1
|
Roshanara, Tandon R, Baig MS, Das S, Srivastava R, Puri N, Nakhasi HL, Selvapandiyan A. Identifying Rab2 Protein as a Key Interactor of Centrin1 Essential for Leishmania donovani Growth. ACS Infect Dis 2024; 10:3273-3288. [PMID: 39110117 DOI: 10.1021/acsinfecdis.4c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Previously, we have demonstrated that deletion of a growth-regulating gene (LdCen1) in the Leishmania donovani parasite (LdCen1-/-) attenuated the parasite's intracellular amastigote growth but not the growth of extracellular promastigotes. LdCen1-/- parasites were found to be safe and efficacious against homologous and heterologous Leishmania species as a vaccine candidate in animal models. The reason for the differential growth of LdCen1-/- between the two stages of the parasite needed investigation. Here, we report that LdCen1 interacts with a novel Ras-associated binding protein in L. donovani (LdRab2) to compensate for the growth of LdCen1-/- promastigotes. LdRab2 was isolated by protein pull-down from the parasite lysate, followed by nano-LC-MS/MS identification. The RAB domain sequence and the functional binding partners of the LdRab2 protein were predicted via Search Tool for the Retrieval of Interacting Proteins (STRING) analysis. The closeness of the LdRab2 protein to other reported centrin-binding proteins with different functions in other organisms was analyzed via phylogenetic analysis. Furthermore, in vitro and in silico analyses revealed that LdRab2 also interacts with other L. donovani centrins 3-5. Since centrin is a calcium-binding protein, we further investigated calcium-based interactions and found that the binding of LdRab2 to LdCen1 and LdCen4 is calcium-independent, whereas the interactions with LdCen3 and LdCen5 are calcium-dependent. The colocalization of LdCen1 and LdRab2 at the cellular basal-body region by immunofluorescence supports their possible functional association. The elevated expression of the LdRab2 protein in the mutant promastigotes suggested a probable role in compensating for the promastigote growth of this mutant strain, probably in association with other parasite centrins.
Collapse
Affiliation(s)
- Roshanara
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Rati Tandon
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | | | - Sanchita Das
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rahul Srivastava
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Bethesda, Maryland 20993, United States
| | | |
Collapse
|
2
|
Roshanara, Muthu SA, Gulafsha, Tandon R, Selvapandiyan A, Ahmad B. Biophysical Evidence for the Amyloid Formation of a Recombinant Rab2 Isoform of Leishmania donovani. Protein Pept Lett 2024; 31:312-322. [PMID: 38661034 DOI: 10.2174/0109298665299157240327084614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND The most fatal form of Visceral leishmaniasis or kala-azar is caused by the intracellular protozoan parasite Leishmania donovani. The life cycle and the infection pathway of the parasite are regulated by the small GTPase family of Rab proteins. The involvement of Rab proteins in neurodegenerative amyloidosis is implicated in protein misfolding, secretion abnormalities and dysregulation. The inter and intra-cellular shuttlings of Rab proteins are proposed to be aggregation-prone. However, the biophysical unfolding and aggregation of protozoan Rab proteins is limited. Understanding the aggregation mechanisms of Rab protein will determine their physical impact on the disease pathogenesis and individual health. OBJECTIVE This work investigates the acidic pH-induced unfolding and aggregation of a recombinant Rab2 protein from L. donovani (rLdRab2) using multi-spectroscopic probes. METHODS The acidic unfolding of rLdRab2 is characterised by intrinsic fluorescence and ANS assay, while aggregation is determined by Thioflavin-T and 90⁰ light scattering assay. Circular dichroism determined the secondary structure of monomers and aggregates. The aggregate morphology was imaged by transmission electron microscopy. RESULTS rLdRab2 was modelled to be a Rab2 isoform with loose globular packing. The acidinduced unfolding of the protein is a plausible non-two-state process. At pH 2.0, a partially folded intermediate (PFI) state characterised by ~ 30% structural loss and exposed hydrophobic core was found to accumulate. The PFI state slowly converted into well-developed protofibrils at high protein concentrations demonstrating its amyloidogenic nature. The native state of the protein was also observed to be aggregation-prone at high protein concentrations. However, it formed amorphous aggregation instead of fibrils. CONCLUSION To our knowledge, this is the first study to report in vitro amyloid-like behaviour of Rab proteins in L donovani. This study provides a novel opportunity to understand the complete biophysical characteristics of Rab2 protein of the lower eukaryote, L. donovani.
