
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, 94315, Straubing, Germany.
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany.
| |
Collapse
|
7
|
System analysis of Lipomyces starkeyi during growth on various plant-based sugars. Appl Microbiol Biotechnol 2022; 106:5629-5642. [PMID: 35906440 DOI: 10.1007/s00253-022-12084-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/02/2022]
Abstract
Oleaginous yeasts have received significant attention due to their substantial lipid storage capability. The accumulated lipids can be utilized directly or processed into various bioproducts and biofuels. Lipomyces starkeyi is an oleaginous yeast capable of using multiple plant-based sugars, such as glucose, xylose, and cellobiose. It is, however, a relatively unexplored yeast due to limited knowledge about its physiology. In this study, we have evaluated the growth of L. starkeyi on different sugars and performed transcriptomic and metabolomic analyses to understand the underlying mechanisms of sugar metabolism. Principal component analysis showed clear differences resulting from growth on different sugars. We have further reported various metabolic pathways activated during growth on these sugars. We also observed non-specific regulation in L. starkeyi and have updated the gene annotations for the NRRL Y-11557 strain. This analysis provides a foundation for understanding the metabolism of these plant-based sugars and potentially valuable information to guide the metabolic engineering of L. starkeyi to produce bioproducts and biofuels. KEY POINTS: • L. starkeyi metabolism reprograms for consumption of different plant-based sugars. • Non-specific regulation was observed during growth on cellobiose. • L. starkeyi secretes β-glucosidases for extracellular hydrolysis of cellobiose.
Collapse
|
8
|
Li M, Zhang J, Bai Q, Fang L, Song H, Cao Y. Non-homologous End Joining-Mediated Insertional Mutagenesis Reveals a Novel Target for Enhancing Fatty Alcohols Production in Yarrowia lipolytica. Front Microbiol 2022; 13:898884. [PMID: 35547152 PMCID: PMC9082995 DOI: 10.3389/fmicb.2022.898884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Non-homologous end joining (NHEJ)-mediated integration is effective in generating random mutagenesis to identify beneficial gene targets in the whole genome, which can significantly promote the performance of the strains. Here, a novel target leading to higher protein synthesis was identified by NHEJ-mediated integration that seriously improved fatty alcohols biosynthesis in Yarrowia lipolytica. One batch of strains transformed with fatty acyl-CoA reductase gene (FAR) showed significant differences (up to 70.53-fold) in fatty alcohol production. Whole-genome sequencing of the high-yield strain demonstrated that a new target YALI0_A00913g ("A1 gene") was disrupted by NHEJ-mediated integration of partial carrier DNA, and reverse engineering of the A1 gene disruption (YlΔA1-FAR) recovered the fatty alcohol overproduction phenotype. Transcriptome analysis of YlΔA1-FAR strain revealed A1 disruption led to strengthened protein synthesis process that was confirmed by sfGFP gene expression, which may account for enhanced cell viability and improved biosynthesis of fatty alcohols. This study identified a novel target that facilitated synthesis capacity and provided new insights into unlocking biosynthetic potential for future genetic engineering in Y. lipolytica.
Collapse
Affiliation(s)
- Mengxu Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Jinlai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Qiuyan Bai
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Lixia Fang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Joshi S, Mishra S. Recent advances in biofuel production through metabolic engineering. BIORESOURCE TECHNOLOGY 2022; 352:127037. [PMID: 35318143 DOI: 10.1016/j.biortech.2022.127037] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Rising global energy demands and climate crisis has created an unprecedented need for the bio-based circular economy to ensure sustainable development with the minimized carbon footprint. Along with conventional biofuels such as ethanol, microbes can be used to produce advanced biofuels which are equivalent to traditional fuels in their energy efficiencies and are compatible with already established infrastructure and hence can be directly blended in higher proportions without overhauling of the pre-existing setup. Metabolic engineering is at the frontiers to develop microbial chassis for biofuel bio-foundries to meet the industrial needs for clean energy. This review does a thorough inquiry of recent developments in metabolic engineering for increasing titers, rates, and yields (TRY) of biofuel production by engineered microorganisms.
Collapse
Affiliation(s)
- Swati Joshi
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India; Central University of Gujarat, Gandhinagar, Gujarat, India.
| | - SukhDev Mishra
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
| |
Collapse
|
10
|
Brar KK, Raheja Y, Chadha BS, Magdouli S, Brar SK, Yang YH, Bhatia SK, Koubaa A. A paradigm shift towards production of sustainable bioenergy and advanced products from Cannabis/hemp biomass in Canada. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-22. [PMID: 35342682 PMCID: PMC8934023 DOI: 10.1007/s13399-022-02570-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 05/22/2023]
Abstract
The global cannabis (Cannabis sativa) market was 17.7 billion in 2019 and is expected to reach up to 40.6 billion by 2024. Canada is the 2nd nation to legalize cannabis with a massive sale of $246.9 million in the year 2021. Waste cannabis biomass is managed using disposal strategies (i.e., incineration, aerobic/anaerobic digestion, composting, and shredding) that are not good enough for long-term environmental sustainability. On the other hand, greenhouse gas emissions and the rising demand for petroleum-based fuels pose a severe threat to the environment and the circular economy. Cannabis biomass can be used as a feedstock to produce various biofuels and biochemicals. Various research groups have reported production of ethanol 9.2-20.2 g/L, hydrogen 13.5 mmol/L, lipids 53.3%, biogas 12%, and biochar 34.6% from cannabis biomass. This review summarizes its legal and market status (production and consumption), the recent advancements in the lignocellulosic biomass (LCB) pre-treatment (deep eutectic solvents (DES), and ionic liquids (ILs) known as "green solvents") followed by enzymatic hydrolysis using glycosyl hydrolases (GHs) for the efficient conversion efficiency of pre-treated biomass. Recent advances in the bioconversion of hemp into oleochemicals, their challenges, and future perspectives are outlined. A comprehensive insight is provided on the trends and developments of metabolic engineering strategies to improve product yield. The thermochemical processing of disposed-off hemp lignin into bio-oil, bio-char, synthesis gas, and phenol is also discussed. Despite some progress, barricades still need to be met to commercialize advanced biofuels and compete with traditional fuels.
