1
|
Ojha U, Kim S, Rhee CY, You J, Choi YH, Yoon SH, Park SY, Lee YR, Kim JK, Bae SC, Lee YM. Endothelial RUNX3 controls LSEC dysfunction and angiocrine LRG1 signaling to prevent liver fibrosis. Hepatology 2025; 81:1228-1243. [PMID: 39042837 PMCID: PMC11902585 DOI: 10.1097/hep.0000000000001018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/23/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND AND AIMS Liver fibrosis represents a global health burden, given the paucity of approved antifibrotic therapies. Liver sinusoidal endothelial cells (LSECs) play a major gatekeeping role in hepatic homeostasis and liver disease pathophysiology. In early tumorigenesis, runt-related transcription factor 3 (RUNX3) functions as a sentinel; however, its function in liver fibrosis in LSECs remains unclear. This study aimed to investigate the role of RUNX3 as an important regulator of the gatekeeping functions of LSECs and explore novel angiocrine regulators of liver fibrosis. APPROACH AND RESULTS Mice with endothelial Runx3 deficiency develop gradual and spontaneous liver fibrosis secondary to LSEC dysfunction, thereby more prone to liver injury. Mechanistic studies in human immortalized LSECs and mouse primary LSECs revealed that IL-6/JAK/STAT3 pathway activation was associated with LSEC dysfunction in the absence of RUNX3. Single-cell RNA sequencing and quantitative RT-PCR revealed that leucine-rich alpha-2-glycoprotein 1 ( LRG1 ) was highly expressed in RUNX3-deficient and dysfunctional LSECs. In in vitro and coculture experiments, RUNX3-depleted LSECs secreted LRG1, which activated HSCs throughTGFBR1-SMAD2/3 signaling in a paracrine manner. Furthermore, circulating LRG1 levels were elevated in mouse models of liver fibrosis and in patients with fatty liver and cirrhosis. CONCLUSIONS RUNX3 deficiency in the endothelium induces LSEC dysfunction, LRG1 secretion, and liver fibrosis progression. Therefore, endothelial RUNX3 is a crucial gatekeeping factor in LSECs, and profibrotic angiocrine LRG1 may be a novel target for combating liver fibrosis.
Collapse
Affiliation(s)
- Uttam Ojha
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Chang Yun Rhee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Jihye You
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Soo-Hyun Yoon
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Soo Young Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yu Rim Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Ruiz-Blázquez P, Fernández-Fernández M, Pistorio V, Martinez-Sanchez C, Costanzo M, Iruzubieta P, Zhuravleva E, Cacho-Pujol J, Ariño S, Del Castillo-Cruz A, Núñez S, Andersen JB, Ruoppolo M, Crespo J, García-Ruiz C, Pavone LM, Reinheckel T, Sancho-Bru P, Coll M, Fernández-Checa JC, Moles A. Cathepsin D is essential for the degradomic shift of macrophages required to resolve liver fibrosis. Mol Metab 2024; 87:101989. [PMID: 39019115 PMCID: PMC11327474 DOI: 10.1016/j.molmet.2024.101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Fibrosis contributes to 45% of deaths in industrialized nations and is characterized by an abnormal accumulation of extracellular matrix (ECM). There are no specific anti-fibrotic treatments for liver fibrosis, and previous unsuccessful attempts at drug development have focused on preventing ECM deposition. Because liver fibrosis is largely acknowledged to be reversible, regulating fibrosis resolution could offer novel therapeutical options. However, little is known about the mechanisms controlling ECM remodeling during resolution. Changes in proteolytic activity are essential for ECM homeostasis and macrophages are an important source of proteases. Herein, in this study we evaluate the role of macrophage-derived cathepsin D (CtsD) during liver fibrosis. METHODS CtsD expression and associated pathways were characterized in single-cell RNA sequencing and transcriptomic datasets in human cirrhosis. Liver fibrosis progression, reversion and functional characterization were assessed in novel myeloid-CtsD and hepatocyte-CtsD knock-out mice. RESULTS Analysis of single-cell RNA sequencing datasets demonstrated CtsD was expressed in macrophages and hepatocytes in human cirrhosis. Liver fibrosis progression, reversion and functional characterization were assessed in novel myeloid-CtsD (CtsDΔMyel) and hepatocyte-CtsD knock-out mice. CtsD deletion in macrophages, but not in hepatocytes, resulted in enhanced liver fibrosis. Both inflammatory and matrisome proteomic signatures were enriched in fibrotic CtsDΔMyel livers. Besides, CtsDΔMyel liver macrophages displayed functional, phenotypical and secretomic changes, which resulted in a degradomic phenotypical shift, responsible for the defective proteolytic processing of collagen I in vitro and impaired collagen remodeling during fibrosis resolution in vivo. Finally, CtsD-expressing mononuclear phagocytes of cirrhotic human livers were enriched in lysosomal and ECM degradative signaling pathways. CONCLUSIONS Our work describes for the first-time CtsD-driven lysosomal activity as a central hub for restorative macrophage function during fibrosis resolution and opens new avenues to explore their degradome landscape to inform drug development.
