1
|
Raymond Eder ML, Caffaratti A, Rosa AL. Polymorphic amino acid tract lengths in wine yeast coding microsatellites: different S. cerevisiae YPL009c and SCYOR267C alleles predict proteins with major primary sequence and structural alterations without apparent functional disruption. Mol Genet Genomics 2025; 300:51. [PMID: 40415010 DOI: 10.1007/s00438-025-02257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/27/2025] [Indexed: 05/27/2025]
Abstract
Yeast microsatellite loci consist of short tandem-repeated DNA sequences of variable length useful for strain differentiation, population genetics, and evolutionary biology. We have previously shown that, besides the variable number of their tandem-repeated motifs (TRM), allelic variants for some microsatellite loci of wine yeast species are also dependent on SNPs and/or indels flanking their TRM. In this work, we show that TRM for some microsatellite loci of the wine yeasts H. uvarum, S. cerevisiae, T. delbrueckii, B. bruxellensis, and M. guilliermondii are located within protein-coding sequences, most of them resulting in predicted polymorphic tracts of charged amino acid residues (i.e., E, Q, D, and N). In silico analyses predict that variations in the TRM lengths of S. cerevisiae microsatellites YPL009c and SCYOR267C, located within the coding sequences of the RQC2 and HRK1 genes, respectively, significantly disrupt the structure of the encoded proteins Rqc2 and Hrk1. Indigenous S. cerevisiae strains carrying TRM allelic variants that could potentially disrupt Rqc2 and Hrk1 function, do not exhibit the increased sensitivity to cycloheximide and acetic acid observed in ΔRQC2 and ΔHRK1 deletion strains, respectively. Interestingly, S. cerevisiae isolates carrying identical TRM alleles in either the RQC2 or HRK1 genes exhibit different growth behaviors in response to cycloheximide or acetic acid, suggesting that the genomic background contributes to the observed phenotypes. Taken together, our results suggest that coding microsatellites are common in wine yeast and may be located in regions of proteins that do not disrupt their function, and/or in proteins with a high degree of structural plasticity.
Collapse
Affiliation(s)
- María Laura Raymond Eder
- Laboratorio de Genética y Biología Celular y Molecular, Departamento de Farmacología Otto Orsingher, IFEC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre S/N, Córdoba, Argentina.
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Agustina Caffaratti
- Laboratorio de Genética y Biología Celular y Molecular, Departamento de Farmacología Otto Orsingher, IFEC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre S/N, Córdoba, Argentina
| | - Alberto Luis Rosa
- Laboratorio de Genética y Biología Celular y Molecular, Departamento de Farmacología Otto Orsingher, IFEC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre S/N, Córdoba, Argentina.
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
2
|
Cámara E, Mormino M, Siewers V, Nygård Y. Saccharomyces cerevisiae strains performing similarly during fermentation of lignocellulosic hydrolysates show pronounced differences in transcriptional stress responses. Appl Environ Microbiol 2024; 90:e0233023. [PMID: 38587374 PMCID: PMC11107148 DOI: 10.1128/aem.02330-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Improving our understanding of the transcriptional changes of Saccharomyces cerevisiae during fermentation of lignocellulosic hydrolysates is crucial for the creation of more efficient strains to be used in biorefineries. We performed RNA sequencing of a CEN.PK laboratory strain, two industrial strains (KE6-12 and Ethanol Red), and two wild-type isolates of the LBCM collection when cultivated anaerobically in wheat straw hydrolysate. Many of the differently expressed genes identified among the strains have previously been reported to be important for tolerance to lignocellulosic hydrolysates or inhibitors therein. Our study demonstrates that stress responses typically identified during aerobic conditions such as glutathione metabolism, osmotolerance, and detoxification processes also are important for anaerobic processes. Overall, the transcriptomic responses were largely strain dependent, and we focused our study on similarities and differences in the transcriptomes of the LBCM strains. The expression of sugar transporter-encoding genes was higher in LBCM31 compared with LBCM109 that showed high expression of genes involved in iron metabolism and genes promoting the accumulation of sphingolipids, phospholipids, and ergosterol. These results highlight different evolutionary adaptations enabling S. cerevisiae to strive in lignocellulosic hydrolysates and suggest novel gene targets for improving fermentation performance and robustness. IMPORTANCE The need for sustainable alternatives to oil-based production of biochemicals and biofuels is undisputable. Saccharomyces cerevisiae is the most commonly used industrial fermentation workhorse. The fermentation of lignocellulosic hydrolysates, second-generation biomass unsuited for food and feed, is still hampered by lowered productivities as the raw material is inhibitory for the cells. In order to map the genetic responses of different S. cerevisiae strains, we performed RNA sequencing of a CEN.PK laboratory strain, two industrial strains (KE6-12 and Ethanol Red), and two wild-type isolates of the LBCM collection when cultivated anaerobically in wheat straw hydrolysate. While the response to inhibitors of S. cerevisiae has been studied earlier, this has in previous studies been done in aerobic conditions. The transcriptomic analysis highlights different evolutionary adaptations among the different S. cerevisiae strains and suggests novel gene targets for improving fermentation performance and robustness.