Collapse
Affiliation(s)
- Kamalpreet Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3 Canada
- Centre Technologique Des Residue Industriels (CTRI), 433 Boulevard du college, Rouyn-Noranda, J9X0E1 Canada
| | - Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005 India
| | | | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3 Canada
- Centre Technologique Des Residue Industriels (CTRI), 433 Boulevard du college, Rouyn-Noranda, J9X0E1 Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3 Canada
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Seoul, 05029 Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Seoul, 05029 Republic of Korea
| | - Ahmed Koubaa
- Institut de Recherche Sur Les Forêts, Université du Québec en Abitibi-Témiscamingue, Université, Rouyn-Noranda, 445 Boulevard de l’ Université, Rouyn-Noranda, QC J9X5E4 Canada
| |
Collapse
|
11
|
Wei H, Wang W, Knoshaug EP, Chen X, Van Wychen S, Bomble YJ, Himmel ME, Zhang M. Disruption of the Snf1 Gene Enhances Cell Growth and Reduces the Metabolic Burden in Cellulase-Expressing and Lipid-Accumulating Yarrowia lipolytica. Front Microbiol 2022; 12:757741. [PMID: 35003001 PMCID: PMC8733397 DOI: 10.3389/fmicb.2021.757741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/19/2021] [Indexed: 12/01/2022] Open
Abstract
Yarrowia lipolytica is known to be capable of metabolizing glucose and accumulating lipids intracellularly; however, it lacks the cellulolytic enzymes needed to break down cellulosic biomass directly. To develop Y. lipolytica as a consolidated bioprocessing (CBP) microorganism, we previously expressed the heterologous CBH I, CBH II, and EG II cellulase enzymes both individually and collectively in this microorganism. We concluded that the coexpression of these cellulases resulted in a metabolic drain on the host cells leading to reduced cell growth and lipid accumulation. The current study aims to build a new cellulase coexpressing platform to overcome these hinderances by (1) knocking out the sucrose non-fermenting 1 (Snf1) gene that represses the energetically expensive lipid and protein biosynthesis processes, and (2) knocking in the cellulase cassette fused with the recyclable selection marker URA3 gene in the background of a lipid-accumulating Y. lipolytica strain overexpressing ATP citrate lyase (ACL) and diacylglycerol acyltransferase 1 (DGA1) genes. We have achieved a homologous recombination insertion rate of 58% for integrating the cellulases-URA3 construct at the disrupted Snf1 site in the genome of host cells. Importantly, we observed that the disruption of the Snf1 gene promoted cell growth and lipid accumulation and lowered the cellular saturated fatty acid level and the saturated to unsaturated fatty acid ratio significantly in the transformant YL163t that coexpresses cellulases. The result suggests a lower endoplasmic reticulum stress in YL163t, in comparison with its parent strain Po1g ACL-DGA1. Furthermore, transformant YL163t increased in vitro cellulolytic activity by 30%, whereas the “total in vivo newly formed FAME (fatty acid methyl esters)” increased by 16% in comparison with a random integrative cellulase-expressing Y. lipolytica mutant in the same YNB-Avicel medium. The Snf1 disruption platform demonstrated in this study provides a potent tool for the further development of Y. lipolytica as a robust host for the expression of cellulases and other commercially important proteins.
Collapse
Affiliation(s)
- Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Wei Wang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Eric P Knoshaug
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Xiaowen Chen
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Stefanie Van Wychen
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States.,National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Yannick J Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|
12
|
Triacyl Glycerols from Yeast-Catalyzed Batch and Fed-Batch Bioconversion of Hydrolyzed Lignocellulose from Cardoon Stalks. FERMENTATION 2021. [DOI: 10.3390/fermentation7040315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The lipogenic ability of the yeast Solicoccozyma terricola DBVPG 5870 grown on hydrolyzed lignocellulose obtained from cardoon stalks was evaluated. Data on cell biomass, lipid production, and fatty acid profiles of triacylglycerols obtained in batch and fed-batch experiments were carried out at the laboratory scale in a 5L fermenter, and at two different temperatures (20 and 25 °C) were reported. The higher production of total intracellular lipids (13.81 g/L) was found in the fed-batch experiments carried out at 20 °C. S. terricola exhibited the ability to produce high amounts of triacylglycerol (TAGs) with a characteristic fatty acids profile close to that of palm oil. The TAGs obtained from S. terricola grown on pre-treated lignocellulose could be proposed as a supplementary source of oleochemicals. Indeed, due to the rising prices of fossil fuels and because of the environmental-related issues linked to their employment, the use of TAGs produced by S. terricola grown on lignocellulose could represent a promising option as a supplementary oleochemical, especially for biodiesel production.
Collapse
|
13
|
Abeln F, Chuck CJ. The history, state of the art and future prospects for oleaginous yeast research. Microb Cell Fact 2021; 20:221. [PMID: 34876155 PMCID: PMC8650507 DOI: 10.1186/s12934-021-01712-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid-based biofuels, such as biodiesel and hydroprocessed esters, are a central part of the global initiative to reduce the environmental impact of the transport sector. The vast majority of production is currently from first-generation feedstocks, such as rapeseed oil, and waste cooking oils. However, the increased exploitation of soybean oil and palm oil has led to vast deforestation, smog emissions and heavily impacted on biodiversity in tropical regions. One promising alternative, potentially capable of meeting future demand sustainably, are oleaginous yeasts. Despite being known about for 143 years, there has been an increasing effort in the last decade to develop a viable industrial system, with currently around 100 research papers published annually. In the academic literature, approximately 160 native yeasts have been reported to produce over 20% of their dry weight in a glyceride-rich oil. The most intensively studied oleaginous yeast have been Cutaneotrichosporon oleaginosus (20% of publications), Rhodotorula toruloides (19%) and Yarrowia lipolytica (19%). Oleaginous yeasts have been primarily grown on single saccharides (60%), hydrolysates (26%) or glycerol (19%), and mainly on the mL scale (66%). Process development and genetic modification (7%) have been applied to alter yeast performance and the lipids, towards the production of biofuels (77%), food/supplements (24%), oleochemicals (19%) or animal feed (3%). Despite over a century of research and the recent application of advanced genetic engineering techniques, the industrial production of an economically viable commodity oil substitute remains elusive. This is mainly due to the estimated high production cost, however, over the course of the twenty-first century where climate change will drastically change global food supply networks and direct governmental action will likely be levied at more destructive crops, yeast lipids offer a flexible platform for localised, sustainable lipid production. Based on data from the large majority of oleaginous yeast academic publications, this review is a guide through the history of oleaginous yeast research, an assessment of the best growth and lipid production achieved to date, the various strategies employed towards industrial production and importantly, a critical discussion about what needs to be built on this huge body of work to make producing a yeast-derived, more sustainable, glyceride oil a commercial reality.
Collapse
Affiliation(s)
- Felix Abeln
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK.
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | | |
Collapse
|
14
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
15
|
Dai Z, Pomraning KR, Panisko EA, Hofstad BA, Campbell KB, Kim J, Robles AL, Deng S, Magnuson JK. Genetically Engineered Oleaginous Yeast Lipomyces starkeyi for Sesquiterpene α-Zingiberene Production. ACS Synth Biol 2021; 10:1000-1008. [PMID: 33915043 DOI: 10.1021/acssynbio.0c00503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oleaginous yeast, such as Lipomyces starkeyi, are logical organisms for production of higher energy density molecules like lipids and terpenes. We demonstrate that transgenic L. starkeyi strains expressing an α-zingiberene synthase gene from lemon basil or Hall's panicgrass can produce up to 17 mg/L α-zingiberene in yeast extract peptone dextrose (YPD) medium containing 4% glucose. The transgenic strain was further examined in 8% glucose media with C/N ratios of 20 or 100, and YPD. YPD medium resulted in 59 mg/L α-zingiberene accumulation. Overexpression of selected genes from the mevalonate pathway achieved 145% improvement in α-zingiberene synthesis. Optimization of the growth medium for α-zingiberene production led to 15% higher titer than YPD medium. The final transgenic strain produced 700 mg/L α-zingiberene in fed-batch bioreactor culture. This study opens a new synthetic route to produce α-zingiberene or other terpenoids in L. starkeyi and establishes this yeast as a platform for jet fuel biosynthesis.