Collapse
Affiliation(s)
- Paloma Ruiz-Blázquez
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; CiberEHD, Spain; University of Barcelona, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | - María Fernández-Fernández
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; CiberEHD, Spain; University of Barcelona, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | - Valeria Pistorio
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | | | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., Naples, Italy
| | - Paula Iruzubieta
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Research Institute Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Ekaterina Zhuravleva
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; LEO Foundation Skin Immunology Research Center (SIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Júlia Cacho-Pujol
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; University of Barcelona, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | - Silvia Ariño
- CiberEHD, Spain; University of Barcelona, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | | | | | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., Naples, Italy
| | - Javier Crespo
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Research Institute Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Carmen García-Ruiz
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; CiberEHD, Spain; IDIBAPS, Barcelona, Spain; USC Research Center for ALPD, Los Angeles, United States; Associated Unit IIBB-IMIM, Barcelona, Spain
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany; German Cancer Consortium (DKTK), DKFZ Partner Site Freiburg, Germany; Center for Biological Signaling Studies BIOSS, University of Freiburg, Germany
| | - Pau Sancho-Bru
- CiberEHD, Spain; University of Barcelona, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | - Mar Coll
- CiberEHD, Spain; University of Barcelona, Barcelona, Spain; IDIBAPS, Barcelona, Spain; Medicine Department, Faculty of Medicine, University of Barcelona, Spain
| | - José C Fernández-Checa
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; CiberEHD, Spain; IDIBAPS, Barcelona, Spain; USC Research Center for ALPD, Los Angeles, United States; Associated Unit IIBB-IMIM, Barcelona, Spain
| | - Anna Moles
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; CiberEHD, Spain; IDIBAPS, Barcelona, Spain; Associated Unit IIBB-IMIM, Barcelona, Spain.
| |
Collapse
|
3
|
Antwi MB, Dumitriu G, Simón-Santamaria J, Romano JS, Li R, Smedsrød B, Vik A, Eskild W, Sørensen KK. Liver sinusoidal endothelial cells show reduced scavenger function and downregulation of Fc gamma receptor IIb, yet maintain a preserved fenestration in the Glmpgt/gt mouse model of slowly progressing liver fibrosis. PLoS One 2023; 18:e0293526. [PMID: 37910485 PMCID: PMC10619817 DOI: 10.1371/journal.pone.0293526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are fenestrated endothelial cells with a unique, high endocytic clearance capacity for blood-borne waste macromolecules and colloids. This LSEC scavenger function has been insufficiently characterized in liver disease. The Glmpgt/gt mouse lacks expression of a subunit of the MFSD1/GLMP lysosomal membrane protein transporter complex, is born normal, but soon develops chronic, mild hepatocyte injury, leading to slowly progressing periportal liver fibrosis, and splenomegaly. This study examined how LSEC scavenger function and morphology are affected in the Glmpgt/gt model. FITC-labelled formaldehyde-treated serum albumin (FITC-FSA), a model ligand for LSEC scavenger receptors was administered intravenously into Glmpgt/gt mice, aged 4 months (peak of liver inflammation), 9-10 month, and age-matched Glmpwt/wt mice. Organs were harvested for light and electron microscopy, quantitative image analysis of ligand uptake, collagen accumulation, LSEC ultrastructure, and endocytosis receptor expression (also examined by qPCR and western blot). In both age groups, the Glmpgt/gt mice showed multifocal liver injury and fibrosis. The uptake of FITC-FSA in LSECs was significantly reduced in Glmpgt/gt compared to wild-type mice. Expression of LSEC receptors stabilin-1 (Stab1), and mannose receptor (Mcr1) was almost similar in liver of Glmpgt/gt mice and age-matched controls. At the same time, immunostaining revealed differences in the stabilin-1 expression pattern in sinusoids and accumulation of stabilin-1-positive macrophages in Glmpgt/gt liver. FcγRIIb (Fcgr2b), which mediates LSEC endocytosis of soluble immune complexes was widely and significantly downregulated in Glmpgt/gt liver. Despite increased collagen in space of Disse, LSECs of Glmpgt/gt mice showed well-preserved fenestrae organized in sieve plates but the frequency of holes >400 nm in diameter was increased, especially in areas with hepatocyte damage. In both genotypes, FITC-FSA also distributed to endothelial cells of spleen and bone marrow sinusoids, suggesting that these locations may function as possible compensatory sites of clearance of blood-borne scavenger receptor ligands in liver fibrosis.