Collapse
Affiliation(s)
- Elena Cámara
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Maurizio Mormino
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Yvonne Nygård
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
3
|
Antunes M, Kale D, Sychrová H, Sá-Correia I. The Hrk1 kinase is a determinant of acetic acid tolerance in yeast by modulating H + and K + homeostasis. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:261-276. [PMID: 38053573 PMCID: PMC10695635 DOI: 10.15698/mic2023.12.809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023]
Abstract
Acetic acid-induced stress is a common challenge in natural environments and industrial bioprocesses, significantly affecting the growth and metabolic performance of Saccharomyces cerevisiae. The adaptive response and tolerance to this stress involves the activation of a complex network of molecular pathways. This study aims to delve deeper into these mechanisms in S. cerevisiae, particularly focusing on the role of the Hrk1 kinase. Hrk1 is a key determinant of acetic acid tolerance, belonging to the NPR/Hal family, whose members are implicated in the modulation of the activity of plasma membrane transporters that orchestrate nutrient uptake and ion homeostasis. The influence of Hrk1 on S. cerevisiae adaptation to acetic acid-induced stress was explored by employing a physiological approach based on previous phosphoproteomics analyses. The results from this study reflect the multifunctional roles of Hrk1 in maintaining proton and potassium homeostasis during different phases of acetic acid-stressed cultivation. Hrk1 is shown to play a role in the activation of plasma membrane H+-ATPase, maintaining pH homeostasis, and in the modulation of plasma membrane potential under acetic acid stressed cultivation. Potassium (K+) supplementation of the growth medium, particularly when provided at limiting concentrations, led to a notable improvement in acetic acid stress tolerance of the hrk1Δ strain. Moreover, abrogation of this kinase expression is shown to confer a physiological advantage to growth under K+ limitation also in the absence of acetic acid stress. The involvement of the alkali metal cation/H+ exchanger Nha1, another proposed molecular target of Hrk1, in improving yeast growth under K+ limitation or acetic acid stress, is proposed.
Collapse
Affiliation(s)
- Miguel Antunes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Deepika Kale
- Laboratory of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4, Czech Republic
| | - Hana Sychrová
- Laboratory of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4, Czech Republic
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
4
|
Mukherjee V, Lenitz I, Lind U, Blomberg A, Nygård Y. CRISPRi screen highlights chromatin regulation to be involved in formic acid tolerance in Saccharomyces cerevisiae. ENGINEERING MICROBIOLOGY 2023; 3:100076. [PMID: 39629247 PMCID: PMC11611036 DOI: 10.1016/j.engmic.2023.100076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/29/2023] [Indexed: 12/07/2024]
Abstract
Formic acid is one of the main weak acids in lignocellulosic hydrolysates that is known to be inhibitory to yeast growth even at low concentrations. In this study, we employed a CRISPR interference (CRISPRi) strain library comprising >9000 strains encompassing >98% of all essential and respiratory growth-essential genes, to study formic acid tolerance in Saccharomyces cerevisiae. To provide quantitative growth estimates on formic acid tolerance, the strains were screened individually on solid medium supplemented with 140 mM formic acid using the Scan-o-Matic platform. Selected resistant and sensitive strains were characterized in liquid medium supplemented with formic acid and in synthetic hydrolysate medium containing a combination of inhibitors. Strains with gRNAs targeting genes associated with chromatin remodeling were significantly enriched for strains showing formic acid tolerance. In line with earlier findings on acetic acid tolerance, we found genes encoding proteins involved in intracellular vesicle transport enriched among formic acid sensitive strains. The growth of the strains in synthetic hydrolysate medium followed the same trend as when screened in medium supplemented with formic acid. Strains sensitive to formic acid had decreased growth in the synthetic hydrolysate and all strains that had improved growth in the presence of formic acid also grew better in the hydrolysate medium. Systematic analysis of CRISPRi strains allowed identification of genes involved in tolerance mechanisms and provided novel engineering targets for bioengineering strains with increased resistance to inhibitors in lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Vaskar Mukherjee
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Biorefinery and Energy, RISE Research Institutes of Sweden, Örnsköldsvik, Sweden
| | - Ibai Lenitz
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Ulrika Lind
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anders Blomberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Yvonne Nygård
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
5
|
The NPR/Hal family of protein kinases in yeasts: biological role, phylogeny and regulation under environmental challenges. Comput Struct Biotechnol J 2022; 20:5698-5712. [PMID: 36320937 PMCID: PMC9596735 DOI: 10.1016/j.csbj.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
Abstract
Protein phosphorylation is the most common and versatile post-translational modification occurring in eukaryotes. In yeast, protein phosphorylation is fundamental for maintaining cell growth and adapting to sudden changes in environmental conditions by regulating cellular processes and activating signal transduction pathways. Protein kinases catalyze the reversible addition of phosphate groups to target proteins, thereby regulating their activity. In Saccharomyces cerevisiae, kinases are classified into six major groups based on structural and functional similarities. The NPR/Hal family of kinases comprises nine fungal-specific kinases that, due to lack of similarity with the remaining kinases, were classified to the “Other” group. These kinases are primarily implicated in regulating fundamental cellular processes such as maintaining ion homeostasis and controlling nutrient transporters’ concentration at the plasma membrane. Despite their biological relevance, these kinases remain poorly characterized and explored. This review provides an overview of the information available regarding each of the kinases from the NPR/Hal family, including their known biological functions, mechanisms of regulation, and integration in signaling pathways in S. cerevisiae. Information gathered for non-Saccharomyces species of biotechnological or clinical relevance is also included.