Collapse
Affiliation(s)
- Ziyu Dai
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kyle R. Pomraning
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ellen A. Panisko
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Beth A. Hofstad
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kristen B. Campbell
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Joonhoon Kim
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ana L. Robles
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Shuang Deng
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jon K. Magnuson
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
16
|
Petkevicius K, Koutsoumpeli E, Betsi PC, Ding BJ, Kildegaard KR, Jensen H, Mezo N, Mazziotta A, Gabrielsson A, Sinkwitz C, Lorantfy B, Holkenbrink C, Löfstedt C, Raptopoulos D, Konstantopoulou M, Borodina I. Biotechnological production of the European corn borer sex pheromone in the yeast Yarrowia lipolytica. Biotechnol J 2021; 16:e2100004. [PMID: 33656777 DOI: 10.1002/biot.202100004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 12/27/2022]
Abstract
The European corn borer (ECB) Ostrinia nubilalis is a widespread pest of cereals, particularly maize. Mating disruption with the sex pheromone is a potentially attractive method for managing this pest; however, chemical synthesis of pheromones requires expensive starting materials and catalysts and generates hazardous waste. The goal of this study was to develop a biotechnological method for the production of ECB sex pheromone. Our approach was to engineer the oleaginous yeast Yarrowia lipolytica to produce (Z)-11-tetradecenol (Z11-14:OH), which can then be chemically acetylated to (Z)-11-tetradecenyl acetate (Z11-14:OAc), the main pheromone component of the Z-race of O. nubilalis. First, a C14 platform strain with increased biosynthesis of myristoyl-CoA was obtained by introducing a point mutation into the α-subunit of fatty acid synthase, replacing isoleucine 1220 with phenylalanine (Fas2pI1220F ). The intracellular accumulation of myristic acid increased 8.4-fold. Next, fatty acyl-CoA desaturases (FAD) and fatty acyl-CoA reductases (FAR) from nine different species of Lepidoptera were screened in the C14 platform strain, individually and in combinations. A titer of 29.2 ± 1.6 mg L-1 Z11-14:OH was reached in small-scale cultivation with an optimal combination of a FAD (Lbo_PPTQ) from Lobesia botrana and FAR (HarFAR) from Helicoverpa armigera. When the second copies of FAD and FAR genes were introduced, the titer improved 2.1-fold. The native FAS1 gene's overexpression led to a further 1.5-fold titer increase, reaching 93.9 ± 11.7 mg L-1 in small-scale cultivation. When the same engineered strain was cultivated in controlled 1 L bioreactors in fed-batch mode, 188.1 ± 13.4 mg L-1 of Z11-14:OH was obtained. Fatty alcohols were extracted from the biomass and chemically acetylated to obtain Z11-14:OAc. Electroantennogram experiments showed that males of the Z-race of O. nubilalis were responsive to biologically-derived pheromone blend. Behavioral bioassays in a wind tunnel revealed attraction of male O. nubilalis, although full precopulatory behavior was observed less often than for the chemically synthesized pheromone blend. The study paves the way for the production of ECB pheromone by fermentation.
Collapse
Affiliation(s)
- Karolis Petkevicius
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.,BioPhero ApS, Copenhagen Ø, Denmark
| | - Eleni Koutsoumpeli
- Chemical Ecology and Natural Products Laboratory, Institute of Biosciences and Applications, National Centre of Scientific Research, Athens, Greece
| | - Petri Christina Betsi
- Chemical Ecology and Natural Products Laboratory, Institute of Biosciences and Applications, National Centre of Scientific Research, Athens, Greece
| | - Bao-Jian Ding
- Department of Biology, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | - Maria Konstantopoulou
- Chemical Ecology and Natural Products Laboratory, Institute of Biosciences and Applications, National Centre of Scientific Research, Athens, Greece
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.,BioPhero ApS, Copenhagen Ø, Denmark
| |
Collapse
|
17
|
Hambalko J, Gajdoš P, Nicaud JM, Ledesma-Amaro R, Tupec M, Pichová I, Čertík M. Production of Long Chain Fatty Alcohols Found in Bumblebee Pheromones by Yarrowia lipolytica. Front Bioeng Biotechnol 2021; 8:593419. [PMID: 33490049 PMCID: PMC7820814 DOI: 10.3389/fbioe.2020.593419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
Fatty alcohols (FA-OH) are aliphatic unbranched primary alcohols with a chain of four or more carbon atoms. Besides potential industrial applications, fatty alcohols have important biological functions as well. In nature, fatty alcohols are produced as a part of a mixture of pheromones in several insect species, such as moths, termites, bees, wasps, etc. In addition, FA-OHs have a potential for agricultural applications, for example, they may be used as a suitable substitute for commercial insecticides. The insecticides have several drawbacks associated with their preparation, and they exert a negative impact on the environment. Currently, pheromone components are prepared mainly through the catalytic hydrogenation of plant oils and petrochemicals, which is an unsustainable, ecologically unfriendly, and highly expensive process. The biotechnological production of the pheromone components using engineered microbial strains and through the expression of the enzymes participating in the biosynthesis of these components is a promising approach that ensures ecological sustenance as well. The present study was aimed at evaluating the production of FA-OHs in the oleaginous yeast, Yarrowia lipolytica, with different lengths of fatty-acyl chains by expressing the fatty acyl-CoA reductase (FAR) BlapFAR4 from B. lapidarius, producing C16:0-OH, C16:1Δ9-OH, and lower quantities of both C14:0-OH and C18:1Δ9-OH, and BlucFAR1 from B. lucorum, producing FA-OHs with a chain length of 18-26 carbon atoms, in this yeast. Among the different novel Y. lipolytica strains used in the present study, the best results were obtained with JMY7086, which carried several lipid metabolism modifications and expressed the BlucFAR1 gene under the control of a strong constitutive promoter 8UAS-pTEF. JMY7086 produced only saturated fatty alcohols with chain lengths from 18 to 24 carbon atoms. The highest titer and accumulation achieved were 166.6 mg/L and 15.6 mg/g DCW of fatty alcohols, respectively. Unlike JMY7086, the BlapFAR4-expressing strain JMY7090 produced only 16 carbon atom-long FA-OHs with a titer of 14.6 mg/L.