Collapse
Affiliation(s)
- Milton Boaheng Antwi
- Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
- Section of Haematology, University Hospital of North Norway, Tromsø, Norway
| | - Gianina Dumitriu
- Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | | | | | - Ruomei Li
- Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Bård Smedsrød
- Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Anders Vik
- Section of Haematology, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Winnie Eskild
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
4
|
Wu S, Liu M, Xiao S, Lai M, Wei L, Li D, Wang L, Yin F, Zeng X. Identification and verification of novel ferroptosis biomarkers predicts the prognosis of hepatocellular carcinoma. Genomics 2023; 115:110733. [PMID: 37866659 DOI: 10.1016/j.ygeno.2023.110733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Big data mining and experiments are widely used to mine new prognostic markers. METHODS Candidate genes were identified from CROEMINE and FerrDb. Kaplan-Meier survival and Cox regression analysis were applied to assess the association of genes with Overall survival time (OS) and Disease-free survival time (DFS) in two HCC cohorts. Real-time quantitative polymerase chain reaction (RT-qPCR) and Immunohistochemistry were performed in HCC samples. RESULTS 21 and 15 genes that can predict OS and DFS, which had not been reported before, were identified from 719 genes, respectively. Survival analysis showed elevated mRNA expression of GLMP, SLC38A6, and WDR76 were associated with poor prognosis, and three genes combination signature was an independent prognostic factor in HCC. RT-qPCR and Immunohistochemistry confirmed the results. CONCLUSIONS We established a novel computational process, which identified the expression levels of GLMP, SLC38A6, and WDR76 as potential ferroptosis-related biomarkers indicating the prognosis of HCC.
Collapse
Affiliation(s)
- Siqian Wu
- Department of Epidemiology and Health Statistics, School of public health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Meiliang Liu
- Department of Epidemiology and Health Statistics, School of public health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Suyang Xiao
- Department of Epidemiology and Health Statistics, School of public health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Mingshuang Lai
- Department of Epidemiology and Health Statistics, School of public health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Liling Wei
- Department of Epidemiology and Health Statistics, School of public health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Deyuan Li
- Department of Epidemiology and Health Statistics, School of public health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Lijun Wang
- Department of Epidemiology and Health Statistics, School of public health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China; Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China.
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of public health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China; Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China.