Collapse
|
6
|
Ribeiro RA, Bourbon-Melo N, Sá-Correia I. The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts. Front Microbiol 2022; 13:953479. [PMID: 35966694 PMCID: PMC9366716 DOI: 10.3389/fmicb.2022.953479] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
In industrial settings and processes, yeasts may face multiple adverse environmental conditions. These include exposure to non-optimal temperatures or pH, osmotic stress, and deleterious concentrations of diverse inhibitory compounds. These toxic chemicals may result from the desired accumulation of added-value bio-products, yeast metabolism, or be present or derive from the pre-treatment of feedstocks, as in lignocellulosic biomass hydrolysates. Adaptation and tolerance to industrially relevant stress factors involve highly complex and coordinated molecular mechanisms occurring in the yeast cell with repercussions on the performance and economy of bioprocesses, or on the microbiological stability and conservation of foods, beverages, and other goods. To sense, survive, and adapt to different stresses, yeasts rely on a network of signaling pathways to modulate the global transcriptional response and elicit coordinated changes in the cell. These pathways cooperate and tightly regulate the composition, organization and biophysical properties of the cell wall. The intricacy of the underlying regulatory networks reflects the major role of the cell wall as the first line of defense against a wide range of environmental stresses. However, the involvement of cell wall in the adaptation and tolerance of yeasts to multiple stresses of biotechnological relevance has not received the deserved attention. This article provides an overview of the molecular mechanisms involved in fine-tuning cell wall physicochemical properties during the stress response of Saccharomyces cerevisiae and their implication in stress tolerance. The available information for non-conventional yeast species is also included. These non-Saccharomyces species have recently been on the focus of very active research to better explore or control their biotechnological potential envisaging the transition to a sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Ricardo A. Ribeiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Bourbon-Melo
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Mota MN, Múgica P, Sá-Correia I. Exploring Yeast Diversity to Produce Lipid-Based Biofuels from Agro-Forestry and Industrial Organic Residues. J Fungi (Basel) 2022; 8:687. [PMID: 35887443 PMCID: PMC9315891 DOI: 10.3390/jof8070687] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Exploration of yeast diversity for the sustainable production of biofuels, in particular biodiesel, is gaining momentum in recent years. However, sustainable, and economically viable bioprocesses require yeast strains exhibiting: (i) high tolerance to multiple bioprocess-related stresses, including the various chemical inhibitors present in hydrolysates from lignocellulosic biomass and residues; (ii) the ability to efficiently consume all the major carbon sources present; (iii) the capacity to produce lipids with adequate composition in high yields. More than 160 non-conventional (non-Saccharomyces) yeast species are described as oleaginous, but only a smaller group are relatively well characterised, including Lipomyces starkeyi, Yarrowia lipolytica, Rhodotorula toruloides, Rhodotorula glutinis, Cutaneotrichosporonoleaginosus and Cutaneotrichosporon cutaneum. This article provides an overview of lipid production by oleaginous yeasts focusing on yeast diversity, metabolism, and other microbiological issues related to the toxicity and tolerance to multiple challenging stresses limiting bioprocess performance. This is essential knowledge to better understand and guide the rational improvement of yeast performance either by genetic manipulation or by exploring yeast physiology and optimal process conditions. Examples gathered from the literature showing the potential of different oleaginous yeasts/process conditions to produce oils for biodiesel from agro-forestry and industrial organic residues are provided.
Collapse
Affiliation(s)
- Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Paula Múgica
- BIOREF—Collaborative Laboratory for Biorefineries, Rua da Amieira, Apartado 1089, São Mamede de Infesta, 4465-901 Matosinhos, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
8
|
Lima CS, Neitzel T, Pirolla R, Dos Santos LV, Lenczak JL, Roberto IC, Rocha GJM. Metabolomic profiling of Spathaspora passalidarum fermentations reveals mechanisms that overcome hemicellulose hydrolysate inhibitors. Appl Microbiol Biotechnol 2022; 106:4075-4089. [PMID: 35622124 DOI: 10.1007/s00253-022-11987-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
Understanding the mechanisms involved in tolerance to inhibitors is the first step in developing robust yeasts for industrial second-generation ethanol (E2G) production. Here, we used ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and MetaboAnalyst 4.0 for analysis of MS data to examine the changes in the metabolic profile of the yeast Spathaspora passalidarum during early fermentation of hemicellulosic hydrolysates containing high or low levels of inhibitors (referred to as control hydrolysate or CH and strategy hydrolysate or SH, respectively). During fermentation of SH, the maximum ethanol production was 16 g L-1 with a yield of 0.28 g g-1 and productivity of 0.22 g L-1 h-1, whereas maximum ethanol production in CH fermentation was 1.74 g L-1 with a yield of 0.11 g g-1 and productivity of 0.01 g L-1 h-1. The high level of inhibitors in CH induced complex physiological and biochemical responses related to stress tolerance in S. passalidarum. This yeast converted compounds with aldehyde groups (hydroxymethylfurfural, furfural, 4-hydroxybenzaldehyde, syringaldehyde, and vanillin) into less toxic compounds, and inhibitors were found to reduce cell viability and ethanol production. Intracellularly, high levels of inhibitors altered the energy homeostasis and redox balance, resulting in lower levels of ATP and NADPH, while that of glycolytic, pentose phosphate, and tricarboxylic acid (TCA) cycle pathways were the most affected, being the catabolism of glucogenic amino acids, the main cellular response to inhibitor-induced stress. This metabolomic investigation reveals interesting targets for metabolic engineering of ethanologenic yeast strains tolerant against multiple inhibitors for E2G production. KEY POINTS: • Inhibitors in the hydrolysates affected the yeast's redox balance and energy status. • Inhibitors altered the glycolytic, pentose phosphate, TCA cycle and amino acid pathways. • S. passalidarum converted aldehyde groups into less toxic compounds.
