1
|
Budiarso FS, Leong YK, Chang JJ, Chen CY, Chen JH, Yen HW, Chang JS. Current advances in microalgae-based fucoxanthin production and downstream processes. BIORESOURCE TECHNOLOGY 2025; 428:132455. [PMID: 40157580 DOI: 10.1016/j.biortech.2025.132455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Fucoxanthin, a marine carotenoid primarily found in brown algae and microalgae, offers significant health benefits, including antioxidant, anti-obesity, and anti-cancer effects. While brown algae remain the dominant commercial source, microalgae such as Phaeodactylum tricornutum are emerging as promising candidates for large-scale, sustainable fucoxanthin production. This review explores advancements in fucoxanthin biosynthesis, focusing on cultivation methods, extraction techniques, and genetic engineering strategies. Different cultivation systems - including autotrophic, heterotrophic, and mixotrophic approaches - have been assessed for their biomass yield, cost-effectiveness, and scalability, together with a quantitative meta-analysis to highlight specific trends or correlations in fucoxanthin production. The efficiency and environmental impact of extraction methods, such as supercritical fluid extraction, ultrasound-assisted extraction, and microwave-assisted extraction, have also been evaluated. In addition, synthetic biology and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genetic modifications show potential for enhancing fucoxanthin biosynthesis. However, challenges remain in terms of cost, scalability, and regulatory constraints. This review highlights the need for integrated biotechnological solutions to enhance commercial viability, combining metabolic engineering, efficient extraction techniques, and optimized cultivation strategies. As demand continues to grow in the nutraceutical, pharmaceutical, and cosmetic industries, ongoing advancements in microalgae-based fucoxanthin production will be critical for ensuring sustainable and cost-effective manufacturing.
Collapse
Affiliation(s)
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan; Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Jih-Heng Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Hong-Wei Yen
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan.
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
2
|
Kim SY, Moon H, Kwon YM, Kim KW, Kim JYH. Comparative Analysis of the Biochemical and Molecular Responses of Nannochloropsis gaditana to Nitrogen and Phosphorus Limitation: Phosphorus Limitation Enhances Carotenogenesis. Mar Drugs 2024; 22:567. [PMID: 39728141 DOI: 10.3390/md22120567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Nannochloropsis gaditana is well known for its potential for biofuel production due to its high lipid content. Numerous omics and biochemical studies have explored the overall molecular mechanisms underlying the responses of Nannochloropsis sp. to nutrient availability, primarily focusing on lipid metabolism. However, N. gaditana is able to synthesize other valuable products such as carotenoids, including violaxanthin, which has various biological functions and applications. In this study, we comparatively investigated the physiological, biochemical, and molecular responses of N. gaditana to nitrogen and phosphorus limitation, examining biomass production, photosynthetic activity, lipid, chlorophyll, and carotenoids content, and RNA-seq data. Nitrogen limitation decreased photosynthetic activity, chlorophyll content, and biomass production but increased lipid content. Phosphorus limitation substantially increased carotenoids content, with violaxanthin productivity of 10.24 mg/L, 3.38-fold greater than under the control condition, with little effect on biomass production or photosynthetic function. These results were generally consistent with the gene expression pattern observed in transcriptomic analysis. This integrated analysis shows that phosphorus limitation can be an economically competitive solution by enhancing valuable carotenoids while maintaining lipid and biomass production in N. gaditana.
Collapse
Affiliation(s)
- Sun Young Kim
- National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon 33662, Republic of Korea
| | - Hanbi Moon
- National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon 33662, Republic of Korea
| | - Yong Min Kwon
- National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon 33662, Republic of Korea
| | - Kyung Woo Kim
- National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon 33662, Republic of Korea
| | - Jaoon Young Hwan Kim
- National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon 33662, Republic of Korea
| |
Collapse
|
3
|
Shen Y, Han X, Wang H, Shen J, Sun L, Fan K, Wang Y, Ding S, Song D, Ding Z. Full-length transcriptome sheds light into the molecular mechanism of tea leaf yellowing induced by red light. Sci Rep 2024; 14:29901. [PMID: 39622966 PMCID: PMC11612301 DOI: 10.1038/s41598-024-81886-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024] Open
Abstract
Light, as an energy source for plant photosynthesis, can not only affect the growth and development of plants, but also affect their leaf color. This study used white (WL), red (RL), and blue light (BL) to treat tea cuttings, aiming to investigate the effect of light quality on the color of tea leaves. The results showed that tea leaves turned yellow under red light, the SPAD and Fv/Fm values were significantly lower than WL and BL. Full-length transcriptome was analyzed, photosynthesis and chlorophyll biosynthesis related genes such as PsbS, Psb28, HemL, and POR had the lowest expression levels under RLCarotenoid biosynthesis related genes ZEP, ABA2, and CRTISO had the higher expression levels under RL. This study revealed the molecular mechanism of RL induced leaf yellowing in tea plants, providing new insights for the application of light quality in tea plants.