| |
Collapse
|
5
|
Yilmaz K, Haeberle S, Kim YO, Fritzler MJ, Weng SY, Goeppert B, Raker VK, Steinbrink K, Schuppan D, Enk A, Hadaschik EN. Regulatory T-cell deficiency leads to features of autoimmune liver disease overlap syndrome in scurfy mice. Front Immunol 2023; 14:1253649. [PMID: 37818371 PMCID: PMC10561387 DOI: 10.3389/fimmu.2023.1253649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/08/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Scurfy mice have a complete deficiency of functional regulatory T cells (Treg) due to a frameshift mutation in the Foxp3 gene. The impaired immune homeostasis results in a lethal lymphoproliferative disorder affecting multiple organs, including the liver. The autoimmune pathology in scurfy mice is in part accompanied by autoantibodies such as antinuclear antibodies (ANA). ANA are serological hallmarks of several autoimmune disorders including autoimmune liver diseases (AILD). However, the underlying pathogenesis and the role of Treg in AILD remain to be elucidated. The present study therefore aimed to characterize the liver disease in scurfy mice. Methods Sera from scurfy mice were screened for ANA by indirect immunofluorescence assay (IFA) and tested for a wide range of AILD-associated autoantibodies by enzyme-linked immunosorbent assay, line immunoassay, and addressable laser bead immunoassay. CD4+ T cells of scurfy mice were transferred into T cell-deficient B6/nude mice. Monoclonal autoantibodies from scurfy mice and recipient B6/nude mice were tested for ANA by IFA. Liver tissue of scurfy mice was analyzed by conventional histology. Collagen deposition in scurfy liver was quantified via hepatic hydroxyproline content. Real-time quantitative PCR was used to determine fibrosis-related hepatic gene expression. Hepatic immune cells were differentiated by flow cytometry. Results All scurfy mice produced ANA. AILD-associated autoantibodies, predominantly antimitochondrial antibodies, were detected at significantly higher levels in scurfy sera. CD4+ T cells from scurfy mice were sufficient to induce anti-dsDNA autoantibodies and ANA with an AILD-related nuclear envelope staining pattern. Liver histology revealed portal inflammation with bile duct damage and proliferation, as in primary biliary cholangitis (PBC), and interface hepatitis with portal-parenchymal necroinflammation, as found in autoimmune hepatitis (AIH). In scurfy liver, TNFα and fibrosis-related transcripts including Col1a1, Timp1, Acta2, Mmp2, and Mmp9 were upregulated. The level of proinflammatory monocytic macrophages (Ly-6Chi) was increased, while M2-type macrophages (CD206+) were downregulated compared to wildtype controls. Despite severe hepatic inflammation, fibrosis did not develop within 25 days, which is close to the lifespan of scurfy mice. Discussion Our findings suggest that Treg-deficient scurfy mice spontaneously develop clinical, serological, and immunopathological characteristics of AILD with overlapping features of PBC and AIH.
Collapse
Affiliation(s)
- Kaan Yilmaz
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
- Department of Dermatology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stefanie Haeberle
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Yong Ook Kim
- Institute of Translational Immunology, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marvin J. Fritzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shih-Yen Weng
- Institute of Translational Immunology, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
- Smart Healthcare Interdisciplinary College, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Benjamin Goeppert
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Institute of Pathology and Neuropathology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Verena K. Raker
- Department of Dermatology, University Hospital Muenster, Muenster, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University Hospital Muenster, Muenster, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Alexander Enk
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Eva N. Hadaschik
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
- Department of Dermatology, University Hospital of Essen, Essen, Germany
| |
Collapse
|
6
|
Balboa E, Marín T, Oyarzún JE, Contreras PS, Hardt R, van den Bosch T, Alvarez AR, Rebolledo-Jaramillo B, Klein AD, Winter D, Zanlungo S. Proteomic Analysis of Niemann-Pick Type C Hepatocytes Reveals Potential Therapeutic Targets for Liver Damage. Cells 2021; 10:cells10082159. [PMID: 34440927 PMCID: PMC8392304 DOI: 10.3390/cells10082159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
Niemann-Pick type C disease (NPCD) is a lysosomal storage disorder caused by mutations in the NPC1 gene. The most affected tissues are the central nervous system and liver, and while significant efforts have been made to understand its neurological component, the pathophysiology of the liver damage remains unclear. In this study, hepatocytes derived from wild type and Npc1-/- mice were analyzed by mass spectrometry (MS)-based proteomics in conjunction with bioinformatic analysis. We identified 3832 proteins: 416 proteins had a p-value smaller than 0.05, of which 37% (n = 155) were considered differentially expressed proteins (DEPs), 149 of them were considered upregulated, and 6 were considered downregulated. We focused the analysis on pathways related to NPC pathogenic mechanisms, finding that the most significant changes in expression levels occur in proteins that function in the pathways of liver damage, lipid metabolism, and inflammation. Moreover, in the group of DEPs, 30% (n = 47) were identified as lysosomal proteins and 7% (n = 10) were identified as mitochondrial proteins. Importantly, we found that lysosomal DEPs, including CTSB/D/Z, LIPA, DPP7 and GLMP, and mitocondrial DEPs, AKR1B10, and VAT1 had been connected with liver fibrosis, damage, and steatosis in previous studies, validiting our dataset. Our study found potential therapeutic targets for the treatment of liver damage in NPCD.