Collapse
Affiliation(s)
- Cleilton Santos Lima
- Department of Biotechnology, Engineering College of Lorena, University of São Paulo (USP), Estrada Municipal Do Campinho, s/n, Campinho, Lorena, SP, 12602-810, Brazil. .,Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Máximo Scolfaro 10.000, Campinas, SP, 13083-100, Brazil.
| | - Thiago Neitzel
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Máximo Scolfaro 10.000, Campinas, SP, 13083-100, Brazil.,Program in Bioenergy, Faculty of Food Engineering, State University of Campinas (UNICAMP), Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil
| | - Renan Pirolla
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Máximo Scolfaro 10.000, Campinas, SP, 13083-100, Brazil
| | - Leandro Vieira Dos Santos
- Senai Innovation Institute for Biotechnology, São Paulo, SP, 01130-000, Brazil.,Genetics and Molecular Biology Graduate Program, Institute of Biology, State University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, 13083-862, Brazil
| | - Jaciane Lutz Lenczak
- Department of Chemical Engineering and Food Engineering, University Campus - CTC, Federal University of Santa Catarina (UFSC), R. Do Biotério Central, Córrego Grande, s/n Florianópolis, SC, 88040-900, Brazil
| | - Inês Conceição Roberto
- Department of Biotechnology, Engineering College of Lorena, University of São Paulo (USP), Estrada Municipal Do Campinho, s/n, Campinho, Lorena, SP, 12602-810, Brazil
| | - George J M Rocha
- Department of Biotechnology, Engineering College of Lorena, University of São Paulo (USP), Estrada Municipal Do Campinho, s/n, Campinho, Lorena, SP, 12602-810, Brazil. .,Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Máximo Scolfaro 10.000, Campinas, SP, 13083-100, Brazil.
| |
Collapse
|
9
|
Yeast Trk1 Potassium Transporter Gradually Changes Its Affinity in Response to Both External and Internal Signals. J Fungi (Basel) 2022; 8:jof8050432. [PMID: 35628688 PMCID: PMC9144525 DOI: 10.3390/jof8050432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 01/04/2023] Open
Abstract
Yeasts need a high intracellular concentration of potassium to grow. The main K+ uptake system in Saccharomyces cerevisiae is the Trk1 transporter, a complex protein with four MPM helical membrane motifs. Trk1 has been shown to exist in low- or high-affinity modes, which reflect the availability of potassium in the environment. However, when and how the affinity changes, and whether the potassium availability is the only signal for the affinity switch, remains unknown. Here, we characterize the Trk1 kinetic parameters under various conditions and find that Trk1’s KT and Vmax change gradually. This gliding adjustment is rapid and precisely reflects the changes in the intracellular potassium content and membrane potential. A detailed characterization of the specific mutations in the P-helices of the MPM segments reveals that the presence of proline in the P-helix of the second and third MPM domain (F820P and L949P) does not affect the function of Trk1 in general, but rather specifically prevents the transporter’s transition to a high-affinity state. The analogous mutations in the two remaining MPM domains (L81P and L1115P) result in a mislocalized and inactive protein, highlighting the importance of the first and fourth P-helices in proper Trk1 folding and activity at the plasma membrane.
Collapse
|
10
|
How adaptive laboratory evolution can boost yeast tolerance to lignocellulosic hydrolyses. Curr Genet 2022; 68:319-342. [PMID: 35362784 DOI: 10.1007/s00294-022-01237-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 12/25/2022]
Abstract
The yeast Saccharomyces cerevisiae is an excellent candidate for establishing cell factories to convert lignocellulosic biomass into chemicals and fuels. To enable this technology, yeast robustness must be improved to withstand the fermentation inhibitors (e.g., weak organic acids, phenols, and furan aldehydes) resulting from biomass pretreatment and hydrolysis. Here, we discuss how evolution experiments performed in the lab, a method commonly known as adaptive laboratory evolution (ALE), may contribute to lifting yeast tolerance against the inhibitors of lignocellulosic hydrolysates (LCHs). The key is that, through the combination of whole-genome sequencing and reverse engineering, ALE provides a robust platform for discovering and testing adaptive alleles, allowing to explore the genetic underpinnings of yeast responses to LCHs. We review the insights gained from past evolution experiments with S. cerevisiae in LCH inhibitors and propose experimental designs to optimise the discovery of genetic variants adaptive to biomass toxicity. The knowledge gathered through ALE projects is envisaged as a roadmap to engineer superior yeast strains for biomass-based bioprocesses.
Collapse
|
11
|
Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 2022; 57:107947. [DOI: 10.1016/j.biotechadv.2022.107947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
|
12
|
Zeng L, Huang J, Feng P, Zhao X, Si Z, Long X, Cheng Q, Yi Y. Transcriptomic analysis of formic acid stress response in Saccharomyces cerevisiae. World J Microbiol Biotechnol 2022; 38:34. [PMID: 34989900 DOI: 10.1007/s11274-021-03222-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/26/2021] [Indexed: 12/23/2022]
Abstract
Formic acid is a representative small molecule acid in lignocellulosic hydrolysate that can inhibit the growth of Saccharomyces cerevisiae cells during alcohol fermentation. However, the mechanism of formic acid cytotoxicity remains largely unknown. In this study, RNA-Seq technology was used to study the response of S. cerevisiae to formic acid stress at the transcriptional level. Scanning electron microscopy and Fourier transform infrared spectroscopy were conducted to observe the surface morphology of yeast cells. A total of 1504 genes were identified as being differentially expressed, with 797 upregulated and 707 downregulated genes. Transcriptomic analysis showed that most genes related to glycolysis, glycogen synthesis, protein degradation, the cell cycle, the MAPK signaling pathway, and redox regulation were significantly induced under formic acid stress and were involved in protein translation and synthesis amino acid synthesis genes were significantly suppressed. Formic acid stress can induce oxidative stress, inhibit protein biosynthesis, cause cells to undergo autophagy, and activate the intracellular metabolic pathways of energy production. The increase of glycogen and the decrease of energy consumption metabolism may be important in the adaptation of S. cerevisiae to formic acid. In addition, formic acid can also induce sexual reproduction and spore formation. This study through transcriptome analysis has preliminarily reveal the molecular response mechanism of S. cerevisiae to formic acid stress and has provided a basis for further research on methods used to improve the tolerance to cell inhibitors in lignocellulose hydrolysate.
