1
|
de Vicente M, Gonzalez-Fernández C, Nicaud JM, Tomás-Pejó E. Turning residues into valuable compounds: organic waste conversion into odd-chain fatty acids via the carboxylate platform by recombinant oleaginous yeast. Microb Cell Fact 2025; 24:32. [PMID: 39881394 PMCID: PMC11776196 DOI: 10.1186/s12934-025-02647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Environmental concerns are rising the need to find cost-effective alternatives to fossil oils. In this sense, short-chain fatty acids (SCFAs) are proposed as carbon source for microbial oils production that can be converted into oleochemicals. This investigation took advantage of the outstanding traits of recombinant Yarrowia lipolytica strains to assess the conversion of SCFAs derived from real digestates into odd-chain fatty acids (OCFA). High yeast OCFAs content was aimed by using two engineered strains (Y. lipolytica JMY7780 and JMY7782). Batch and two-step batch fermentations were performed, reaching high lipid content (40.8% w/w) and lipid yield (0.07 g/g) with JMY7782, which overexpresses propionyl-CoA synthase. Fed-batch fermentation with an acetic acid pulse after 24 h was also carried out to promote SCFAs consumption and OCFAs production. In this case, SCFAs consumption rate increased and JMY7782 was able to accumulate up to 60.4% OCFAs of the total lipids produced from food waste-derived carbon sources.
Collapse
Affiliation(s)
- Marta de Vicente
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles (Madrid), Spain
- Faculty of Biological Sciences, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Cristina Gonzalez-Fernández
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles (Madrid), Spain.
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, 47011, Valladolid, Spain.
- Institute of Sustainable Processes, 47011, Valladolid, Spain.
| | - Jean Marc Nicaud
- Université Paris Saclay, INRAE, AgroParis Tech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles (Madrid), Spain
| |
Collapse
|
2
|
Matouk AM, Abu-Elreesh GM, Abdel-Rahman MA, Desouky SE, Hashem AH. Response surface methodology and repeated-batch fermentation strategies for enhancing lipid production from marine oleaginous Candida parapsilosis Y19 using orange peel waste. Microb Cell Fact 2025; 24:16. [PMID: 39794801 PMCID: PMC11724560 DOI: 10.1186/s12934-024-02635-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Oleaginous yeasts are considered promising sources for lipid production due to their ability to accumulate high levels of lipids under appropriate growth conditions. The current study aimed to isolate and identify oleaginous yeasts having superior ability to accumulate high quantities of lipids; and enhancing lipid production using response surface methodology and repeated-batch fermentation. Results revealed that, twenty marine oleaginous yeasts were isolated, and the most potent lipid producer isolate was Candida parapsilosis Y19 according to qualitative screening test using Nile-red dye. Orange peels was used as substrate where C. parapsilosis Y19 produced 1.14 g/l lipids at 23.0% in batch fermentation. To enhance the lipid production, statistical optimization using Taguchi design through Response surface methodology was carried out. Total lipids were increased to 2.46 g/l and lipid content increased to 30.7% under optimal conditions of: orange peel 75 g/l, peptone 7 g/l, yeast extract 5 g/l, inoculum size 2% (v/v), pH 5 and incubation period 6 d. Furthermore, repeated-batch fermentation of C. parapsilosis Y19 enhanced lipid production where total lipids increased at 4.19 folds (4.78 g/l) compared to batch culture (before optimization). Also, the lipid content was increased at 1.7 folds (39.1%) compared to batch culture (before optimization). Fatty acid profile of the produced lipid using repeated-batch fermentation includes unsaturated fatty acids (USFAs) at 74.8% and saturated fatty acids (SFAs) at 25.1%. Additionally, in repeated-batch fermentation, the major fatty acid was oleic acid at 45.0%; followed by linoleic acid at 26.0%. In conclusion, C. parapsilosis Y19 is considered a promising strain for lipid production. Also, both statistical optimizations using RSM and repeated-batch fermentation are efficient methods for lipid production from C. parapsilosis Y19.
