1
|
Dong H, Shan W, Yuan H, Zhou Q, Zhong W, Wumaier M, Wang K, Yang A, Rui B, Shi H, Chen H, Li X, Ma Y, Peng H. Establishment of Real-Time PCR Method to Differentiate Phlebotomus sichuanensis (Diptera, Psychodidae) from P. chinensis s.s. Based on Whole Mitochondrial Genome Analysis. Life (Basel) 2024; 14:1610. [PMID: 39768318 PMCID: PMC11676697 DOI: 10.3390/life14121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Phlebotomus sichuanensis, considered a potential vector for visceral leishmaniasis (VL), is distributed in the southern Gansu and northern Sichuan regions in China. However, the high similarity in the morphology of P. sichuanensis and P. chinensis s.s. poses unresolved taxonomic challenges. In this study, phlebotomine sand flies were collected from three locations in the southern Gansu and northern Sichuan regions (SCB group) and three locations that are the dominant distribution areas of P. chinensis s.s. (ZHB group). Their whole mitochondrial genomes were sequenced and analyzed. The differential analysis revealed that there were 339 fixed differential sites in the mitochondrial genome-coding region of P. chinensis s.s. and P. sichuanensis, among which the COI gene had the most differential sites (57), followed by ND5 (46), ND4 (38), and CYTB (37), while ATP8 had the least differential sites (4). The molecular genetic p-distance was calculated based on 13 protein-coding regions, and the genetic distance ranged from 0.001 to 0.018 in the ZHB group and from 0.001 to 0.006 in the SCB group, while the interspecies molecular genetic distance was 0.464-0.466 between the two groups. A phylogenetic maximum likelihood tree was constructed from 16 samples via tandem sequence of 13 protein-coding regions, and the topology showed that the ZHB and SCB groups formed separate clusters. A real-time PCR method was established based on the differences in the COI fragment, which can identify P. sichuanensis from P. chinensis s.s. effectively. This study presents objective evidence of the genetic differentiation between P. sichuanensis and P. chinensis s.s., and provides a method for identifying these two morphologically highly similar VL-transmitting sandflies.
Collapse
Affiliation(s)
- Haowei Dong
- Department of Medical Pathogen Biology, College of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Wenqi Shan
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Hao Yuan
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Qiuming Zhou
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Wenbing Zhong
- Department of Vector Control, Haikou Center for Disease Control and Prevention, Haikou 570100, China
| | - Maimaitijiang Wumaier
- Institute of Parasitic and Brucellosis Prevention and Treatment, Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| | - Kang Wang
- Center for Disease Control and Prevention of Yangquan City, Yangquan 045000, China
| | - Anjie Yang
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Bing Rui
- Department of Medical Pathogen Biology, College of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Hua Shi
- Chinese PLA Center for Disease Control and Prevention, Beijing 100071, China
| | - Huiying Chen
- Department of Medical Pathogen Biology, College of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Xiangyu Li
- Department of Medical Pathogen Biology, College of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Yajun Ma
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Heng Peng
- Department of Medical Pathogen Biology, College of Basic Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
2
|
Bi S, Song Y, Liu L, Wan J, Zhou Y, Zhu Q, Liu J. Complete Mitochondrial Genome of Piophila casei (Diptera: Piophilidae): Genome Description and Phylogenetic Implications. Genes (Basel) 2023; 14:genes14040883. [PMID: 37107641 PMCID: PMC10137744 DOI: 10.3390/genes14040883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Piophila casei is a flesh-feeding Diptera insect that adversely affects foodstuffs, such as dry-cured ham and cheese, and decaying human and animal carcasses. However, the unknown mitochondrial genome of P. casei can provide information on its genetic structure and phylogenetic position, which is of great significance to the research on its prevention and control. Therefore, we sequenced, annotated, and analyzed the previously unknown complete mitochondrial genome of P. casei. The complete mt genome of P. casei is a typical circular DNA, 15,785 bp in length, with a high A + T content of 76.6%. It contains 13 protein-coding genes (PCG), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and 1 control region. Phylogenetic analysis of 25 Diptera species was conducted using Bayesian and maximum likelihood methods, and their divergence times were inferred. The comparison of the mt genomes from two morphologically similar insects P. casei and Piophila megastigmata indicates a divergence time of 7.28 MYA between these species. The study provides a reference for understanding the forensic medicine, taxonomy, and genetics of P. casei.