Collapse
Affiliation(s)
- Jaroslav Hambalko
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Bratislava, Slovakia
| | - Peter Gajdoš
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Bratislava, Slovakia
| | - Jean-Marc Nicaud
- French National Research Institute for Agriculture (INRAE), Food and Environment, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Michal Tupec
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Milan Čertík
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Bratislava, Slovakia
| |
Collapse
|
18
|
Alahuhta M, Xu Q, Knoshaug EP, Wang W, Wei H, Amore A, Baker JO, Vander Wall T, Himmel ME, Zhang M. Chimeric cellobiohydrolase I expression, activity, and biochemical properties in three oleaginous yeast. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:6. [PMID: 33407766 PMCID: PMC7789491 DOI: 10.1186/s13068-020-01856-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/10/2020] [Indexed: 05/16/2023]
Abstract
Consolidated bioprocessing using oleaginous yeast is a promising modality for the economic conversion of plant biomass to fuels and chemicals. However, yeast are not known to produce effective biomass degrading enzymes naturally and this trait is essential for efficient consolidated bioprocessing. We expressed a chimeric cellobiohydrolase I gene in three different oleaginous, industrially relevant yeast: Yarrowia lipolytica, Lipomyces starkeyi, and Saccharomyces cerevisiae to study the biochemical and catalytic properties and biomass deconstruction potential of these recombinant enzymes. Our results showed differences in glycosylation, surface charge, thermal and proteolytic stability, and efficacy of biomass digestion. L. starkeyi was shown to be an inferior active cellulase producer compared to both the Y. lipolytica and S. cerevisiae enzymes, whereas the cellulase expressed in S. cerevisiae displayed the lowest activity against dilute-acid-pretreated corn stover. Comparatively, the chimeric cellobiohydrolase I enzyme expressed in Y. lipolytica was found to have a lower extent of glycosylation, better protease stability, and higher activity against dilute-acid-pretreated corn stover.
Collapse
Affiliation(s)
- Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Qi Xu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Eric P Knoshaug
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Wei Wang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Antonella Amore
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - John O Baker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Todd Vander Wall
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
19
|
Krishnan A, McNeil BA, Stuart DT. Biosynthesis of Fatty Alcohols in Engineered Microbial Cell Factories: Advances and Limitations. Front Bioeng Biotechnol 2020; 8:610936. [PMID: 33344437 PMCID: PMC7744569 DOI: 10.3389/fbioe.2020.610936] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
Concerns about climate change and environmental destruction have led to interest in technologies that can replace fossil fuels and petrochemicals with compounds derived from sustainable sources that have lower environmental impact. Fatty alcohols produced by chemical synthesis from ethylene or by chemical conversion of plant oils have a large range of industrial applications. These chemicals can be synthesized through biological routes but their free forms are produced in trace amounts naturally. This review focuses on how genetic engineering of endogenous fatty acid metabolism and heterologous expression of fatty alcohol producing enzymes have come together resulting in the current state of the field for production of fatty alcohols by microbial cell factories. We provide an overview of endogenous fatty acid synthesis, enzymatic methods of conversion to fatty alcohols and review the research to date on microbial fatty alcohol production. The primary focus is on work performed in the model microorganisms, Escherichia coli and Saccharomyces cerevisiae but advances made with cyanobacteria and oleaginous yeasts are also considered. The limitations to production of fatty alcohols by microbial cell factories are detailed along with consideration to potential research directions that may aid in achieving viable commercial scale production of fatty alcohols from renewable feedstock.
Collapse
Affiliation(s)
- Anagha Krishnan
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Bonnie A McNeil
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - David T Stuart
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Lee JW, Yook S, Koh H, Rao CV, Jin YS. Engineering xylose metabolism in yeasts to produce biofuels and chemicals. Curr Opin Biotechnol 2020; 67:15-25. [PMID: 33246131 DOI: 10.1016/j.copbio.2020.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 10/22/2022]
Abstract
Xylose is the second most abundant sugar in lignocellulosic biomass. Efficient and rapid xylose utilization is essential for the economic bioconversion of lignocellulosic biomass into value-added products. Building on previous pathway engineering efforts to enable xylose fermentation in Saccharomyces cerevisiae, recent work has focused on reprogramming regulatory networks to enhance xylose utilization by engineered S. cerevisiae. Also, potential benefits of using xylose for the production of various value-added products have been demonstrated. With increasing needs of lipid-derived bioproducts, activation and enhancement of xylose metabolism in oleaginous yeasts have been attempted. This review highlights recent progress of metabolic engineering to achieve efficient and rapid xylose utilization by S. cerevisiae and oleaginous yeasts, such as Yarrowia lipolytica, Rhodosporidium toruloides, and Lipomyces starkeyi.
Collapse
Affiliation(s)
- Jae Won Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sangdo Yook
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyungi Koh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christopher V Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
21
|
Wang W, Knoshaug EP, Wei H, Van Wychen S, Lin CY, Wall TV, Xu Q, Himmel ME, Zhang M. High titer fatty alcohol production in Lipomyces starkeyi by fed-batch fermentation. CURRENT RESEARCH IN BIOTECHNOLOGY 2020. [DOI: 10.1016/j.crbiot.2020.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
22
|
Gao Q, Yang JL, Zhao XR, Liu SC, Liu ZJ, Wei LJ, Hua Q. Yarrowia lipolytica as a Metabolic Engineering Platform for the Production of Very-Long-Chain Wax Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10730-10740. [PMID: 32896122 DOI: 10.1021/acs.jafc.0c04393] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oleaginous yeast Yarrowia lipolytica is an attractive cell factory platform strain and can be used for sustainable production of high-value oleochemical products. Wax esters (WEs) have a good lubricating property and are usually used as a base for the production of advanced lubricants and emollient oils. In this study, we reported the metabolic engineering of Y. lipolytica to heterologously biosynthesize high-content very-long-chain fatty acids (VLCFAs) and fatty alcohols and efficiently esterify them to obtain very-long-chain WEs. Co-expression of fatty acid elongases from different sources in Y. lipolytica could yield VLCFAs with carbon chain lengths up to 24. Combining with optimization of the central metabolic modules could further enhance the biosynthesis of VLCFAs. Furthermore, through the screening of heterologous fatty acyl reductases (FARs), we enabled high-level production of fatty alcohols. Genomic integration and heterologous expression of wax synthase (WS) and FAR in a VLCFA-producing Y. lipolytica strain yielded 95-650 mg/L WEs with carbon chain lengths from 32 to 44. Scaled-up fermentation in 5 L laboratory bioreactors significantly increased the production of WEs to 2.0 g/L, the highest content so far in yeasts. This study contributes to the further efficient biosynthesis of VLCFAs and their derivatives.