Collapse
Affiliation(s)
- Yaozong Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA, 6150, Australia
| | - Xiao Han
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA, 6150, Australia
| | - Hui Wang
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Litao Sun
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Shibo Ding
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao, China
| | - Dapeng Song
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao, China
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China.
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA, 6150, Australia.
| |
Collapse
|
4
|
El-Fakharany EM, Saleh AK, El-Maradny YA, El-Sayed MH, Alali I, Alsirhani AM, Alalawy AI, Alhawiti AS, Alatawi IS, Mazi W, El-Gendi H. Comprehensive insight into recent algal enzymes production and purification advances: Toward effective commercial applications: A review. Int J Biol Macromol 2024; 283:137783. [PMID: 39557238 DOI: 10.1016/j.ijbiomac.2024.137783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Algal enzymes are essential catalysts in numerous biological reactions and industrial processes owing to their adaptability and potency. The marketing of algal enzymes has recently risen due to various reasons, including the cost-efficient manner of their cultivation in photobioreactors, the eco-friendly production of high biomass contents, sources of novel enzymes that used in many sectors (biofuel and bioremediation applications), sustainability, and more renewability. Oxidoreductases and hydrolytic enzymes are among the important applied algal enzymes in industrial applications, with annually growing demand. These algal enzymes have opened up new avenues for significant health advantages in reducing and treating oxidative stress, cardiovascular illness, tumors, microbial infections, and viral outbreaks. Despite their promising uses, commercial applications of algal enzymes face many difficulties, such as stability, toxicity, and lower data availability on specific and adequate catalytic mechanisms. Therefore, this review focuses on the algal enzyme types, their uses and advantages over other microbial enzymes, downstream and upstream processing, their commercial and marketing, and their challenges. With the constant development of novel enzymes and their uses, enzyme technology provides exciting options for several industrial sectors.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt; Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt; Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex, 21648, Alexandria.
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki 12622, Giza, Egypt
| | - Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Mohamed H El-Sayed
- Department of Biology, College of Sciences and Arts-Rafha, Northern Border University, Arar, Saudi Arabia
| | - Ibtisam Alali
- Department of Chemistry, College of Science, Jouf University, P.O. BOX 2014, Sakaka, Saudi Arabia
| | - Alaa Muqbil Alsirhani
- Department of Chemistry, College of Science, Jouf University, P.O. BOX 2014, Sakaka, Saudi Arabia
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Aliyah S Alhawiti
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ibrahim Saleem Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Wafa Mazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt
| |
Collapse
|
5
|
Liu M, Zheng J, Yu L, Shao S, Zhou W, Liu J. Engineering Nannochloropsis oceanica for concurrent production of canthaxanthin and eicosapentaenoic acid. BIORESOURCE TECHNOLOGY 2024; 413:131525. [PMID: 39321939 DOI: 10.1016/j.biortech.2024.131525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/26/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
The marine alga Nannochloropsis oceanica can synthesize the high-value ketocarotenoid canthaxanthin yet at an extremely low level. Introducing a β-carotenoid ketolase from Chlamydomonas reinhardtii into the chloroplast for expression, enabled N. oceanica to synthesize substantial amounts of canthaxanthin and grow better under high light. Compared to wild type, the engineered strain had higher levels of primary carotenoids and chlorophyll a as well, and synthesized more eicosapentaenoic acid (EPA, an ω3 polyunsaturated fatty acids). Further metabolic engineering by enhancing the flux to carotenoids or suppressing competing pathways allowed for a considerable increase of canthaxanthin, reaching 4.7 mg g-1 dry weight. A fed-batch culture strategy with nitrate and phosphate replenishment was developed for the co-production of canthaxanthin and EPA, which within a 10-day period reached 37.6 and 268.8 mg/L, respectively. This study sheds light on manipulating the industrially relevant alga for efficient co-production of high-value biochemicals from CO2.