Collapse
Affiliation(s)
- Shenghui Bi
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Ministry of Agriculture, Guiyang 550025, China
| | - Yanfei Song
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Ministry of Agriculture, Guiyang 550025, China
| | - Linggao Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Jing Wan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Jianfeng Liu
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Ministry of Agriculture, Guiyang 550025, China
| |
Collapse
|
3
|
Rodrigues BL, Galati EAB. Molecular taxonomy of phlebotomine sand flies (Diptera, Psychodidae) with emphasis on DNA barcoding: A review. Acta Trop 2023; 238:106778. [PMID: 36435214 DOI: 10.1016/j.actatropica.2022.106778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
The taxonomy and systematics of sand flies (Diptera, Psychodidae, Phlebotominae) are one of the pillars of research aimed to identifying vector populations and the agents transmitted by these insects. Traditionally, the use of morphological traits has been the main line of evidence for the definition of species, but the use of DNA sequences is useful as an integrative approach for their delimitation. Here, we discuss the current status of the molecular taxonomy of sand flies, including their most sequenced molecular markers and the main results. Only about 37% of all sand fly species have been processed for any molecular marker and are publicly available in the NCBI GenBank or BOLD Systems databases. The genera Phlebotomus, Nyssomyia, Psathyromyia and Psychodopygus are well-sampled, accounting for more than 56% of their sequenced species. However, less than 34% of the species of Sergentomyia, Lutzomyia, Trichopygomyia and Trichophoromyia have been sampled, representing a major gap in the knowledge of these groups. The most sequenced molecular markers are those within mtDNA, especially the DNA barcoding fragment of the cytochrome c oxidase subunit I (coi) gene, which has shown promising results in detecting cryptic diversity within species. Few sequences of conserved genes have been generated, which hampers higher-level phylogenetic inferences. We argue that sand fly species should be sequenced for at least the coi DNA barcoding marker, but multiple markers with different mutation rates should be assessed, whenever possible, to generate multilocus analysis.
Collapse
Affiliation(s)
- Bruno Leite Rodrigues
- Programa de Pós-Graduação em Saúde Pública, Faculdade de Saúde Pública da Universidade de São Paulo (FSP/USP). Av. Dr. Arnaldo, 715 - Cerqueira César, São Paulo SP, Brazil, 01246-904.
| | - Eunice Aparecida Bianchi Galati
- Programa de Pós-Graduação em Saúde Pública, Faculdade de Saúde Pública da Universidade de São Paulo (FSP/USP). Av. Dr. Arnaldo, 715 - Cerqueira César, São Paulo SP, Brazil, 01246-904
| |
Collapse
|
4
|
Aragão ADO, da Silva FS, Cruz ACR, da Silva SP, Medeiros DBDA, Dias DD, Sena do Nascimento BL, Júnior JWR, Monteiro HADO, Neto JPN. Description of mitochon genome and phylogenetic considerations of Sabethes bipartipes, Sabethes cyaneus, Sabethes quasicyaneus, and Sabethes tarsopus (Diptera: Culicidae). Acta Trop 2022; 232:106493. [PMID: 35525314 DOI: 10.1016/j.actatropica.2022.106493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022]
Abstract
The genus Sabethes (Diptera: Culicidae) comprises species of great epidemiological relevance, particularly involved in transmission cycles of the Yellow fever virus in South America. Given the unavailability of information related to aspects of evolutionary biology and molecular taxonomy of species of this genus of mosquitoes, we report here the first sequencing of the mitochondrial genomes of Sabethes bipartipes, Sabethes cyaneus, Sabethes tarsopus, and Sabethes quasicyaneus. The sequences obtained showed an average length of 14,920 bp, comprising 37 functional genes (13 PCGs, 22 tRNA, and 02 rRNA). The phylogenies reconstructed by Maximum likelihood and Bayesian inference methods, based on the concatenated sequences of all 13 PCGs, produced similar topologies and strongly supported the monophyletic relationship between the Sabethes subgenera, corroborating the known taxonomic classification based on aspects of the external morphology of the taxa assessed. The data and information produced from the Sabethes species evaluated here may be useful for future taxonomic and evolutionary studies of the genus, as well as the Culicidae family.