Collapse
Affiliation(s)
- Qi Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jing-Lin Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xin-Ru Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Shun-Cheng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhi-Jie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
23
|
Sreeharsha RV, Mohan SV. Obscure yet Promising Oleaginous Yeasts for Fuel and Chemical Production. Trends Biotechnol 2020; 38:873-887. [DOI: 10.1016/j.tibtech.2020.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/08/2023]
|
24
|
Daletos G, Katsimpouras C, Stephanopoulos G. Novel Strategies and Platforms for Industrial Isoprenoid Engineering. Trends Biotechnol 2020; 38:811-822. [DOI: 10.1016/j.tibtech.2020.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
|
25
|
Liu D, Geiselman GM, Coradetti S, Cheng YF, Kirby J, Prahl JP, Jacobson O, Sundstrom ER, Tanjore D, Skerker JM, Gladden J. Exploiting nonionic surfactants to enhance fatty alcohol production in Rhodosporidium toruloides. Biotechnol Bioeng 2020; 117:1418-1425. [PMID: 31981215 PMCID: PMC7187362 DOI: 10.1002/bit.27285] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 01/13/2023]
Abstract
Fatty alcohols (FOHs) are important feedstocks in the chemical industry to produce detergents, cosmetics, and lubricants. Microbial production of FOHs has become an attractive alternative to production in plants and animals due to growing energy demands and environmental concerns. However, inhibition of cell growth caused by intracellular FOH accumulation is one major issue that limits FOH titers in microbial hosts. In addition, identification of FOH‐specific exporters remains a challenge and previous studies towards this end are limited. To alleviate the toxicity issue, we exploited nonionic surfactants to promote the export of FOHs in Rhodosporidium toruloides, an oleaginous yeast that is considered an attractive next‐generation host for the production of fatty acid‐derived chemicals. Our results showed FOH export efficiency was dramatically improved and the growth inhibition was alleviated in the presence of small amounts of tergitol and other surfactants. As a result, FOH titers increase by 4.3‐fold at bench scale to 352.6 mg/L. With further process optimization in a 2‐L bioreactor, the titer was further increased to 1.6 g/L. The method we show here can potentially be applied to other microbial hosts and may facilitate the commercialization of microbial FOH production.
Collapse
Affiliation(s)
- Di Liu
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, California.,Department of Energy, Agile BioFoundry, Emeryville, California
| | - Gina M Geiselman
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, California.,Department of Energy, Agile BioFoundry, Emeryville, California
| | - Samuel Coradetti
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, California.,Department of Energy, Agile BioFoundry, Emeryville, California
| | - Ya-Fang Cheng
- QB3-Berkeley, University of California, Berkeley, California
| | - James Kirby
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, California.,Department of Energy, Agile BioFoundry, Emeryville, California
| | - Jan-Philip Prahl
- Department of Energy, Agile BioFoundry, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, California
| | - Oslo Jacobson
- Department of Energy, Agile BioFoundry, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, California
| | - Eric R Sundstrom
- Department of Energy, Agile BioFoundry, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, California
| | - Deepti Tanjore
- Department of Energy, Agile BioFoundry, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, California
| | | | - John Gladden
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, California.,Department of Energy, Agile BioFoundry, Emeryville, California.,Joint BioEnergy Institute, Emeryville, California
| |
Collapse
|
26
|
Cordova LT, Butler J, Alper HS. Direct production of fatty alcohols from glucose using engineered strains of Yarrowia lipolytica. Metab Eng Commun 2019; 10:e00105. [PMID: 32547923 PMCID: PMC7283507 DOI: 10.1016/j.mec.2019.e00105] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/26/2019] [Indexed: 11/22/2022] Open
Abstract
Fatty alcohols are important industrial oleochemicals with broad applications and a growing market. Here, we sought to engineer Yarrowia lipolytica to serve as a renewable source of fatty alcohols (specifically hexadecanol, heptadecanol, octadecanol, and oleyl alcohol) directly from glucose. Through screening four fatty acyl-CoA reductase (FAR) enzyme variants across two engineered background strains, we identified that MhFAR enabled the highest production. Further strain engineering, fed-batch flask cultivation, and extractive fermentation improved the fatty alcohol titer to 1.5 g/L. Scale-up of this strain in a 2L bioreactor led to 5.8 g/L total fatty alcohols at an average yield of 36 mg/g glucose with a maximum productivity of 39 mg/L hr. Finally, we utilized this fatty alcohol reductase to generate a customized fatty alcohol, linolenyl alcohol, from α-linolenic acid. Overall, this work demonstrates Y. lipolytica is a robust chassis for diverse fatty alcohol production and highlights the capacity to obtain high titers and yields from a purely minimal media formulation directly from glucose without the need for complex additives. Survey of FAR function was assessed in two background strains. Direct production of fatty alcohols from glucose was enabled in minimal media. Fatty alcohol was produced at titers of 5.8 g/L in bioreactors with 36 mg/g average yield. Production of a customized fatty alcohol, linolenyl alcohol, was demonstrated.
Collapse
Affiliation(s)
- Lauren T Cordova
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Jonathan Butler
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA
| |
Collapse
|
27
|
High production of fatty alcohols in Yarrowia lipolytica by coordination with glycolysis. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9456-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
He Q, Yang Y, Yang S, Donohoe BS, Van Wychen S, Zhang M, Himmel ME, Knoshaug EP. Oleaginicity of the yeast strain Saccharomyces cerevisiae D5A. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:258. [PMID: 30258492 PMCID: PMC6151946 DOI: 10.1186/s13068-018-1256-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/10/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND The model yeast, Saccharomyces cerevisiae, is not known to be oleaginous. However, an industrial wild-type strain, D5A, was shown to accumulate over 20% storage lipids from glucose when growth is nitrogen-limited compared to no more than 7% lipid accumulation without nitrogen stress. METHODS AND RESULTS To elucidate the mechanisms of S. cerevisiae D5A oleaginicity, we compared physiological and metabolic changes; as well as the transcriptional profiles of the oleaginous industrial strain, D5A, and a non-oleaginous laboratory strain, BY4741, under normal and nitrogen-limited conditions using analytic techniques and next-generation sequencing-based RNA-Seq transcriptomics. Transcriptional levels for genes associated with fatty acid biosynthesis, nitrogen metabolism, amino acid catabolism, as well as the pentose phosphate pathway and ethanol oxidation in central carbon (C) metabolism, were up-regulated in D5A during nitrogen deprivation. Despite increased carbon flux to lipids, most gene-encoding enzymes involved in triacylglycerol (TAG) assembly were expressed at similar levels regardless of the varying nitrogen concentrations in the growth media and strain backgrounds. Phospholipid turnover also contributed to TAG accumulation through increased precursor production with the down-regulation of subsequent phospholipid synthesis steps. Our results also demonstrated that nitrogen assimilation via the glutamate-glutamine pathway and amino acid metabolism, as well as the fluxes of carbon and reductants from central C metabolism, are integral to the general oleaginicity of D5A, which resulted in the enhanced lipid storage during nitrogen deprivation. CONCLUSION This work demonstrated the disequilibrium and rebalance of carbon and nitrogen contribution to the accumulation of lipids in the oleaginous yeast S. cerevisiae D5A. Rather than TAG assembly from acyl groups, the major switches for the enhanced lipid accumulation of D5A (i.e., fatty acid biosynthesis) are the increases of cytosolic pools of acetyl-CoA and NADPH, as well as alternative nitrogen assimilation.