Collapse
Affiliation(s)
- Meijing Liu
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China; Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Jie Zheng
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Lihua Yu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Shengxi Shao
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Wenguang Zhou
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Jin Liu
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
6
|
Canini D, Martini F, Cazzaniga S, Miotti T, Pacenza B, D'Adamo S, Ballottari M. Genetic engineering of Nannochloropsis oceanica to produce canthaxanthin and ketocarotenoids. Microb Cell Fact 2024; 23:322. [PMID: 39609835 PMCID: PMC11606307 DOI: 10.1186/s12934-024-02599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Canthaxanthin is a ketocarotenoid with high antioxidant activity, and it is primarily produced by microalgae, among which Nannochloropsis oceanica, a marine alga widely used for aquaculture. In the last decade, N. oceanica has become a model organism for oleaginous microalgae to develop sustainable processes to produce biomolecules of interest by exploiting its photosynthetic activity and carbon assimilation properties. N. oceanica can accumulate lipids up to 70% of total dry weight and contains the omega-3 fatty acid eicosapentaenoic acid (EPA) required for both food and feed applications. The genome sequence, other omics data, and synthetic biology tools are available for this species, including an engineered strain called LP-tdTomato, which allows homologous recombination to insert the heterologous genes in a highly transcribed locus in the nucleolus region. Here, N. oceanica was engineered to induce high ketocarotenoid and canthaxanthin production. RESULTS We used N. oceanica LP-tdTomato strain as a background to express the key enzyme for ketocarotenoid production, a β-carotene ketolase (CrBKT) from Chlamydomonas reinhardtii. Through the LP-tdTomato strain, the transgene insertion by homologous recombination in a highly transcribed genomic locus can be screened by negative fluorescence. The overexpression of CrBKT in bkt transformants increased the content of carotenoids and ketocarotenoids per cell, respectively, 1.5 and 10-fold, inducing an orange/red color in the bkt cell cultures. Background (LP) and bkt lines productivity were compared at different light intensities from 150 to 1200 µmol m-2 s-1: at lower irradiances, the growth kinetics of bkt lines were slower compared to LP, while higher productivity was measured for bkt lines at 1200 µmol m-2 s-1. Despite these results, the highest canthaxanthin and ketocarotenoids productivity were obtained upon cultivation at 150 µmol m-2 s-1. CONCLUSIONS Through targeted gene redesign and heterologous transformation, ketocarotenoids and canthaxanthin content were significantly increased, achieving 0.3% and 0.2% dry weight. Canthaxanthin could be produced using CO2 as the only carbon source at 1.5 mg/L titer. These bkt-engineered lines hold potential for industrial applications in fish or poultry feed sectors, where canthaxanthin and ketocarotenoids are required as pigmentation agents.