Collapse
Affiliation(s)
- Elisa Balboa
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Tamara Marín
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Juan Esteban Oyarzún
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Pablo S Contreras
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8018, USA
| | - Robert Hardt
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Thea van den Bosch
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Alejandra R Alvarez
- Laboratory of Cell Signaling, Department of Cellular and Molecular Biology, Biological Sciences Faculty, CARE UC, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Boris Rebolledo-Jaramillo
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| | - Andres D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| |
Collapse
|
7
|
Common Transcriptional Program of Liver Fibrosis in Mouse Genetic Models and Humans. Int J Mol Sci 2021; 22:ijms22020832. [PMID: 33467660 PMCID: PMC7830925 DOI: 10.3390/ijms22020832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Multifactorial metabolic diseases, such as non-alcoholic fatty liver disease, are a major burden to modern societies, and frequently present with no clearly defined molecular biomarkers. Herein we used system medicine approaches to decipher signatures of liver fibrosis in mouse models with malfunction in genes from unrelated biological pathways: cholesterol synthesis-Cyp51, notch signaling-Rbpj, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling-Ikbkg, and unknown lysosomal pathway-Glmp. Enrichment analyses of Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome and TRANScription FACtor (TRANSFAC) databases complemented with genome-scale metabolic modeling revealed fibrotic signatures highly similar to liver pathologies in humans. The diverse genetic models of liver fibrosis exposed a common transcriptional program with activated estrogen receptor alpha (ERα) signaling, and a network of interactions between regulators of lipid metabolism and transcription factors from cancer pathways and the immune system. The novel hallmarks of fibrosis are downregulated lipid pathways, including fatty acid, bile acid, and steroid hormone metabolism. Moreover, distinct metabolic subtypes of liver fibrosis were proposed, supported by unique enrichment of transcription factors based on the type of insult, disease stage, or potentially, also sex. The discovered novel features of multifactorial liver fibrotic pathologies could aid also in improved stratification of other fibrosis related pathologies.
Collapse
|
8
|
Poilil Surendran S, George Thomas R, Moon MJ, Park R, Kim DH, Kim KH, Jeong YY. Effect of hepato-toxins in the acceleration of hepatic fibrosis in hepatitis B mice. PLoS One 2020; 15:e0232619. [PMID: 32428024 PMCID: PMC7237019 DOI: 10.1371/journal.pone.0232619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 11/30/2022] Open
Abstract
Chronic liver diseases such as hepatitis B viral (HBV) infection and liver fibrosis have been a major health problem worldwide. However, less research has been conducted owing to the lack of animal models. The key purpose of this study was to determine the effects of different hepatotoxins in HBV-affected liver. In this study, we successfully generated a combined liver fibrosis model by administering HBV 1.2 plasmid and thioacetamide/ethanol (TAA/EtOH). To our knowledge, this is the first study in which an increase in the liver fibrosis level is observed by the intraperitoneal administration of TAA and EtOH in drinking water after the hydrodynamic transfection of the HBV 1.2 plasmid in C3H/HeN mice. The HBV+TAA/EtOH group exhibited higher level of hepatic fibrosis than that of the control groups. The hepatic stellate cell activation in the TAA- and EtOH-administered groups was demonstrated by the elevation in the level of fibrotic markers. In addition, high levels of collagen content and histopathological results were also used to confirm the prominent fibrotic levels. We established a novel HBV mice model by hydrodynamic injection-based HBV transfection in C3H/HeN mice. C3H/HeN mice were reported to have a higher HBV persistence level than that of the C57BL/6 mouse model. All the results showed an increased fibrosis level in the HBV mice treated with TAA and EtOH; hence, this model would be useful to understand the effect of hepatotoxins on the high risk of fibrosis after HBV infection. The acceleration of liver fibrosis can occur with prolonged administration as well as the high dosage of hepatotoxins in mice.
Collapse
Affiliation(s)
- Suchithra Poilil Surendran
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
| | - Reju George Thomas
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
| | - Myeong Ju Moon
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
| | - Rayoung Park
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
| | - Doo Hyun Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, Konkuk University School of Medicine, Seoul, South Korea
| | - Kyun Hwan Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, Konkuk University School of Medicine, Seoul, South Korea
| | - Yong Yeon Jeong
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|