Collapse
Affiliation(s)
- AbdAllah M Matouk
- Botany and Microbiology Department , Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Gadallah M Abu-Elreesh
- Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt
| | - Mohamed Ali Abdel-Rahman
- Botany and Microbiology Department , Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Said E Desouky
- Botany and Microbiology Department , Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department , Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
3
|
Žganjar M, Ogrizović M, Matul M, Čadež N, Gunde-Cimerman N, González-Fernández C, Gostinčar C, Tomás-Pejó E, Petrovič U. High-throughput screening of non-conventional yeasts for conversion of organic waste to microbial oils via carboxylate platform. Sci Rep 2024; 14:14233. [PMID: 38902520 PMCID: PMC11190255 DOI: 10.1038/s41598-024-65150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Converting waste into high-value products promotes sustainability by reducing waste and creating new revenue streams. This study investigates the potential of diverse yeasts for microbial oil production by utilizing short-chain fatty acids (SCFAs) that can be produced from organic waste and focuses on identifying strains with the best SCFA utilisation, tolerance and lipid production. A collection of 1434 yeast strains was cultivated with SCFAs as the sole carbon source. Eleven strains emerged as candidates with promising growth rates and high lipid accumulation. Subsequent fermentation experiments in liquid SCFA-rich media, which focused on optimizing lipid accumulation by adjusting the carbon to nitrogen (C/N) ratio, showed an increase in lipid content at a C/N ratio of 200:1, but with a concurrent reduction in biomass. Two strains were characterized by their superior ability to produce lipids compared to the reference strain Yarrowia lipolytica CECT124: Y. lipolytica EXF-17398 and Pichia manshurica EXF-7849. Characterization of these two strains indicated that they exhibit a biotechnologically relevant balance between maximizing lipid yield and maintaining growth at high SCFA concentrations. These results emphasize the potential of using SCFAs as a sustainable feedstock for oleochemical production, offering a dual benefit of waste valorisation and microbial oil production.
Collapse
Affiliation(s)
- Mia Žganjar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Ogrizović
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Mojca Matul
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Neža Čadež
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
- Institute of Sustainable Processes, Dr. Mergelina, Valladolid, Spain
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | - Uroš Petrovič
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Morales-Palomo S, Navarrete C, Martínez JL, González-Fernández C, Tomás-Pejó E. Transcriptomic profiling of an evolved Yarrowia lipolytica strain: tackling hexanoic acid fermentation to increase lipid production from short-chain fatty acids. Microb Cell Fact 2024; 23:101. [PMID: 38566056 PMCID: PMC10988856 DOI: 10.1186/s12934-024-02367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) are cost-effective carbon sources for an affordable production of lipids. Hexanoic acid, the acid with the longest carbon chain in the SCFAs pool, is produced in anaerobic fermentation of organic residues and its use is very challenging, even inhibiting oleaginous yeasts growth. RESULTS In this investigation, an adaptive laboratory evolution (ALE) was performed to improve Yarrowia lipolytica ACA DC 50109 tolerance to high hexanoic acid concentrations. Following ALE, the transcriptomic analysis revealed several genetic adaptations that improved the assimilation of this carbon source in the evolved strain compared to the wild type (WT). Indeed, the evolved strain presented a high expression of the up-regulated gene YALI0 E16016g, which codes for FAT1 and is related to lipid droplets formation and responsible for mobilizing long-chain acids within the cell. Strikingly, acetic acid and other carbohydrate transporters were over-expressed in the WT strain. CONCLUSIONS A more tolerant yeast strain able to attain higher lipid content under the presence of high concentrations of hexanoic acid has been obtained. Results provided novel information regarding the assimilation of hexanoic acid in yeasts.
Collapse
Affiliation(s)
| | - Clara Navarrete
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - José Luis Martínez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Móstoles (Madrid), Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Valladolid, 47011, Spain
- Institute of Sustainable Processes, Valladolid, 47011, Spain
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Móstoles (Madrid), Spain.
| |
Collapse
|
5
|
Tomás-Pejó E, Morales-Palomo S, González-Fernández C. Cutaneotrichosporon curvatum and Yarrowia lipolytica as key players for green chemistry: efficient oil producers from food waste via the carboxylate platform. Bioengineered 2023; 14:2286723. [PMID: 38010763 PMCID: PMC10761111 DOI: 10.1080/21655979.2023.2286723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
Cutaneotrichosporon curvatum and Yarrowia lipolytica can accumulate microbial oils using short-chain fatty acids (SCFA) as carbon sources. SCFAs-rich media often contain significant amounts of nitrogen that prevent high carbon:nitrogen (C:N) ratios necessary to boost lipid production. This work assessed the intrinsic ability of C. curvatum and Y. lipolytica to produce high amounts of microbial oils from these unusual carbon sources. Results demonstrated that minor differences in SCFA concentration (only 2 g/L) had a significant effect on yeast growth and lipid production. A C:N of 80 promoted yeast growth at all SCFA concentrations and favored SCFA consumption at 19 g/L SCFAs. The different SCFA uptake preferences in C. curvatum and Y. lipolytica highlighted the importance of considering the SCFA profile to select a suitable yeast strain for microbial oils production. At the most challenging SCFA concentration (19 g/L), 57.2% ±1.6% (w/w) and 78.4 ± 0.6% (w/w) lipid content were obtained in C. curvatum and Y. lipolytica, respectively. These values are among the highest reported for wild-type strains. To circumvent the challenges associated with media with high nitrogen content, this report also proved struvite precipitation as an effective method for increasing lipid production (from 17.9 ± 3.9% (w/w) to 41.9 ± 2.6% (w/w)) after nitrogen removal in food waste-derived media.