Collapse
Affiliation(s)
- Davide Canini
- Dipartimento di Biotecnologie, Università Degli Studi di Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Flavio Martini
- Dipartimento di Biotecnologie, Università Degli Studi di Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Stefano Cazzaniga
- Dipartimento di Biotecnologie, Università Degli Studi di Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Tea Miotti
- Dipartimento di Biotecnologie, Università Degli Studi di Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Beatrice Pacenza
- Dipartimento di Biotecnologie, Università Degli Studi di Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Sarah D'Adamo
- Bioprocess Engineering Chair Group, Wageningen University and Research, Wageningen, 6700 AA, The Netherlands
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università Degli Studi di Verona, Strada le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
7
|
Liu M, Yu L, Zheng J, Shao S, Pan Y, Hu H, Shen L, Wang W, Zhou W, Liu J. Turning the industrially relevant marine alga Nannochloropsis red: one move for multifaceted benefits. THE NEW PHYTOLOGIST 2024; 244:1467-1481. [PMID: 39253772 DOI: 10.1111/nph.20114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Nannochloropsis oceanica is an industrially relevant marine microalga rich in eicosapentaenoic acid (EPA, a valuable ω-3 polyunsaturated fatty acid), yet the algal production potential remains to be unlocked. Here we engineered N. oceanica to synthesize the high-value carotenoid astaxanthin independent of high-light (HL) induction for achieving multifaceted benefits. By screening β-carotenoid ketolases and hydroxylases of various origins, and strategically manipulating compartmentalization, fusion patterns, and linkers of the enzyme pair, a remarkable 133-fold increase in astaxanthin content was achieved in N. oceanica. Iterative metabolic engineering efforts led to further increases in astaxanthin synthesis up to 7.3 mg g-1, the highest reported for microalgae under nonstress conditions. Astaxanthin was found in the photosystem components and allowed the alga HL resistance and augmented EPA production. Besides, we achieved co-production of astaxanthin and EPA by the engineered alga through a fed-batch cultivation approach. Our findings unveil the untapped potential of N. oceanica as a robust, light-driven chassis for constitutive astaxanthin synthesis and provide feasible strategies for the concurrent production of multiple high-value biochemicals from CO2, thereby paving the way for sustainable biotechnological applications of this alga.
Collapse
Affiliation(s)
- Meijing Liu
- Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Lihua Yu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jie Zheng
- Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China
| | - Shengxi Shao
- Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China
| | - Yufang Pan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lili Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Science, Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Science, Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Wenguang Zhou
- Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China
| | - Jin Liu
- Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
8
|
He H, Yang X, Zeb A, Liu J, Gu H, Yang J, Xiang W, Shen S. Cloning and Functional Analysis of a Zeaxanthin Epoxidase Gene in Ulva prolifera. BIOLOGY 2024; 13:695. [PMID: 39336122 PMCID: PMC11429058 DOI: 10.3390/biology13090695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
The xanthophyll cycle is a photoprotective mechanism in plants and algae, which protects the photosynthetic system from excess light damage under abiotic stress. Zeaxanthin is considered to play a pivotal role in this process. In this study, the relative content of xanthophylls was determined using HPLC-MS/MS in Ulva prolifera exposed to different salinities. The results showed that high-salt stress significantly increased the relative content of xanthophylls and led to the accumulation of zeaxanthin. It was speculated that the accumulated zeaxanthin may contribute to the response of U. prolifera to high-salt stress. Zeaxanthin epoxidase (ZEP) is a key enzyme in the xanthophyll cycle and is also involved in the synthesis of abscisic acid and carotenoids. In order to explore the biological function of ZEP, a ZEP gene was cloned and identified from U. prolifera. The CDS of UpZEP is 1122 bp and encodes 373 amino acids. Phylogenetic analysis showed that UpZEP clusters within a clade of green algae. The results of qRT-PCR showed that high-salt stress induced the expression of UpZEP. In addition, heterologous overexpression of the UpZEP gene in yeast and Chlamydomonas reinhardtii improved the salt tolerance of transgenic organisms. In conclusion, the UpZEP gene may be involved in the response of U. prolifera to high-salt stress and can improve the high-salt tolerance of transgenic organisms.