Collapse
Affiliation(s)
- Qiaoning He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | | | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Eric P. Knoshaug
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
| |
Collapse
|
29
|
Lipomyces starkeyi: an emerging cell factory for production of lipids, oleochemicals and biotechnology applications. World J Microbiol Biotechnol 2018; 34:147. [DOI: 10.1007/s11274-018-2532-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
|
30
|
Rigouin C, Croux C, Borsenberger V, Ben Khaled M, Chardot T, Marty A, Bordes F. Increasing medium chain fatty acids production in Yarrowia lipolytica by metabolic engineering. Microb Cell Fact 2018; 17:142. [PMID: 30200978 PMCID: PMC6130074 DOI: 10.1186/s12934-018-0989-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/29/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Oleaginous yeast Yarrowia lipolytica is an organism of choice for the development of biofuel and oleochemicals. It has become a chassis for metabolic engineering in order to produce targeted lipids. Understanding the function of key-enzymes involved in lipid metabolism is essential to design better routes for enhanced lipid production and for strains producing lipids of interest. Because medium chain fatty acids (MCFA) are valuable compounds for biokerosene production, we previously generated strains capable of producing MCFA up to 12% of total lipid content (Rigouin et al. in ACS Synth Biol 6:1870-1879, 2017). In order to improve accumulation and content of C14 fatty acid (FA), the elongation, degradation and accumulation of these MCFA in Yarrowia lipolytica were studied. RESULTS We brought evidence of the role of YALI0F0654 (YlELO1) protein in the elongation of exogenous or de novo synthesized C14 FA into C16 FA and C18 FA. YlELO1 deletion into a αFAS_I1220W expressing strain leads to the sole production of C14 FA. However, because this strain does not provide the FA essential for its growth, it requires being cultivated with essential fatty acids and C14 FA yield is limited. To promote MCFA accumulation in Y. lipolytica without compromising the growth, we overexpressed a plant diglyceride acyltransferase specific for MCFA and reached an accumulation of MCFA up to 45% of total lipid content. CONCLUSION We characterized the role of YlELO1 in Y. lipolytica by proving its involvement in Medium chain fatty acids elongation. We showed that MCFA content can be increased in Yarrowia lipolytica by promoting their accumulation into a stable storage form (triacylglycerides) to limit their elongation and their degradation.
Collapse
Affiliation(s)
- Coraline Rigouin
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Christian Croux
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | - Maher Ben Khaled
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Thierry Chardot
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | - Alain Marty
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Florence Bordes
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| |
Collapse
|
31
|
Wang G, Jia W, Chen N, Zhang K, Wang L, Lv P, He R, Wang M, Zhang D. A GFP-fusion coupling FACS platform for advancing the metabolic engineering of filamentous fungi. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:232. [PMID: 30159032 PMCID: PMC6109270 DOI: 10.1186/s13068-018-1223-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The filamentous fungus Trichoderma reesei, the most widely used cellulase producer, also has promising applications in lignocellulose-based biorefinery: consolidated bioprocessing for the production of high value-added products. However, such applications are thwarted by the time-consuming metabolic engineering processes (design-build-test-learn cycle) for T. reesei, resulted from (i) the spore separation-mediated purification as the multinucleate hyphae, (ii) transformant screening for high expression levels since unavailable of episomal expression system, and (iii) cases of inexpressible heterologous proteins. RESULTS In this study, a GFP-fusion coupled fluorescence-activated cell sorting (FACS) platform was established to speed up the build and test process of the DBTL cycle, by enabling rapid selection for expressible heterologous genes and bypassing both laborious spore separation and transformant screening. Here, the feasibility of flow cytometry in analyzing and sorting T. reesei cells harboring GFP-fused expressible protein was proven, as well as the application of the platform for constitutive promoter strength evaluation. As a proof-of-concept, the platform was employed to construct the first T. reesei strain producing fatty alcohol, resulting in up to 2 mg hexadecanol being produced per gram biomass. Pathway construction was enabled through rapid selection of functional fatty acyl-CoA reductase encoding gene Tafar1 from three candidate genes and strains with high expression level from spore pools. As a result of using this method, the total costed time for the build and test cycle using T. reesei, subsequently, reduced by approx. 75% from 2 months to 2 weeks. CONCLUSION This study established the GFP-fusion coupling FACS platform and the first filamentous fungal fatty alcohol-producing cell factory, and demonstrated versatile applications of the platform in the metabolic engineering of filamentous fungi, which can be harnessed to potentially advance the application of filamentous fungi in lignocellulose-based biorefinery.
Collapse
Affiliation(s)
- Guokun Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Wendi Jia
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Na Chen
- Tangshan Academy of Agricultural Sciences, Tangshan, 063001 People’s Republic of China
| | - Ke Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Lixian Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Pin Lv
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Ronglin He
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Min Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Dongyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| |
Collapse
|
32
|
Tupec M, Buček A, Valterová I, Pichová I. Biotechnological potential of insect fatty acid-modifying enzymes. ACTA ACUST UNITED AC 2018; 72:387-403. [PMID: 28742527 DOI: 10.1515/znc-2017-0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/25/2017] [Indexed: 01/26/2023]
Abstract
There are more than one million described insect species. This species richness is reflected in the diversity of insect metabolic processes. In particular, biosynthesis of secondary metabolites, such as defensive compounds and chemical signals, encompasses an extraordinarily wide range of chemicals that are generally unparalleled among natural products from other organisms. Insect genomes, transcriptomes and proteomes thus offer a valuable resource for discovery of novel enzymes with potential for biotechnological applications. Here, we focus on fatty acid (FA) metabolism-related enzymes, notably the fatty acyl desaturases and fatty acyl reductases involved in the biosynthesis of FA-derived pheromones. Research on insect pheromone-biosynthetic enzymes, which exhibit diverse enzymatic properties, has the potential to broaden the understanding of enzyme specificity determinants and contribute to engineering of enzymes with desired properties for biotechnological production of FA derivatives. Additionally, the application of such pheromone-biosynthetic enzymes represents an environmentally friendly and economic alternative to the chemical synthesis of pheromones that are used in insect pest management strategies.
