1
|
Flores-Fernández CN, O'Callaghan CA. Bacterial DNA methylases as novel molecular and synthetic biology tools: recent developments. Appl Microbiol Biotechnol 2025; 109:60. [PMID: 40047928 PMCID: PMC11885376 DOI: 10.1007/s00253-025-13442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/09/2025]
Abstract
Bacterial DNA methylases are a diverse group of enzymes which have been pivotal in the development of technologies with applications including genetic engineering, bacteriology, biotechnology and agriculture. This review describes bacterial DNA methylase types, the main technologies for targeted methylation or demethylation and the recent roles of these enzymes in molecular and synthetic biology. Bacterial methylases can be exocyclic or endocyclic and can exist as orphan enzymes or as a part of the restriction-modifications (R-M) systems. As a group, they display a rich diversity of sequence-specificity. Additional technologies for targeting methylation involve using fusion proteins combining a methylase and a DNA-binding protein (DNBP) such as a zinc-finger (ZF), transcription activator-like effector (TALE) or CRISPR/dCas9. Bacterial methylases have contributed significantly to the creation of novel DNA assembly techniques, to the improvement of bacterial transformation and to crop plant engineering. Future studies to define the characteristics of more bacterial methylases have potential to identify new tools of value in synthetic and molecular biology and with widespread applications. KEY POINTS: • Bacterial methylases can be used to direct methylation to specific sequences in target DNA • DNA methylation using bacterial methylases has been applied to improve DNA assembly and to increase the efficiency of bacterial transformation • Site-selective methylation using bacterial methylases can alter plant gene expression and phenotype.
Collapse
Affiliation(s)
- Carol N Flores-Fernández
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Chris A O'Callaghan
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
2
|
Roehner N, Roberts J, Lapets A, Gould D, Akavoor V, Qin L, Gordon DB, Voigt C, Densmore D. GOLDBAR: A Framework for Combinatorial Biological Design. ACS Synth Biol 2024; 13:2899-2911. [PMID: 39162314 DOI: 10.1021/acssynbio.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
With the rise of new DNA part libraries and technologies for assembling DNA, synthetic biologists are increasingly constructing and screening combinatorial libraries to optimize their biological designs. As combinatorial libraries are used to generate data on design performance, new rules for composing biological designs will emerge. Most formal frameworks for combinatorial design, however, do not yet support formal comparison of design composition, which is needed to facilitate automated analysis and machine learning in massive biological design spaces. To address this need, we introduce a combinatorial design framework called GOLDBAR. Compared with existing frameworks, GOLDBAR enables synthetic biologists to intersect and merge the rules for entire classes of biological designs to extract common design motifs and infer new ones. Here, we demonstrate the application of GOLDBAR to refine/validate design spaces for TetR-homologue transcriptional logic circuits, verify the assembly of a partial nif gene cluster, and infer novel gene clusters for the biosynthesis of rebeccamycin. We also discuss how GOLDBAR could be used to facilitate grammar-based machine learning in synthetic biology.
Collapse
Affiliation(s)
- Nicholas Roehner
- RTX BBN Technologies, Cambridge, Massachusetts 02138, United States
| | - James Roberts
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | | | - Dany Gould
- Hariri Institute for Computing, Boston University, Boston, Massachusetts 02215, United States
| | - Vidya Akavoor
- Hariri Institute for Computing, Boston University, Boston, Massachusetts 02215, United States
| | - Lucy Qin
- Hariri Institute for Computing, Boston University, Boston, Massachusetts 02215, United States
| | - D Benjamin Gordon
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher Voigt
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Douglas Densmore
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Yin L, Zhou Y, Ding N, Fang Y. Recent Advances in Metabolic Engineering for the Biosynthesis of Phosphoenol Pyruvate-Oxaloacetate-Pyruvate-Derived Amino Acids. Molecules 2024; 29:2893. [PMID: 38930958 PMCID: PMC11206799 DOI: 10.3390/molecules29122893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The phosphoenol pyruvate-oxaloacetate-pyruvate-derived amino acids (POP-AAs) comprise native intermediates in cellular metabolism, within which the phosphoenol pyruvate-oxaloacetate-pyruvate (POP) node is the switch point among the major metabolic pathways existing in most living organisms. POP-AAs have widespread applications in the nutrition, food, and pharmaceutical industries. These amino acids have been predominantly produced in Escherichia coli and Corynebacterium glutamicum through microbial fermentation. With the rapid increase in market requirements, along with the global food shortage situation, the industrial production capacity of these two bacteria has encountered two bottlenecks: low product conversion efficiency and high cost of raw materials. Aiming to push forward the update and upgrade of engineered strains with higher yield and productivity, this paper presents a comprehensive summarization of the fundamental strategy of metabolic engineering techniques around phosphoenol pyruvate-oxaloacetate-pyruvate node for POP-AA production, including L-tryptophan, L-tyrosine, L-phenylalanine, L-valine, L-lysine, L-threonine, and L-isoleucine. Novel heterologous routes and regulation methods regarding the carbon flux redistribution in the POP node and the formation of amino acids should be taken into consideration to improve POP-AA production to approach maximum theoretical values. Furthermore, an outlook for future strategies of low-cost feedstock and energy utilization for developing amino acid overproducers is proposed.