Collapse
Affiliation(s)
- Hongyan He
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Xiuwen Yang
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Aurang Zeb
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Jiasi Liu
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Huiyue Gu
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Jieru Yang
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Wenyu Xiang
- Suzhou Industrial Park Environmental Law Enforcement Brigade, Suzhou 215021, China;
| | - Songdong Shen
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| |
Collapse
|
9
|
Ning L, Xu Y, Luo L, Gong L, Liu Y, Wang Z, Wang W. Integrative analyses of metabolome and transcriptome reveal the dynamic accumulation and regulatory network in rhizomes and fruits of Polygonatum cyrtonema Hua. BMC Genomics 2024; 25:706. [PMID: 39030489 PMCID: PMC11264994 DOI: 10.1186/s12864-024-10608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND According to Chinese ancient books, both fruits and rhizomes of Polygonatum cyrtonema Hua have medicinal and edible values. Up to now, there is no report about the metabolite profiles and regulatory network in fruits and different year-old rhizomes of P. cyrtonema. RESULTS In this study, we performed integrative analyses of metabolome and transcriptome to reveal the dynamic accumulation and regulatory network of fruits and different year-old rhizomes in P. cyrtonema. The relative content of phenolic acids, lignans and coumarins, flavonoids and alkaloids increased with growth years, while steroids and lipids decreased with it. In addition, the relative content of nucleotides and derivatives, flavonoids, organic acids, steroids and lipids in fruits were higher than rhizomes. Genes that might relate to the biosynthesis of polysaccharides, flavonoids, triterpene saponins and alkaloids biosynthesis were further analyzed by transcriptome analysis, including sacA, GMPP, PMM, CCoAOMT, CHI, ANR, CHS, DXS, GGPS, ZEP, CYP72A219 and so on, for their expressions were positively correlated with the relative content of the metabolites. Additionally, the correlation network in sugar and aromatic amino acids metabolites were constructed to further illustrate the biosynthesis of polysaccharides, flavonoids and alkaloids in P. cyrtonema, and some transcription factors (TFs) were screened, such as C2C2, MYB, bZIP, GRAS and NAC. CONCLUSIONS This study can deepen our understanding of the accumulation patterns and molecular mechanism of the main compounds in P. cyrtonema, and provide reference for the standardize production of P. cyrtonema.
Collapse
Affiliation(s)
- Luyun Ning
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuanshu Xu
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lu Luo
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Limin Gong
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yeman Liu
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhi Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
10
|
Canini D, Ceschi E, Perozeni F. Toward the Exploitation of Sustainable Green Factory: Biotechnology Use of Nannochloropsis spp. BIOLOGY 2024; 13:292. [PMID: 38785776 PMCID: PMC11117969 DOI: 10.3390/biology13050292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Securing food, energy, and raw materials for a growing population is one of the most significant challenges of our century. Algae play a central role as an alternative to plants. Wastewater and flue gas can secure nutrients and CO2 for carbon fixation. Unfortunately, algae domestication is necessary to enhance biomass production and reduce cultivation costs. Nannochloropsis spp. have increased in popularity among microalgae due to their ability to accumulate high amounts of lipids, including PUFAs. Recently, the interest in the use of Nannochloropsis spp. as a green bio-factory for producing high-value products increased proportionally to the advances of synthetic biology and genetic tools in these species. In this review, we summarized the state of the art of current nuclear genetic manipulation techniques and a few examples of their application. The industrial use of Nannochloropsis spp. has not been feasible yet, but genetic tools can finally lead to exploiting this full-of-potential microalga.
Collapse
Affiliation(s)
| | | | - Federico Perozeni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (D.C.); (E.C.)
| |
Collapse
|
11
|
Ye Y, Liu M, Yu L, Sun H, Liu J. Nannochloropsis as an Emerging Algal Chassis for Light-Driven Synthesis of Lipids and High-Value Products. Mar Drugs 2024; 22:54. [PMID: 38393025 PMCID: PMC10890015 DOI: 10.3390/md22020054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
In light of the escalating global energy crisis, microalgae have emerged as highly promising producers of biofuel and high-value products. Among these microalgae, Nannochloropsis has received significant attention due to its capacity to generate not only triacylglycerol (TAG) but also eicosapentaenoic acid (EPA) and valuable carotenoids. Recent advancements in genetic tools and the field of synthetic biology have revolutionized Nannochloropsis into a powerful biofactory. This comprehensive review provides an initial overview of the current state of cultivation and utilization of the Nannochloropsis genus. Subsequently, our review examines the metabolic pathways governing lipids and carotenoids, emphasizing strategies to enhance oil production and optimize carbon flux redirection toward target products. Additionally, we summarize the utilization of advanced genetic manipulation techniques in Nannochloropsis. Together, the insights presented in this review highlight the immense potential of Nannochloropsis as a valuable model for biofuels and synthetic biology. By effectively integrating genetic tools and metabolic engineering, the realization of this potential becomes increasingly feasible.
Collapse
Affiliation(s)
- Ying Ye
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
| | - Meijing Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Lihua Yu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| |
Collapse
|