Collapse
Affiliation(s)
| | | | - Cristina González-Fernández
- Biotechnological Processes Unit, Móstoles (Madrid), Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Valladolid, Spain
- Institute of Sustainable Processes, Valladolid, Spain
| |
Collapse
|
6
|
Fernandes MA, Mota MN, Faria NT, Sá-Correia I. An Evolved Strain of the Oleaginous Yeast Rhodotorula toruloides, Multi-Tolerant to the Major Inhibitors Present in Lignocellulosic Hydrolysates, Exhibits an Altered Cell Envelope. J Fungi (Basel) 2023; 9:1073. [PMID: 37998878 PMCID: PMC10672028 DOI: 10.3390/jof9111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
The presence of toxic compounds in lignocellulosic hydrolysates (LCH) is among the main barriers affecting the efficiency of lignocellulose-based fermentation processes, in particular, to produce biofuels, hindering the production of intracellular lipids by oleaginous yeasts. These microbial oils are promising sustainable alternatives to vegetable oils for biodiesel production. In this study, we explored adaptive laboratory evolution (ALE), under methanol- and high glycerol concentration-induced selective pressures, to improve the robustness of a Rhodotorula toruloides strain, previously selected to produce lipids from sugar beet hydrolysates by completely using the major C (carbon) sources present. An evolved strain, multi-tolerant not only to methanol but to four major inhibitors present in LCH (acetic acid, formic acid, hydroxymethylfurfural, and furfural) was isolated and the mechanisms underlying such multi-tolerance were examined, at the cellular envelope level. Results indicate that the evolved multi-tolerant strain has a cell wall that is less susceptible to zymolyase and a decreased permeability, based on the propidium iodide fluorescent probe, in the absence or presence of those inhibitors. The improved performance of this multi-tolerant strain for lipid production from a synthetic lignocellulosic hydrolysate medium, supplemented with those inhibitors, was confirmed.
Collapse
Affiliation(s)
- Mónica A. Fernandes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Nuno T. Faria
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
7
|
Veeramuthu K, Ahuja V, Annadurai P, Gideon DA, Sundarrajan B, Rusu ME, Annadurai V, Dhandayuthapani K. Chemical Profiling and Biological Activity of Psydrax dicoccos Gaertn. Molecules 2023; 28:7101. [PMID: 37894581 PMCID: PMC10609380 DOI: 10.3390/molecules28207101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer is one of the deadliest diseases in women with a mortality rate of 6.6%. Adverse effects of synthetic drugs have directed research toward safer alternatives such as natural compounds. This study focused on Psydrax dicoccos Gaertn, an evergreen tree abundantly distributed in Tamil Nadu (India) for its possible application against breast cancer cells. P. dicoccos leaf methanol extract, found within a wide range of phytochemicals, demonstrated cytotoxic effects against MCF7 breast cancer cells at IC50 of 34 μg/mL. The extract exhibited good antioxidant activities against DPPH• (62%) and ABTS•+ (80%), as well as concentration-dependent (100-800 μg/mL) anti-inflammatory potential of 18-60% compared to standards, ascorbic acid or aspirin, respectively. Moreover, even low extract concentrations (10 μg/mL) inhibited the growth of Escherichia coli (1.9 ± 0.6 mm) and Pseudomonas aeruginosa (2.3 ± 0.7 mm), thus showing high antimicrobial and anti-inflammatory potential. GC-MS and LC-MS analyses identified 31 and 16 components, respectively, of which selected compounds were used to evaluate the interaction between key receptors (AKT-1, COX-2, and HER-2) of breast cancer based on binding energy (ΔG) and inhibition constant (Ki). The results indicate that bioactive compounds from P. dicoccos have potential against breast cancer cells, but further evaluations are needed.