Collapse
Affiliation(s)
- Andressa de Oliveira Aragão
- Post-graduate program in Genetics and Molecular Biology, Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Fábio Silva da Silva
- Post-graduate program in Parasitary Biology in the Amazon, Center of Biological and Health Sciences, State of Pará University, Belém 66095-662, Brazil; Evandro Chagas Institute - IEC/SVS/MS, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Brazil.
| | - Ana Cecília Ribeiro Cruz
- Evandro Chagas Institute - IEC/SVS/MS, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Brazil.
| | - Sandro Patroca da Silva
- Evandro Chagas Institute - IEC/SVS/MS, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Brazil.
| | | | - Daniel Damous Dias
- Post-graduate program in Parasitary Biology in the Amazon, Center of Biological and Health Sciences, State of Pará University, Belém 66095-662, Brazil
| | - Bruna Laís Sena do Nascimento
- Post-graduate program in Parasitary Biology in the Amazon, Center of Biological and Health Sciences, State of Pará University, Belém 66095-662, Brazil; Evandro Chagas Institute - IEC/SVS/MS, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Brazil.
| | - José Wilson Rosa Júnior
- Evandro Chagas Institute - IEC/SVS/MS, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Brazil.
| | | | - Joaquim Pinto Nunes Neto
- Post-graduate program in Parasitary Biology in the Amazon, Center of Biological and Health Sciences, State of Pará University, Belém 66095-662, Brazil; Evandro Chagas Institute - IEC/SVS/MS, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Brazil.
| |
Collapse
|
5
|
Dai ST, Feng DX, Sun DP. Characterization and Phylogenetic Analysis of the Complete Mitochondrial Genomes of Two Tiny Necrophagous Phorid Flies, Metopina sagittata and Puliciphora borinquenensis (Diptera: Phoridae). JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:120-128. [PMID: 34487176 DOI: 10.1093/jme/tjab152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 06/13/2023]
Abstract
The mitochondrial genome is frequently used for species identification and phylogenetic studies. In this study, we first sequenced and annotated the complete mitochondrial genomes of two phorid species that are forensically important in buried or enclosed environments: Metopina sagittata (Liu) and Puliciphora borinquenensis (Wheeler). The complete mitochondrial genome sequences of M. sagittata and P. borinquenensis were 15,640 bp with an A+T content of 75.97% and 15,429 bp with an A+T content of 75.38%, respectively. Their circular genomes both contained 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 control region located between rrnS and trnI which was 808 bp for M. sagittata and 746 bp for P. borinquenensis. All the PCGs of both species started with ATN codons except for cox1 which used TTG codon. In addition to the common stop codon TAA and TAG, the incomplete stop codon T was used in two PCGs (cox1 and nad4) of M. sagittata and five PCGs (cox1, cox2, cox3, nad5, and nad4) of P. borinquenensis. There were 3 and 10 mismatched base pairs in the tRNA secondary structures from M. sagittata and P. borinquenensis, respectively. Both maximum likelihood and Bayesian inference analyses indicated that Platypezidae and Phoridae are sister taxa. M. sagittata is closely related to P. borinquenensis within the subfamily Metopininae. This work enhances the databases of Phoridae genomes and contributes to the further study of species identification and phylogenetics of this family.