Collapse
|
33
|
Wang Y, Sun Y, You Q, Luo W, Wang C, Zhao S, Chai G, Li T, Shi X, Li C, Jetter R, Wang Z. Three Fatty Acyl-Coenzyme A Reductases, BdFAR1, BdFAR2 and BdFAR3, are Involved in Cuticular Wax Primary Alcohol Biosynthesis in Brachypodium distachyon. PLANT & CELL PHYSIOLOGY 2018; 59:527-543. [PMID: 29329458 DOI: 10.1093/pcp/pcx211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/27/2017] [Indexed: 05/20/2023]
Abstract
Plant cuticular wax is a heterogeneous mixture of very long chain fatty acids (VLCFAs) and their derivatives. Primary alcohols are the dominant wax components throughout leaf development of Brachypodium distachyon (Brachypodium). However, the genes involved in primary alcohol biosynthesis have not been investigated and their exact biological function remains unclear in Brachypodium to date. Here, we monitored the leaf wax profile and crystal morphology during Brachypodium leaf morphogenesis, and isolated three Brachypodium fatty acyl-CoA reductase (FAR) genes, named BdFAR1, BdFAR2 and BdFAR3, then analyzed their biochemical activities, substrate specificities, expression patterns, subcellular localization and stress induction. Transgenic expression of BdFAR genes in yeast (Saccharomyces cerevisiae), tomato (Solanum lycopersicum), Arabidopsis (Arabidopsis thaliana) and Brachypodium increased the production of primary alcohols. The three BdFAR genes were preferentially expressed in Brachypodium aerial tissues, consistent with known sites of wax primary alcohol deposition, and localized in the endoplasmic reticulum (ER) in Arabidopsis protoplasts. Finally, expression of the BdFAR genes was induced by drought, cold and ABA treatments, and drought stress significantly increased cuticular wax accumulation in Brachypodium. Taken together, these results indicate that the three BdFAR genes encode active FARs involved in the biosynthesis of Brachypodium wax primary alcohols and respond to abiotic stresses.
Collapse
Affiliation(s)
- Yong Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yulin Sun
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Qiuye You
- Shanghai Center for Plant Stress Biology, University of Chinese Academy of Sciences, Shanghai 201602, China
| | - Wenqiao Luo
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cong Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuai Zhao
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guaiqiang Chai
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tingting Li
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xue Shi
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunlian Li
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Zhonghua Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
34
|
Xue SJ, Chi Z, Zhang Y, Li YF, Liu GL, Jiang H, Hu Z, Chi ZM. Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications. Crit Rev Biotechnol 2018; 38:1049-1060. [DOI: 10.1080/07388551.2018.1428167] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Si-Jia Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yan-Feng Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
35
|
Optimization of C16 and C18 fatty alcohol production by an engineered strain of Lipomyces starkeyi. ACTA ACUST UNITED AC 2018; 45:1-14. [DOI: 10.1007/s10295-017-1985-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/20/2017] [Indexed: 01/03/2023]
Abstract
Abstract
The oleaginous yeast Lipomyces starkeyi was engineered for the production of long-chain fatty alcohols by expressing a fatty acyl-CoA reductase, mFAR1, from Mus musculus. The optimal conditions for production of fatty alcohols by this strain were investigated. Increased carbon-to-nitrogen ratios led to efficient C16 and C18 fatty alcohol production from glucose, xylose and glycerol. Batch cultivation resulted in a titer of 1.7 g/L fatty alcohol from glucose which represents a yield of 28 mg of fatty alcohols per gram of glucose. This relatively high level of production with minimal genetic modification indicates that L. starkeyi may be an excellent host for the bioconversion of carbon-rich waste streams, particularly lignocellulosic waste, to C16 and C18 fatty alcohols.
Collapse
|
36
|
Jin YS, Cate JHD. Metabolic engineering of yeast for lignocellulosic biofuel production. Curr Opin Chem Biol 2017; 41:99-106. [DOI: 10.1016/j.cbpa.2017.10.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 01/04/2023]
|
37
|
Yaguchi A, Robinson A, Mihealsick E, Blenner M. Metabolism of aromatics by Trichosporon oleaginosus while remaining oleaginous. Microb Cell Fact 2017; 16:206. [PMID: 29149902 PMCID: PMC5693591 DOI: 10.1186/s12934-017-0820-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/11/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The oleaginous yeast, Trichosporon oleaginosus, has been extensively studied for its ability to metabolize non-conventional feedstocks. These include phenol-containing waste streams, such as distillery wastewater, or streams consisting of non-conventional sugars, such as hydrolyzed biomass and various bagasse. An initial BLAST search suggests this yeast has putative aromatic metabolizing genes. Given the desirability to valorize underutilized feedstocks such as lignin, we investigated the ability of T. oleaginosus to tolerate and metabolize lignin-derived aromatic compounds. RESULTS Trichosporon oleaginosus can tolerate and metabolize model lignin monoaromatics and associated intermediates within funneling pathways. Growth rates and biomass yield were similar to glucose when grown in 4-hydroxybenzoic acid (pHBA) and resorcinol, but had an increased lag phase when grown in phenol. Oleaginous behavior was observed using resorcinol as a sole carbon source. Fed-batch feeding resulted in lipid accumulation of 69.5% on a dry weight basis. CONCLUSIONS Though the exact pathway of aromatic metabolism remains to be determined for T. oleaginosus, the results presented in this work motivate use of this organism for lignin valorization and phenolic wastewater bioremediation. Trichosporon oleaginosus is the first yeast shown to be oleaginous while growing on aromatic substrates, and shows great promise as a model industrial microbe for biochemical and biofuel production from depolymerized lignin.
Collapse
Affiliation(s)
- Allison Yaguchi
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| | - Alana Robinson
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| | - Erin Mihealsick
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| |
Collapse
|
38
|
Sellés Vidal L, Kelly CL, Mordaka PM, Heap JT. Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:327-347. [PMID: 29129662 DOI: 10.1016/j.bbapap.2017.11.005] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/27/2017] [Accepted: 11/08/2017] [Indexed: 11/27/2022]
Abstract
NAD(P)H-dependent oxidoreductases catalyze the reduction or oxidation of a substrate coupled to the oxidation or reduction, respectively, of a nicotinamide adenine dinucleotide cofactor NAD(P)H or NAD(P)+. NAD(P)H-dependent oxidoreductases catalyze a large variety of reactions and play a pivotal role in many central metabolic pathways. Due to the high activity, regiospecificity and stereospecificity with which they catalyze redox reactions, they have been used as key components in a wide range of applications, including substrate utilization, the synthesis of chemicals, biodegradation and detoxification. There is great interest in tailoring NAD(P)H-dependent oxidoreductases to make them more suitable for particular applications. Here, we review the main properties and classes of NAD(P)H-dependent oxidoreductases, the types of reactions they catalyze, some of the main protein engineering techniques used to modify their properties and some interesting examples of their modification and application.
Collapse
Affiliation(s)
- Lara Sellés Vidal
- Centre for Synthetic Biology and Innovation, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Ciarán L Kelly
- Centre for Synthetic Biology and Innovation, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Paweł M Mordaka
- Centre for Synthetic Biology and Innovation, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - John T Heap
- Centre for Synthetic Biology and Innovation, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
| |
Collapse
|
39
|
Shi S, Zhao H. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals. Front Microbiol 2017; 8:2185. [PMID: 29167664 PMCID: PMC5682390 DOI: 10.3389/fmicb.2017.02185] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/25/2017] [Indexed: 01/23/2023] Open
Abstract
Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.