Collapse
Affiliation(s)
- Lingjie Zeng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Jinxiang Huang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Pixue Feng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Xuemei Zhao
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Zaiyong Si
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Xiufeng Long
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Qianwei Cheng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Yi Yi
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China.
| |
Collapse
|
13
|
Sá-Correia I, Godinho CP. Exploring the biological function of efflux pumps for the development of superior industrial yeasts. Curr Opin Biotechnol 2021; 74:32-41. [PMID: 34781103 DOI: 10.1016/j.copbio.2021.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023]
Abstract
Among the mechanisms used by yeasts to overcome the deleterious effects of chemical and other environmental stresses is the activity of plasma membrane efflux pumps involved in multidrug resistance (MDR), a role on the focus of intensive research for years in pathogenic yeasts. More recently, these active transporters belonging to the MFS (Drug: H+ antiporters) or the ABC superfamily have been involved in resistance to xenobiotic compounds and in the transport of substrates with a clear physiological role. This review paper focuses on these putative efflux pumps concerning their tolerance phenotypes towards bioprocess-specific multiple stress factors, expression levels, physiological roles, and mechanisms by which they may lead to multistress resistance. Their association with the increased secretion of metabolites and other bioproducts and in the development of more robust superior strains for Yeast Chemical Biotechnology is highlighted.
Collapse
Affiliation(s)
- Isabel Sá-Correia
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory Institute for Health and Bioeconomy i4HB at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Cláudia P Godinho
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory Institute for Health and Bioeconomy i4HB at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
14
|
Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis. Appl Environ Microbiol 2021; 87:AEM.00158-21. [PMID: 33712428 DOI: 10.1128/aem.00158-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/04/2021] [Indexed: 11/20/2022] Open
Abstract
Acetic acid and furfural are the two prevalent inhibitors coexisting with glucose and xylose in lignocellulosic hydrolysate. The transcriptional regulations of Saccharomyces cerevisiae in response to acetic acid (Aa), furfural (Fur), and the mixture of acetic acid and furfural (Aa_Fur) were revealed during mixed glucose and xylose fermentation. Carbohydrate metabolism pathways were significantly enriched in response to Aa, while pathways of xenobiotic biodegradation and metabolism were significantly enriched in response to Fur. In addition to these pathways, other pathways were activated in response to Aa_Fur, i.e., cofactor and vitamin metabolism and lipid metabolism. Overexpression of Haa1p or Tye7p improved xylose consumption rates by nearly 50%, while the ethanol yield was enhanced by nearly 8% under acetic acid and furfural stress conditions. Co-overexpression of Haa1p and Tye7p resulted in a 59% increase in xylose consumption rate and a 12% increase in ethanol yield, revealing the beneficial effects of Haa1p and Tye7p on improving the tolerance of yeast to mixed acetic acid and furfural.IMPORTANCE Inhibitor tolerance is essential for S. cerevisiae when fermenting lignocellulosic hydrolysate with various inhibitors, including weak acids, furans, and phenols. The details regarding how xylose-fermenting S. cerevisiae strains respond to multiple inhibitors during fermenting mixed glucose and xylose are still unknown. This study revealed the transcriptional regulation mechanism of an industrial xylose-fermenting S. cerevisiae strain in response to acetic acid and furfural. The transcription factor Haa1p was found to be involved in both acetic acid and furfural tolerance. In addition to Haa1p, four other transcription factors, Hap4p, Yox1p, Tye7p, and Mga1p, were identified as able to improve the resistance of yeast to these two inhibitors. This study underscores the feasibility of uncovering effective transcription factors for constructing robust strains for lignocellulosic bioethanol production.
Collapse
|
15
|
Mota MN, Martins LC, Sá-Correia I. The Identification of Genetic Determinants of Methanol Tolerance in Yeast Suggests Differences in Methanol and Ethanol Toxicity Mechanisms and Candidates for Improved Methanol Tolerance Engineering. J Fungi (Basel) 2021; 7:90. [PMID: 33513997 PMCID: PMC7911966 DOI: 10.3390/jof7020090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/15/2022] Open
Abstract
Methanol is a promising feedstock for metabolically competent yeast strains-based biorefineries. However, methanol toxicity can limit the productivity of these bioprocesses. Therefore, the identification of genes whose expression is required for maximum methanol tolerance is important for mechanistic insights and rational genomic manipulation to obtain more robust methylotrophic yeast strains. The present chemogenomic analysis was performed with this objective based on the screening of the Euroscarf Saccharomyces cerevisiae haploid deletion mutant collection to search for susceptibility phenotypes in YPD medium supplemented with 8% (v/v) methanol, at 35 °C, compared with an equivalent ethanol concentration (5.5% (v/v)). Around 400 methanol tolerance determinants were identified, 81 showing a marked phenotype. The clustering of the identified tolerance genes indicates an enrichment of functional categories in the methanol dataset not enriched in the ethanol dataset, such as chromatin remodeling, DNA repair and fatty acid biosynthesis. Several genes involved in DNA repair (eight RAD genes), identified as specific for methanol toxicity, were previously reported as tolerance determinants for formaldehyde, a methanol detoxification pathway intermediate. This study provides new valuable information on genes and potential regulatory networks involved in overcoming methanol toxicity. This knowledge is an important starting point for the improvement of methanol tolerance in yeasts capable of catabolizing and copying with methanol concentrations present in promising bioeconomy feedstocks, including industrial residues.