Collapse
Affiliation(s)
- Shu-Tong Dai
- College of Life Science and Engineering, Shenyang University, Shenyang, Liaoning, China
| | - Dian-Xing Feng
- College of Life Science and Engineering, Shenyang University, Shenyang, Liaoning, China
| | - Da-Peng Sun
- College of Life Science and Engineering, Shenyang University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
do Nascimento BLS, da Silva FS, Nunes-Neto JP, de Almeida Medeiros DB, Cruz ACR, da Silva SP, da Silva e Silva LH, de Oliveira Monteiro HA, Dias DD, Vieira DBR, Rosa JW, Brandão RCF, Chiang JO, Martins LC, da Costa Vasconcelos PF. First Description of the Mitogenome and Phylogeny of Culicinae Species from the Amazon Region. Genes (Basel) 2021; 12:genes12121983. [PMID: 34946932 PMCID: PMC8701802 DOI: 10.3390/genes12121983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/25/2023] Open
Abstract
The Culicidae family is distributed worldwide and comprises about 3587 species subdivided into the subfamilies Anophelinae and Culicinae. This is the first description of complete mitochondrial DNA sequences from Aedes fluviatilis, Aedeomyia squamipennis, Coquillettidia nigricans, Psorophora albipes, and Psorophora ferox. The mitogenomes showed an average length of 15,046 pb and 78.02% AT content, comprising 37 functional subunits (13 protein coding genes, 22 tRNAs, and two rRNAs). The most common start codons were ATT/ATG, and TAA was the stop codon for all PCGs. The tRNAs had the typical leaf clover structure, except tRNASer1. Phylogeny was inferred by analyzing the 13 PCGs concatenated nucleotide sequences of 48 mitogenomes. Maximum likelihood and Bayesian inference analysis placed Ps. albipes and Ps. ferox in the Janthinosoma group, like the accepted classification of Psorophora genus. Ae. fluviatilis was placed in the Aedini tribe, but was revealed to be more related to the Haemagogus genus, a result that may have been hampered by the poor sampling of Aedes sequences. Cq. nigricans clustered with Cq. chrysonotum, both related to Mansonia. Ae. squamipennis was placed as the most external lineage of the Culicinae subfamily. The yielded topology supports the concept of monophyly of all groups and ratifies the current taxonomic classification.
Collapse
Affiliation(s)
- Bruna Laís Sena do Nascimento
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
- Biological and Health Sciences Center, Parasitary Biology in the Amazon Posgraduation Program, State of Pará University, Belém 66095-662, Brazil; (L.H.d.S.e.S.); (D.D.D.); (P.F.d.C.V.)
| | - Fábio Silva da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
- Biological and Health Sciences Center, Parasitary Biology in the Amazon Posgraduation Program, State of Pará University, Belém 66095-662, Brazil; (L.H.d.S.e.S.); (D.D.D.); (P.F.d.C.V.)
| | - Joaquim Pinto Nunes-Neto
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
- Biological and Health Sciences Center, Parasitary Biology in the Amazon Posgraduation Program, State of Pará University, Belém 66095-662, Brazil; (L.H.d.S.e.S.); (D.D.D.); (P.F.d.C.V.)