Collapse
Affiliation(s)
- Kamaraj Veeramuthu
- Thanthai Periyar Government Arts and Science College (Autonomous), Bharathidasan University, Tiruchirappalli 620023, Tamil Nadu, India; (K.V.); (B.S.)
| | - Vishal Ahuja
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India;
- University Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Pushparaj Annadurai
- C.P.R. Environmental Education Center, 1 Eldams Road, Alwarpet, Chennai 600018, Tamil Nadu, India;
| | - Daniel A. Gideon
- Department of Biochemistry, St. Joseph College, Bangalore 560025, Karnataka, India;
| | - Balamurugan Sundarrajan
- Thanthai Periyar Government Arts and Science College (Autonomous), Bharathidasan University, Tiruchirappalli 620023, Tamil Nadu, India; (K.V.); (B.S.)
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Vinothkanna Annadurai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Kandavel Dhandayuthapani
- Department of Botany, Government Arts College for Men, Nandanam, University of Madras, Chennai 600035, Tamil Nadu, India
| |
Collapse
|
8
|
Dianat M, Münchberg U, Blank LM, Freier E, Ebert BE. Non-invasive monitoring of microbial triterpenoid production using nonlinear microscopy techniques. Front Bioeng Biotechnol 2023; 11:1106566. [PMID: 36926686 PMCID: PMC10012247 DOI: 10.3389/fbioe.2023.1106566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction: Bioproduction of plant-derived triterpenoids in recombinant microbes is receiving great attention to make these biologically active compounds industrially accessible as nutraceuticals, pharmaceutics, and cosmetic ingredients. So far, there is no direct method for detecting triterpenoids under physiological conditions on a cellular level, information yet highly relevant to rationalizing microbial engineering. Methods: Here, we show in a proof-of-concept study, that triterpenoids can be detected and monitored in living yeast cells by combining coherent anti-Stokes Raman scattering (CARS) and second-harmonic-generation (SHG) microscopy techniques. We applied CARS and SHG microscopy measurements, and for comparison classical Nile Red staining, on immobilized and growing triterpenoid-producing, and non-producing reference Saccharomyces cerevisiae strains. Results and Discussion: We found that the SHG signal in triterpenoid-producing strains is significantly higher than in a non-producing reference strain, correlating with lipophile content as determined by Nile red staining. In growing cultures, both CARS and SHG signals showed changes over time, enabling new insights into the dynamics of triterpenoid production and storage inside cells.
Collapse
Affiliation(s)
- Mariam Dianat
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - Ute Münchberg
- University Development and Strategy, Ruhr University Bochum, Bochum, Germany
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - Erik Freier
- Interdisciplinary Center for Machine Learning and Data Analytics (IZMD), University of Wuppertal, Wuppertal, Germany
| | - Birgitta E Ebert
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Morales‐Palomo S, Tomás‐Pejó E, González‐Fernández C. Phosphate limitation as crucial factor to enhance yeast lipid production from short-chain fatty acids. Microb Biotechnol 2022; 16:372-380. [PMID: 36537050 PMCID: PMC9871521 DOI: 10.1111/1751-7915.14197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022] Open
Abstract
Microbial lipids for chemical synthesis are commonly obtained from sugar-based substrates which in most cases is not economically viable. As a low-cost carbon source, short-chain fatty acids (SCFAs) that can be obtained from food wastes offer an interesting alternative for achieving an affordable lipid production process. In this study, SCFAs were employed to accumulate lipids using Yarrowia lipolytica ACA DC 50109. For this purpose, different amounts of SCFAs, sulfate, phosphate and carbon: phosphate ratios were used in both synthetic and real SCFAs-rich media. Although sulfate limitation did not increase lipid accumulation, phosphate limitation was proved to be an optimal strategy for increasing lipid content and lipid yields in both synthetic and real media, reaching a lipid productivity up to 8.95 g/L h. Remarkably, the highest lipid yield (0.30 g/g) was achieved under phosphate absence condition (0 g/L). This fact demonstrated the suitability of using low-phosphate concentrations to boost lipid production from SCFAs.
Collapse
Affiliation(s)
| | | | - Cristina González‐Fernández
- Biotechnology Process UnitIMDEA EnergyMóstoles, MadridSpain,Department of Chemical Engineering and Environmental Technology, School of Industrial EngineeringValladolid UniversityValladolidSpain,Institute of Sustainable ProcessesValladolidSpain
| |
Collapse
|