Collapse
Affiliation(s)
- Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Luís C. Martins
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
16
|
Johnston NR, Nallur S, Gordon PB, Smith KD, Strobel SA. Genome-Wide Identification of Genes Involved in General Acid Stress and Fluoride Toxicity in Saccharomyces cerevisiae. Front Microbiol 2020; 11:1410. [PMID: 32670247 PMCID: PMC7329995 DOI: 10.3389/fmicb.2020.01410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/29/2020] [Indexed: 11/13/2022] Open
Abstract
Hydrofluoric acid elicits cell cycle arrest through a mechanism that has long been presumed to be linked with the high affinity of fluoride to metals. However, we have recently found that the acid stress from fluoride exposure is sufficient to elicit many of the hallmark phenotypes of fluoride toxicity. Here we report the systematic screening of genes involved in fluoride resistance and general acid resistance using a genome deletion library in Saccharomyces cerevisiae. We compare these to a variety of acids - 2,4-dinitrophenol, FCCP, hydrochloric acid, and sulfuric acid - none of which has a high metal affinity. Pathways involved in endocytosis, vesicle trafficking, pH maintenance, and vacuolar function are of particular importance to fluoride tolerance. The majority of genes conferring resistance to fluoride stress also enhanced resistance to general acid toxicity. Genes whose expression regulate Golgi-mediated vesicle transport were specific to fluoride resistance, and may be linked with fluoride-metal interactions. These results support the notion that acidity is an important and underappreciated principle underlying the mechanisms of fluoride toxicity.
Collapse
Affiliation(s)
- Nichole R Johnston
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Sunitha Nallur
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Patricia B Gordon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Kathryn D Smith
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.,Department of Chemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
17
|
Li B, Xie CY, Yang BX, Gou M, Xia ZY, Sun ZY, Tang YQ. The response mechanisms of industrial Saccharomyces cerevisiae to acetic acid and formic acid during mixed glucose and xylose fermentation. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
de Witt RN, Kroukamp H, Volschenk H. Proteome response of two natural strains of Saccharomyces cerevisiae with divergent lignocellulosic inhibitor stress tolerance. FEMS Yeast Res 2019; 19:5145847. [PMID: 30371771 DOI: 10.1093/femsyr/foy116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/25/2018] [Indexed: 12/30/2022] Open
Abstract
Strains of Saccharomyces cerevisiae with improved tolerance to plant hydrolysates are of utmost importance for the cost-competitive production of value-added chemicals and fuels. However, engineering strategies are constrained by a lack of understanding of the yeast response to complex inhibitor mixtures. Natural S. cerevisiae isolates display niche-specific phenotypic and metabolic diversity, encoded in their DNA, which has evolved to overcome external stresses, utilise available resources and ultimately thrive in their challenging environments. Industrial and laboratory strains, however, lack these adaptations due to domestication. Natural strains can serve as a valuable resource to mitigate engineering constraints by studying the molecular mechanisms involved in phenotypic variance and instruct future industrial strain improvement to lignocellulosic hydrolysates. We, therefore, investigated the proteomic changes between two natural S. cerevisiae isolates when exposed to a lignocellulosic inhibitor mixture. Comparative shotgun proteomics revealed that isolates respond by regulating a similar core set of proteins in response to inhibitor stress. Furthermore, superior tolerance was linked to NAD(P)/H and energy homeostasis, concurrent with inhibitor and reactive oxygen species detoxification processes. We present several candidate proteins within the redox homeostasis and energy management cellular processes as possible targets for future modification and study. Data are available via ProteomeXchange with identifier PXD010868.
Collapse
Affiliation(s)
- R N de Witt
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch, 7600, Western Cape, South Africa
| | - H Kroukamp
- Department of Molecular Sciences, Macquarie University, Balaclava Rd, North Ryde NSW 2109, Australia
| | - H Volschenk
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch, 7600, Western Cape, South Africa
| |
Collapse
|
19
|
Ariño J, Velázquez D, Casamayor A. Ser/Thr protein phosphatases in fungi: structure, regulation and function. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:217-256. [PMID: 31114794 PMCID: PMC6506691 DOI: 10.15698/mic2019.05.677] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Reversible phospho-dephosphorylation of proteins is a major mechanism for the control of cellular functions. By large, Ser and Thr are the most frequently residues phosphorylated in eukar-yotes. Removal of phosphate from these amino acids is catalyzed by a large family of well-conserved enzymes, collectively called Ser/Thr protein phosphatases. The activity of these enzymes has an enormous impact on cellular functioning. In this work we pre-sent the members of this family in S. cerevisiae and other fungal species, and review the most recent findings concerning their regu-lation and the roles they play in the most diverse aspects of cell biology.