- Correspondence:
| | - Daniele Barbosa de Almeida Medeiros
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
| | - Ana Cecília Ribeiro Cruz
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
| | - Sandro Patroca da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
| | - Lucas Henrique da Silva e Silva
- Biological and Health Sciences Center, Parasitary Biology in the Amazon Posgraduation Program, State of Pará University, Belém 66095-662, Brazil; (L.H.d.S.e.S.); (D.D.D.); (P.F.d.C.V.)
| | - Hamilton Antônio de Oliveira Monteiro
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
| | - Daniel Damous Dias
- Biological and Health Sciences Center, Parasitary Biology in the Amazon Posgraduation Program, State of Pará University, Belém 66095-662, Brazil; (L.H.d.S.e.S.); (D.D.D.); (P.F.d.C.V.)
| | - Durval Bertram Rodrigues Vieira
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
| | - José Wilson Rosa
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
| | - Roberto Carlos Feitosa Brandão
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
| | - Jannifer Oliveira Chiang
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
| | - Livia Carício Martins
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
| | - Pedro Fernando da Costa Vasconcelos
- Biological and Health Sciences Center, Parasitary Biology in the Amazon Posgraduation Program, State of Pará University, Belém 66095-662, Brazil; (L.H.d.S.e.S.); (D.D.D.); (P.F.d.C.V.)
| |
Collapse
|
7
|
Li J, Zhang Y, Hu K, Zhao Y, Lin R, Li Y, Huang Z, Zhang X, Geng X, Ding J. Mitochondrial genome characteristics of two Sphingidae insects (Psilogramma increta and Macroglossum stellatarum) and implications for their phylogeny. Int J Biol Macromol 2018; 113:592-600. [DOI: 10.1016/j.ijbiomac.2018.02.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/25/2018] [Accepted: 02/27/2018] [Indexed: 01/12/2023]
|
8
|
Du Y, Dai W, Dietrich CH. Mitochondrial genomic variation and phylogenetic relationships of three groups in the genus Scaphoideus (Hemiptera: Cicadellidae: Deltocephalinae). Sci Rep 2017; 7:16908. [PMID: 29203807 PMCID: PMC5714952 DOI: 10.1038/s41598-017-17145-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/22/2017] [Indexed: 11/08/2022] Open
Abstract
The widespread leafhopper genus Scaphoideus Uhler is the most diverse genus in Scaphoideini and includes some species that are serious pests and vectors of plant pathogens. Here the first Scaphoideus mitogenome sequences are provided for three species, S. maai, S. nigrivalveus and S. varius, representing three main species groups in the Oriental region based on color pattern. The lengths of these three mitogenomes were 15,188, 15,235 and 15,207 bp, respectively. Gene order of three mitogenomes is highly conserved and identical to that of the putative ancestral insect. All three mitogenomes exhibited similar AT nucleotide bias, AT-, GC-skews and codon usage. One large 101 bp intergenic spacer between trnY and cox1 was in S. varius. All 22 tRNA genes had typical cloverleaf secondary structures, except for trnS1 (AGN) which appears to lack the dihydrouridine arm. Genes atp8, nad6 and nad2 were highly variable while cox1 showed the lowest nucleotide diversity. Phylogenetic analyses of three concatenated nucleotide datasets using maximum likelihood and Bayesian methods, comprising all 13 mitogenomes currently available for Membracoidea plus mitogenomes for eight outgroup species representing other cicadomorphan superfamilies, yielded the same topology in which Scaphoideus species formed a monophyletic group within a larger clade comprising three other included Deltocephalinae.
Collapse
Affiliation(s)
- Yimin Du
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wu Dai
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 S Oak St., Champaign, IL, 61820, USA
| |
Collapse
|
9
|
The mitogenome of the brown pod-sucking bug Clavigralla tomentosicollis Stäl (Hemiptera: Coreidae). ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.aggene.2017.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Krüger A. Phlebotomine sandflies of Botswana: a taxonomic review and a faunistic update with the first record of genus Phlebotomus. Acta Trop 2017; 171:96-100. [PMID: 28322728 DOI: 10.1016/j.actatropica.2017.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 10/19/2022]
Abstract
The first records of phlebotomine sandflies from Botswana have been published only recently, comprising of four species of genus Sergentomyia. This update presents the first record of genus Phlebotomus, namely Ph. (Anaphlebotomus) rodhaini Parrot, which is also the first detection of a putative vector of leishmaniasis in Botswana. In addition, records of the Sergentomyia "bedfordi (Newstead) group" are reviewed, and the molecular taxonomy of all taxa known from Botswana is analysed based on three mitochondrial gene fragments (mtDNA). The presence of Se. congolensis (Bequaert and Walrveus) and Se. salisburiensis (Abonnenc) is confirmed, whereas the previously mentioned Se. caliginosa Davidson and unassigned specimens of the "bedfordi group" are proposed to belong to the tentatively named Se. bedfordi "Maun" form. The mtDNA analyses confirmed the species delimitations. For the first time, portions of the ND5 gene were used for the purpose of sandfly molecular taxonomy. This gene revealed a high inter-specific variability and may thus be applied as an alternative molecular marker for future studies.