Collapse
Affiliation(s)
- Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore, Singapore
| | - Huimin Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
40
|
Yuzbasheva EY, Mostova EB, Andreeva NI, Yuzbashev TV, Fedorov AS, Konova IA, Sineoky SP. A metabolic engineering strategy for producing free fatty acids by the Yarrowia lipolytica yeast based on impairment of glycerol metabolism. Biotechnol Bioeng 2017; 115:433-443. [PMID: 28832949 DOI: 10.1002/bit.26402] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/04/2017] [Accepted: 08/14/2017] [Indexed: 12/23/2022]
Abstract
In recent years, bio-based production of free fatty acids from renewable resources has attracted attention for their potential as precursors for the production of biofuels and biochemicals. In this study, the oleaginous yeast Yarrowia lipolytica was engineered to produce free fatty acids by eliminating glycerol metabolism. Free fatty acid production was monitored under lipogenic conditions with glycerol as a limiting factor. Firstly, the strain W29 (Δgpd1), which is deficient in glycerol synthesis, was obtained. However, W29 (Δgpd1) showed decreased biomass accumulation and glucose consumption in lipogenic medium containing a limiting supply of glycerol. Analysis of substrate utilization from a mixture of glucose and glycerol by the parental strain W29 revealed that glycerol was metabolized first and glucose utilization was suppressed. Thus, the Δgpd1Δgut2 double mutant, which is deficient also in glycerol catabolism, was constructed. In this genetic background, growth was repressed by glycerol. Oleate toxicity was observed in the Δgpd1Δgut2Δpex10 triple mutant strain which is deficient additionally in peroxisome biogenesis. Consequently, two consecutive rounds of selection of spontaneous mutants were performed. A mutant released from growth repression by glycerol was able to produce 136.8 mg L-1 of free fatty acids in a test tube, whereas the wild type accumulated only 30.2 mg L-1 . Next, an isolated oleate-resistant strain produced 382.8 mg L-1 of free fatty acids. Finely, acyl-CoA carboxylase gene (ACC1) over-expression resulted to production of 1436.7 mg L-1 of free fatty acids. The addition of dodecane promoted free fatty acid secretion and enhanced the level of free fatty acids up to 2033.8 mg L-1 during test tube cultivation.
Collapse
Affiliation(s)
- Evgeniya Y Yuzbasheva
- Bioresource Center Russian National Collection of Industrial Microorganisms (BRC VKPM), State Research Institute of Genetics and Selection of Industrial Microorganisms (GosNIIgenetika), Moscow, Russia
| | - Elizaveta B Mostova
- Bioresource Center Russian National Collection of Industrial Microorganisms (BRC VKPM), State Research Institute of Genetics and Selection of Industrial Microorganisms (GosNIIgenetika), Moscow, Russia
| | - Natalia I Andreeva
- Bioresource Center Russian National Collection of Industrial Microorganisms (BRC VKPM), State Research Institute of Genetics and Selection of Industrial Microorganisms (GosNIIgenetika), Moscow, Russia
| | - Tigran V Yuzbashev
- Bioresource Center Russian National Collection of Industrial Microorganisms (BRC VKPM), State Research Institute of Genetics and Selection of Industrial Microorganisms (GosNIIgenetika), Moscow, Russia
| | - Alexander S Fedorov
- Bioresource Center Russian National Collection of Industrial Microorganisms (BRC VKPM), State Research Institute of Genetics and Selection of Industrial Microorganisms (GosNIIgenetika), Moscow, Russia
| | - Irina A Konova
- National Research Centre "Kurchatov Institute," NBICS-Centre, Biotechnology and Bioenergy Laboratory, Moscow, Russia
| | - Sergey P Sineoky
- Bioresource Center Russian National Collection of Industrial Microorganisms (BRC VKPM), State Research Institute of Genetics and Selection of Industrial Microorganisms (GosNIIgenetika), Moscow, Russia
| |
Collapse
|
41
|
Vermaas JV, Beckham GT, Crowley MF. Membrane Permeability of Fatty Acyl Compounds Studied via Molecular Simulation. J Phys Chem B 2017; 121:11311-11324. [PMID: 29040809 DOI: 10.1021/acs.jpcb.7b08233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interest in fatty acid-derived products as fuel and chemical precursors has grown substantially. Microbes can be genetically engineered to produce fatty acid-derived products that are able to cross host membranes and can be extracted into an applied organic overlay. This process is thought to be passive, with a rate dependent on the chemistry of the crossing compound. The relationship between the chemical composition and the energetics and kinetics of product accumulation within the overlay is not well understood. Through biased and unbiased molecular simulation, we compute the membrane permeability coefficients from production to extraction for different fatty acyl products, including fatty acids, fatty alcohols, fatty aldehydes, alkanes, and alkenes. These simulations identify specific interactions that accelerate the transit of aldehydes across the membrane bilayer relative to other oxidized products, specifically the lack of hydrogen bonds to the surrounding membrane environment. However, since extraction from the outer membrane leaflet into the organic phase is found to be rate limiting for the entire process, we find that fatty alcohols and fatty aldehydes would both manifest similar fluxes into a dodecane overlay under equivalent conditions, outpacing the accumulation of acids or alkanes into the organic phase. Since aldehydes are known to be highly reactive as well as toxic in high quantities, the findings suggest that indeed fatty alcohols are the optimal long-tail fatty acyl product for extraction.
Collapse
Affiliation(s)
- Josh V Vermaas
- Biosciences Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - Gregg T Beckham
- National Bioenergy Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - Michael F Crowley
- Biosciences Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| |
Collapse
|
42
|
Xu Q, Knoshaug EP, Wang W, Alahuhta M, Baker JO, Yang S, Vander Wall T, Decker SR, Himmel ME, Zhang M, Wei H. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi. Microb Cell Fact 2017; 16:126. [PMID: 28738851 PMCID: PMC5525229 DOI: 10.1186/s12934-017-0742-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/13/2017] [Indexed: 11/29/2022] Open
Abstract
Background Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. Results To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose two prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Conclusions Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel production. The effectiveness of the tested secretion signals will also benefit future secretion of other heterologous proteins in L. starkeyi and, given the effectiveness of the cross-genus secretion signal, possibly other oleaginous yeasts as well. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0742-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Xu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Eric P Knoshaug
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Wei Wang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - John O Baker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Shihui Yang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Todd Vander Wall
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Stephen R Decker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Min Zhang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
43
|
Adrio JL. Oleaginous yeasts: Promising platforms for the production of oleochemicals and biofuels. Biotechnol Bioeng 2017; 114:1915-1920. [DOI: 10.1002/bit.26337] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/05/2017] [Accepted: 05/11/2017] [Indexed: 12/24/2022]
Affiliation(s)
- José L. Adrio
- Neol Biosolutions; SA. Avicena, 4. Parque Tecnológico de la Salud 18016 Granada Spain
| |
Collapse
|
44
|
Shabbir Hussain M, M Rodriguez G, Gao D, Spagnuolo M, Gambill L, Blenner M. Recent advances in bioengineering of the oleaginous yeast Yarrowia lipolytica. AIMS BIOENGINEERING 2016. [DOI: 10.3934/bioeng.2016.4.493] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|