Collapse
Affiliation(s)
- Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
20
|
Kang K, Bergdahl B, Machado D, Dato L, Han TL, Li J, Villas-Boas S, Herrgård MJ, Förster J, Panagiotou G. Linking genetic, metabolic, and phenotypic diversity among Saccharomyces cerevisiae strains using multi-omics associations. Gigascience 2019; 8:giz015. [PMID: 30715293 PMCID: PMC6446221 DOI: 10.1093/gigascience/giz015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/29/2018] [Accepted: 01/24/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The selection of bioengineering platform strains and engineering strategies to improve the stress resistance of Saccharomyces cerevisiae remains a pressing need in bio-based chemical production. Thus, a systematic effort to exploit genotypic and phenotypic diversity to boost yeast's industrial value is still urgently needed. RESULTS We analyzed 5,400 growth curves obtained from 36 S. cerevisiae strains and comprehensively profiled their resistances against 13 industrially relevant stresses. We observed that bioethanol and brewing strains exhibit higher resistance against acidic conditions; however, plant isolates tend to have a wider range of resistance, which may be associated with their metabolome and fluxome signatures in the tricarboxylic acid cycle and fatty acid metabolism. By deep genomic sequencing, we found that industrial strains have more genomic duplications especially affecting transcription factors, showing that they result from disparate evolutionary paths in comparison with the environmental strains, which have more indels, gene deletions, and strain-specific genes. Genome-wide association studies coupled with protein-protein interaction networks uncovered novel genetic determinants of stress resistances. CONCLUSIONS These resistance-related engineering targets and strain rankings provide a valuable source for engineering significantly improved industrial platform strains.
Collapse
Affiliation(s)
- Kang Kang
- Systems Biology & Bioinformatics Group, School of Biological Sciences, The University of Hong Kong, Hong Kong S.A.R., China
- Systems Biology & Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Basti Bergdahl
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Daniel Machado
- Department of Biological Engineering, School of Engineering, University of Minho, Braga, Portugal
- The European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Laura Dato
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ting-Li Han
- Centre for Microbial Innovation, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jun Li
- Systems Biology & Bioinformatics Group, School of Biological Sciences, The University of Hong Kong, Hong Kong S.A.R., China
- Systems Biology & Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Silas Villas-Boas
- Centre for Microbial Innovation, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jochen Förster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Gianni Panagiotou
- Systems Biology & Bioinformatics Group, School of Biological Sciences, The University of Hong Kong, Hong Kong S.A.R., China
- Systems Biology & Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| |
Collapse
|
21
|
Development of Robust Yeast Strains for Lignocellulosic Biorefineries Based on Genome-Wide Studies. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:61-83. [PMID: 30911889 DOI: 10.1007/978-3-030-13035-0_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lignocellulosic biomass has been widely studied as the renewable feedstock for the production of biofuels and biochemicals. Budding yeast Saccharomyces cerevisiae is commonly used as a cell factory for bioconversion of lignocellulosic biomass. However, economic bioproduction using fermentable sugars released from lignocellulosic feedstocks is still challenging. Due to impaired cell viability and fermentation performance by various inhibitors that are present in the cellulosic hydrolysates, robust yeast strains resistant to various stress environments are highly desired. Here, we summarize recent progress on yeast strain development for the production of biofuels and biochemical using lignocellulosic biomass. Genome-wide studies which have contributed to the elucidation of mechanisms of yeast stress tolerance are reviewed. Key gene targets recently identified based on multiomics analysis such as transcriptomic, proteomic, and metabolomics studies are summarized. Physiological genomic studies based on zinc sulfate supplementation are highlighted, and novel zinc-responsive genes involved in yeast stress tolerance are focused. The dependence of host genetic background of yeast stress tolerance and roles of histones and their modifications are emphasized. The development of robust yeast strains based on multiomics analysis benefits economic bioconversion of lignocellulosic biomass.
Collapse
|
22
|
Cunha JT, Romaní A, Costa CE, Sá-Correia I, Domingues L. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Appl Microbiol Biotechnol 2018; 103:159-175. [PMID: 30397768 DOI: 10.1007/s00253-018-9478-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/27/2022]
Abstract
Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries. Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the release of a broad range of microbial inhibitors, mainly weak acids, furans, and phenolic compounds. Saccharomyces cerevisiae is the most commonly used organism for ethanol production; however, it can be severely distressed by these lignocellulose-derived inhibitors, in addition to other challenging conditions, such as pentose sugar utilization and the high temperatures required for an efficient simultaneous saccharification and fermentation step. Therefore, a better understanding of the yeast response and adaptation towards the presence of these multiple stresses is of crucial importance to design strategies to improve yeast robustness and bioconversion capacity from lignocellulosic biomass. This review includes an overview of the main inhibitors derived from diverse raw material resultants from different biomass pretreatments, and describes the main mechanisms of yeast response to their presence, as well as to the presence of stresses imposed by xylose utilization and high-temperature conditions, with a special emphasis on the synergistic effect of multiple inhibitors/stressors. Furthermore, successful cases of tolerance improvement of S. cerevisiae are highlighted, in particular those associated with other process-related physiologically relevant conditions. Decoding the overall yeast response mechanisms will pave the way for the integrated development of sustainable yeast cell-based biorefineries.