Collapse
|
11
|
Romanova EV, Aleoshin VV, Kamaltynov RM, Mikhailov KV, Logacheva MD, Sirotinina EA, Gornov AY, Anikin AS, Sherbakov DY. Evolution of mitochondrial genomes in Baikalian amphipods. BMC Genomics 2016; 17:1016. [PMID: 28105939 PMCID: PMC5249044 DOI: 10.1186/s12864-016-3357-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Amphipods (Crustacea) of Lake Baikal are a very numerous and diverse group of invertebrates generally believed to have originated by adaptive radiation. The evolutionary history and phylogenetic relationships in Baikalian amphipods still remain poorly understood. Sequencing of mitochondrial genomes is a relatively feasible way for obtaining a set of gene sequences suitable for robust phylogenetic inferences. The architecture of mitochondrial genomes also may provide additional information on the mechanisms of evolution of amphipods in Lake Baikal. RESULTS Three complete and four nearly complete mitochondrial genomes of Baikalian amphipods were obtained by high-throughput sequencing using the Illumina platform. A phylogenetic inference based on the nucleotide sequences of all mitochondrial protein coding genes revealed the Baikalian species to be a monophyletic group relative to the nearest non-Baikalian species with a completely sequenced mitochondrial genome - Gammarus duebeni. The phylogeny of Baikalian amphipods also suggests that the shallow-water species Eulimnogammarus has likely evolved from a deep-water ancestor, however many other species have to be added to the analysis to test this hypothesis. The gene order in all mitochondrial genomes of studied Baikalian amphipods differs from the pancrustacean ground pattern. Mitochondrial genomes of four species possess 23 tRNA genes, and in three genomes the extra tRNA gene copies have likely undergone remolding. Widely varying lengths of putative control regions and other intergenic spacers are typical for the mitochondrial genomes of Baikalian amphipods. CONCLUSIONS The mitochondrial genomes of Baikalian amphipods display varying organization suggesting an intense rearrangement process during their evolution. Comparison of complete mitochondrial genomes is a potent approach for studying the amphipod evolution in Lake Baikal.
Collapse
Affiliation(s)
- Elena V. Romanova
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Vladimir V. Aleoshin
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994 Russian Federation
| | - Ravil M. Kamaltynov
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Kirill V. Mikhailov
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994 Russian Federation
| | - Maria D. Logacheva
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994 Russian Federation
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420012 Russian Federation
| | - Elena A. Sirotinina
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Alexander Yu. Gornov
- Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Anton S. Anikin
- Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Dmitry Yu. Sherbakov
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
- Faculty of Biology and Soil Studies, Irkutsk State University, Irkutsk, 664003 Russian Federation
| |
Collapse
|
12
|
Gajapathy K, Tharmasegaram T, Eswaramohan T, Peries LB, Jayanetti R, Surendran SN. DNA barcoding of Sri Lankan phlebotomine sand flies using cytochrome c oxidase subunit I reveals the presence of cryptic species. Acta Trop 2016; 161:1-7. [PMID: 27180216 DOI: 10.1016/j.actatropica.2016.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/07/2016] [Accepted: 05/05/2016] [Indexed: 11/26/2022]
Abstract
Sri Lanka is known for high diversity of phlebotomine sand flies and prevalence of cutaneous and visceral leishmaniasis; a disease vectored by sand flies. The taxonomy of phlebotomine sand flies is complicated and often the diversity is over/underrated. The current study aims to use the cytochrome c oxidase gene subunit 1 (COI) sequence and formulate a barcode for the sand fly species in Sri Lanka. A total of 70 samples comprising seven species morphologically identified and collected from dry zone districts of Hambantota, Anuradhapura, Vavuniya, Trincomalee and Jaffna were processed. Neighbour-joining (NJ) tree created using the sequences revealed the species identity is compatible with the current morphology based identification. Further the analysis delineated morphologically identified Se. bailyi, Se babu babu and Se babu insularis into genetically distinct groups.