Collapse
Affiliation(s)
- Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanan Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Nana Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yu Fang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
4
|
Li Z, Liu Q, Sun J, Sun J, Li M, Zhang Y, Deng A, Liu S, Wen T. Multivariate modular metabolic engineering for enhanced L-methionine biosynthesis in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:101. [PMID: 37312226 DOI: 10.1186/s13068-023-02347-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND L-Methionine is the only bulk amino acid that has not been industrially produced by the fermentation method. Due to highly complex and strictly regulated biosynthesis, the development of microbial strains for high-level L-methionine production has remained challenging in recent years. RESULTS By strengthening the L-methionine terminal synthetic module via site-directed mutation of L-homoserine O-succinyltransferase (MetA) and overexpression of metAfbr, metC, and yjeH, L-methionine production was increased to 1.93 g/L in shake flask fermentation. Deletion of the pykA and pykF genes further improved L-methionine production to 2.51 g/L in shake flask fermentation. Computer simulation and auxotrophic experiments verified that during the synthesis of L-methionine, equimolar amounts of L-isoleucine were accumulated via the elimination reaction of cystathionine γ-synthetase MetB due to the insufficient supply of L-cysteine. To increase the supply of L-cysteine, the L-cysteine synthetic module was strengthened by overexpression of cysEfbr, serAfbr, and cysDN, which further increased the production of L-methionine by 52.9% and significantly reduced the accumulation of the byproduct L-isoleucine by 29.1%. After optimizing the addition of ammonium thiosulfate, the final metabolically engineered strain MET17 produced 21.28 g/L L-methionine in 64 h with glucose as the carbon source in a 5 L fermenter, representing the highest L-methionine titer reported to date. CONCLUSIONS In this study, a high-efficiency strain for L-methionine production was derived from wild-type Escherichia coli W3110 by rational metabolic engineering strategies, providing an efficient platform for the industrial production of L-methionine.