Collapse
Affiliation(s)
- Joana T Cunha
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Aloia Romaní
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Carlos E Costa
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Lucília Domingues
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
23
|
Guo ZP, Khoomrung S, Nielsen J, Olsson L. Changes in lipid metabolism convey acid tolerance in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:297. [PMID: 30450126 PMCID: PMC6206931 DOI: 10.1186/s13068-018-1295-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/15/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND The yeast Saccharomyces cerevisiae plays an essential role in the fermentation of lignocellulosic hydrolysates. Weak organic acids in lignocellulosic hydrolysate can hamper the use of this renewable resource for fuel and chemical production. Plasma-membrane remodeling has recently been found to be involved in acquiring tolerance to organic acids, but the mechanisms responsible remain largely unknown. Therefore, it is essential to understand the underlying mechanisms of acid tolerance of S. cerevisiae for developing robust industrial strains. RESULTS We have performed a comparative analysis of lipids and fatty acids in S. cerevisiae grown in the presence of four different weak acids. The general response of the yeast to acid stress was found to be the accumulation of triacylglycerols and the degradation of steryl esters. In addition, a decrease in phosphatidic acid, phosphatidylcholine, phosphatidylserine and phosphatidylethanolamine, and an increase in phosphatidylinositol were observed. Loss of cardiolipin in the mitochondria membrane may be responsible for the dysfunction of mitochondria and the dramatic decrease in the rate of respiration of S. cerevisiae under acid stress. Interestingly, the accumulation of ergosterol was found to be a protective mechanism of yeast exposed to organic acids, and the ERG1 gene in ergosterol biosynthesis played a key in ergosterol-mediated acid tolerance, as perturbing the expression of this gene caused rapid loss of viability. Interestingly, overexpressing OLE1 resulted in the increased levels of oleic acid (18:1n-9) and an increase in the unsaturation index of fatty acids in the plasma membrane, resulting in higher tolerance to acetic, formic and levulinic acid, while this change was found to be detrimental to cells exposed to lipophilic cinnamic acid. CONCLUSIONS Comparison of lipid profiles revealed different remodeling of lipids, FAs and the unsaturation index of the FAs in the cell membrane in response of S. cerevisiae to acetic, formic, levulinic and cinnamic acid, depending on the properties of the acid. In future work, it will be necessary to combine lipidome and transcriptome analysis to gain a better understanding of the underlying regulation network and interactions between central carbon metabolism (e.g., glycolysis, TCA cycle) and lipid biosynthesis.
Collapse
Affiliation(s)
- Zhong-peng Guo
- Department of Biology and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Present Address: LISBP, INSA, INRA, CNRS, Université de Toulouse, Toulouse, France
| | - Sakda Khoomrung
- Department of Biochemistry and Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, 2800 Kongens Lyngby, Denmark
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
24
|
Palma M, Guerreiro JF, Sá-Correia I. Adaptive Response and Tolerance to Acetic Acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: A Physiological Genomics Perspective. Front Microbiol 2018. [PMID: 29515554 PMCID: PMC5826360 DOI: 10.3389/fmicb.2018.00274] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acetic acid is an important microbial growth inhibitor in the food industry; it is used as a preservative in foods and beverages and is produced during normal yeast metabolism in biotechnological processes. Acetic acid is also a major inhibitory compound present in lignocellulosic hydrolysates affecting the use of this promising carbon source for sustainable bioprocesses. Although the molecular mechanisms underlying Saccharomyces cerevisiae response and adaptation to acetic acid have been studied for years, only recently they have been examined in more detail in Zygosaccharomyces bailii. However, due to its remarkable tolerance to acetic acid and other weak acids this yeast species is a major threat in the spoilage of acidic foods and beverages and considered as an interesting alternative cell factory in Biotechnology. This review paper emphasizes genome-wide strategies that are providing global insights into the molecular targets, signaling pathways and mechanisms behind S. cerevisiae and Z. bailii tolerance to acetic acid, and extends this information to other weak acids whenever relevant. Such comprehensive perspective and the knowledge gathered in these two yeast species allowed the identification of candidate molecular targets, either for the design of effective strategies to overcome yeast spoilage in acidic foods and beverages, or for the rational genome engineering to construct more robust industrial strains. Examples of successful applications are provided.
Collapse
Affiliation(s)
- Margarida Palma
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joana F Guerreiro
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
25
|
Zhang M, Zhang K, Mehmood MA, Zhao ZK, Bai F, Zhao X. Deletion of acetate transporter gene ADY2 improved tolerance of Saccharomyces cerevisiae against multiple stresses and enhanced ethanol production in the presence of acetic acid. BIORESOURCE TECHNOLOGY 2017; 245:1461-1468. [PMID: 28606754 DOI: 10.1016/j.biortech.2017.05.191] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 05/24/2023]
Abstract
The aim of this work was to study the effects of deleting acetate transporter gene ADY2 on growth and fermentation of Saccharomyces cerevisiae in the presence of inhibitors. Comparative transcriptome analysis revealed that three genes encoding plasma membrane carboxylic acid transporters, especially ADY2, were significantly downregulated under the zinc sulfate addition condition in the presence of acetic acid stress, and the deletion of ADY2 improved growth of S. cerevisiae under acetic acid, ethanol and hydrogen peroxide stresses. Consistently, a concomitant increase in ethanol production by 14.7% in the presence of 3.6g/L acetic acid was observed in the ADY2 deletion mutant of S. cerevisiae BY4741. Decreased intracellular acetic acid, ROS accumulation, and plasma membrane permeability were observed in the ADY2 deletion mutant. These findings would be useful for developing robust yeast strains for efficient ethanol production.
Collapse
Affiliation(s)
- Mingming Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Keyu Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Aamer Mehmood
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Zongbao Kent Zhao
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|