Collapse
|
13
|
Kocher A, Gantier JC, Gaborit P, Zinger L, Holota H, Valiere S, Dusfour I, Girod R, Bañuls AL, Murienne J. Vector soup: high-throughput identification of Neotropical phlebotomine sand flies using metabarcoding. Mol Ecol Resour 2016; 17:172-182. [PMID: 27292284 DOI: 10.1111/1755-0998.12556] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022]
Abstract
Phlebotomine sand flies are haematophagous dipterans of primary medical importance. They represent the only proven vectors of leishmaniasis worldwide and are involved in the transmission of various other pathogens. Studying the ecology of sand flies is crucial to understand the epidemiology of leishmaniasis and further control this disease. A major limitation in this regard is that traditional morphological-based methods for sand fly species identifications are time-consuming and require taxonomic expertise. DNA metabarcoding holds great promise in overcoming this issue by allowing the identification of multiple species from a single bulk sample. Here, we assessed the reliability of a short insect metabarcode located in the mitochondrial 16S rRNA for the identification of Neotropical sand flies, and constructed a reference database for 40 species found in French Guiana. Then, we conducted a metabarcoding experiment on sand flies mixtures of known content and showed that the method allows an accurate identification of specimens in pools. Finally, we applied metabarcoding to field samples caught in a 1-ha forest plot in French Guiana. Besides providing reliable molecular data for species-level assignations of phlebotomine sand flies, our study proves the efficiency of metabarcoding based on the mitochondrial 16S rRNA for studying sand fly diversity from bulk samples. The application of this high-throughput identification procedure to field samples can provide great opportunities for vector monitoring and eco-epidemiological studies.
Collapse
Affiliation(s)
- Arthur Kocher
- CNRS, Université Toulouse III Paul Sabatier, ENFA, UMR5174 EDB (Laboratoire Evolution et Diversité Biologique), Toulouse, France.,UMR MIVEGEC (IRD 224 - CNRS 5290 - Université de Montpellier), 911 Avenue Agropolis, F34394, Montpellier, France
| | - Jean-Charles Gantier
- Laboratoire des Identifications Fongiques et Entomo-parasitologiques, Mennecy, France
| | - Pascal Gaborit
- Medical Entomology Unit, Institut Pasteur de la Guyane, 23 Avenue Pasteur, BP 6010, 97306, Cayenne Cedex, French Guiana
| | - Lucie Zinger
- CNRS, Université Toulouse III Paul Sabatier, ENFA, UMR5174 EDB (Laboratoire Evolution et Diversité Biologique), Toulouse, France
| | - Helene Holota
- CNRS, Université Toulouse III Paul Sabatier, ENFA, UMR5174 EDB (Laboratoire Evolution et Diversité Biologique), Toulouse, France
| | - Sophie Valiere
- GeT-PlaGe, Genotoul, INRA Auzeville, 31326, Castanet-Tolosan, France
| | - Isabelle Dusfour
- Medical Entomology Unit, Institut Pasteur de la Guyane, 23 Avenue Pasteur, BP 6010, 97306, Cayenne Cedex, French Guiana
| | - Romain Girod
- Medical Entomology Unit, Institut Pasteur de la Guyane, 23 Avenue Pasteur, BP 6010, 97306, Cayenne Cedex, French Guiana
| | - Anne-Laure Bañuls
- UMR MIVEGEC (IRD 224 - CNRS 5290 - Université de Montpellier), 911 Avenue Agropolis, F34394, Montpellier, France
| | - Jerome Murienne
- CNRS, Université Toulouse III Paul Sabatier, ENFA, UMR5174 EDB (Laboratoire Evolution et Diversité Biologique), Toulouse, France
| |
Collapse
|
14
|