Collapse
Affiliation(s)
- Zhongcai Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiahui Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Jianjian Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingjie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Aihua Deng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuwen Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tingyi Wen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
- China Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Alam K, Hao J, Zhang Y, Li A. Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways. Biotechnol Adv 2021; 49:107759. [PMID: 33930523 DOI: 10.1016/j.biotechadv.2021.107759] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/28/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Microbial-derived natural products (NPs) and their derivative products are of great importance and used widely in many fields, especially in pharmaceutical industries. However, there is an immediate need to establish innovative approaches, strategies, and techniques to discover new NPs with novel or enhanced biological properties, due to the less productivity and higher cost on traditional drug discovery pipelines from natural bioresources. Revealing of untapped microbial cryptic biosynthetic gene clusters (BGCs) using DNA sequencing technology and bioinformatics tools makes genome mining possible for NP discovery from microorganisms. Meanwhile, new approaches and strategies in the area of synthetic biology offer great potentials for generation of new NPs by engineering or creating synthetic systems with improved and desired functions. Development of approaches, strategies and tools in synthetic biology can facilitate not only exploration and enhancement in supply, and also in the structural diversification of NPs. Here, we discussed recent advances in synthetic biology-inspired strategies, including bioinformatics and genetic engineering tools and approaches for identification, cloning, editing/refactoring of candidate biosynthetic pathways, construction of heterologous expression hosts, fitness optimization between target pathways and hosts and detection of NP production.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Jinfang Hao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
6
|
Young R, Haines M, Storch M, Freemont PS. Combinatorial metabolic pathway assembly approaches and toolkits for modular assembly. Metab Eng 2020; 63:81-101. [PMID: 33301873 DOI: 10.1016/j.ymben.2020.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022]
Abstract
Synthetic Biology is a rapidly growing interdisciplinary field that is primarily built upon foundational advances in molecular biology combined with engineering design principles such as modularity and interoperability. The field considers living systems as programmable at the genetic level and has been defined by the development of new platform technologies and methodological advances. A key concept driving the field is the Design-Build-Test-Learn cycle which provides a systematic framework for building new biological systems. One major application area for synthetic biology is biosynthetic pathway engineering that requires the modular assembly of different genetic regulatory elements and biosynthetic enzymes. In this review we provide an overview of modular DNA assembly and describe and compare the plethora of in vitro and in vivo assembly methods for combinatorial pathway engineering. Considerations for part design and methods for enzyme balancing are also presented, and we briefly discuss alternatives to intracellular pathway assembly including microbial consortia and cell-free systems for biosynthesis. Finally, we describe computational tools and automation for pathway design and assembly and argue that a deeper understanding of the many different variables of genetic design, pathway regulation and cellular metabolism will allow more predictive pathway design and engineering.
Collapse
Affiliation(s)
- Rosanna Young
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | - Matthew Haines
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | - Marko Storch
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK; London Biofoundry, Imperial College Translation & Innovation Hub, London, W12 0BZ, UK
| | - Paul S Freemont
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK; London Biofoundry, Imperial College Translation & Innovation Hub, London, W12 0BZ, UK; UK DRI Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
7
|
Ding W, Zhang Y, Shi S. Development and Application of CRISPR/Cas in Microbial Biotechnology. Front Bioeng Biotechnol 2020; 8:711. [PMID: 32695770 PMCID: PMC7338305 DOI: 10.3389/fbioe.2020.00711] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) system has been rapidly developed as versatile genomic engineering tools with high efficiency, accuracy and flexibility, and has revolutionized traditional methods for applications in microbial biotechnology. Here, key points of building reliable CRISPR/Cas system for genome engineering are discussed, including the Cas protein, the guide RNA and the donor DNA. Following an overview of various CRISPR/Cas tools for genome engineering, including gene activation, gene interference, orthogonal CRISPR systems and precise single base editing, we highlighted the application of CRISPR/Cas toolbox for multiplexed engineering and high throughput screening. We then summarize recent applications of CRISPR/Cas systems in metabolic engineering toward production of chemicals and natural compounds, and end with perspectives of future advancements.
Collapse
Affiliation(s)
- Wentao Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
8
|
Chen Y, Banerjee D, Mukhopadhyay A, Petzold CJ. Systems and synthetic biology tools for advanced bioproduction hosts. Curr Opin Biotechnol 2020; 64:101-109. [PMID: 31927061 DOI: 10.1016/j.copbio.2019.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023]
Abstract
The genomic revolution ushered in an era of discovery and characterization of enzymes from novel organisms that fueled engineering of microbes to produce commodity and high-value compounds. Over the past decade advances in synthetic biology tools in recent years contributed to significant progress in metabolic engineering efforts to produce both biofuels and bioproducts resulting in several such related items being brought to market. These successes represent a burgeoning bio-economy; however, significant resources and time are still necessary to progress a system from proof-of-concept to market. In order to fully realize this potential, methods that examine biological systems in a comprehensive, systematic and high-throughput manner are essential. Recent success in synthetic biology has coincided with the development of systems biology and analytical approaches that kept pace and scaled with technology development. Here, we review a selection of systems biology methods and their use in synthetic biology approaches for microbial biotechnology platforms.
Collapse
Affiliation(s)
- Yan Chen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Agile BioFoundry, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Deepanwita Banerjee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Agile BioFoundry, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|