Wu F, Cen Y, Wallis CM, Trumble JT, Prager S, Yokomi R, Zheng Z, Deng X, Chen J, Liang G. The Complete Mitochondrial Genome Sequence of Bactericera cockerelli and Comparison with Three Other Psylloidea Species. PLoS One 2016; 11:e0155318. [PMID: 27227976 PMCID: PMC4881912 DOI: 10.1371/journal.pone.0155318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/27/2016] [Indexed: 11/22/2022] Open
Abstract
Potato psyllid (Bactericera cockerelli) is an important pest of potato, tomato and pepper. Not only could a toxin secreted by nymphs results in serious phytotoxemia in some host plants, but also over the past few years B. cockerelli was shown to transmit "Candidatus Liberibacter solanacearum", the putative bacterial pathogen of potato zebra chip (ZC) disease, to potato and tomato. ZC has caused devastating losses to potato production in the western U.S., Mexico, and elsewhere. New knowledge of the genetic diversity of the B. cockerelli is needed to develop improved strategies to manage pest populations. Mitochondrial genome (mitogenome) sequencing provides important knowledge about insect evolution and diversity in and among populations. This report provides the first complete B. cockerelli mitogenome sequence as determined by next generation sequencing technology (Illumina MiSeq). The circular B. cockerelli mitogenome had a size of 15,220 bp with 13 protein-coding gene (PCGs), 2 ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and a non-coding region of 975 bp. The overall gene order of the B. cockerelli mitogenome is identical to three other published Psylloidea mitogenomes: one species from the Triozidae, Paratrioza sinica; and two species from the Psyllidae, Cacopsylla coccinea and Pachypsylla venusta. This suggests all of these species share a common ancestral mitogenome. However, sequence analyses revealed differences between and among the insect families, in particular a unique region that can be folded into three stem-loop secondary structures present only within the B. cockerelli mitogenome. A phylogenetic tree based on the 13 PCGs matched an existing taxonomy scheme that was based on morphological characteristics. The available complete mitogenome sequence makes it accessible to all genes for future population diversity evaluation of B. cockerelli.
Collapse
Affiliation(s)
- Fengnian Wu
- Laboratory of Insect Ecology / Guangdong Province, Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture -Agricultural Research Service, Parlier, California, United States of America
| | - Yijing Cen
- Laboratory of Insect Ecology / Guangdong Province, Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Christopher M. Wallis
- San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture -Agricultural Research Service, Parlier, California, United States of America
| | - John T. Trumble
- Department of Entomology, University of California Riverside, Riverside, California, United States of America
| | - Sean Prager
- Department of Entomology, University of California Riverside, Riverside, California, United States of America
| | - Ray Yokomi
- San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture -Agricultural Research Service, Parlier, California, United States of America
| | - Zheng Zheng
- Laboratory of Insect Ecology / Guangdong Province, Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture -Agricultural Research Service, Parlier, California, United States of America
| | - Xiaoling Deng
- Laboratory of Insect Ecology / Guangdong Province, Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jianchi Chen
- San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture -Agricultural Research Service, Parlier, California, United States of America
| | - Guangwen Liang
- Laboratory of Insect Ecology / Guangdong Province, Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|