Collapse
Affiliation(s)
- Roshanara
- Molecular Parasitology Laboratory, Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi 110062, India
| | - Shivani A Muthu
- Molecular Parasitology Laboratory, Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi 110062, India
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Gulafsha
- Molecular Parasitology Laboratory, Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi 110062, India
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rati Tandon
- Molecular Parasitology Laboratory, Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi 110062, India
| | - Angamuthu Selvapandiyan
- Molecular Parasitology Laboratory, Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi 110062, India
| | - Basir Ahmad
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
3
|
Cutaneous Leishmaniasis in Algeria; Highlight on the Focus of M'Sila. Microorganisms 2021; 9:microorganisms9050962. [PMID: 33947003 PMCID: PMC8146893 DOI: 10.3390/microorganisms9050962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022] Open
Abstract
Algeria ranks second after Afghanistan for the incidence of cutaneous leishmaniasis (CL) worldwide. Here, we report a 34-years retrospective analysis of CL in Algeria and focused on the most affected region, the M’Sila province. All 66 cutaneous isolates corresponded to Leishmania (L.) major. Our study of the sandfly and rodent fauna further highlighted the high density of Phlebotomus papatasi and additional phlebotomine species of medical importance, not previously identified in M’Sila. Wild rodents belonging to nine species were trapped in M’Sila, and Psammomys obesus and Meriones shawi were found infected by L. major. In addition, Leishmania infantum was isolated from two visceral leishmaniasis cases, one dog and its proven vectors (P. perniciosus, P. longicuspis, and P. perfiliewi) inventoried during the survey. The high incidence of CL in the M’Sila province is likely a consequence of the increase in minimum temperatures recorded that constitutes suitable conditions for establishing a high endemicity and leads to an explosive rise in leishmaniases cases in this region. A thorough investigation of the underlying risk factors is urgently needed to detect new cases earlier. All these would improve the preparedness to fight the disease.
Collapse
|
4
|
Andrade JM, Gonçalves LO, Liarte DB, Lima DA, Guimarães FG, de Melo Resende D, Santi AMM, de Oliveira LM, Velloso JPL, Delfino RG, Pescher P, Späth GF, Ruiz JC, Murta SMF. Comparative transcriptomic analysis of antimony resistant and susceptible Leishmania infantum lines. Parasit Vectors 2020; 13:600. [PMID: 33256787 PMCID: PMC7706067 DOI: 10.1186/s13071-020-04486-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/17/2020] [Indexed: 11/22/2022] Open
Abstract
Background One of the major challenges to leishmaniasis treatment is the emergence of parasites resistant to antimony. To study differentially expressed genes associated with drug resistance, we performed a comparative transcriptomic analysis between wild-type and potassium antimonyl tartrate (SbIII)-resistant Leishmania infantum lines using high-throughput RNA sequencing. Methods All the cDNA libraries were constructed from promastigote forms of each line, sequenced and analyzed using STAR for mapping the reads against the reference genome (L. infantum JPCM5) and DESeq2 for differential expression statistical analyses. All the genes were functionally annotated using sequence similarity search. Results The analytical pipeline considering an adjusted p-value < 0.05 and fold change > 2.0 identified 933 transcripts differentially expressed (DE) between wild-type and SbIII-resistant L. infantum lines. Out of 933 DE transcripts, 504 presented functional annotation and 429 were assigned as hypothetical proteins. A total of 837 transcripts were upregulated and 96 were downregulated in the SbIII-resistant L. infantum line. Using this DE dataset, the proteins were further grouped in functional classes according to the gene ontology database. The functional enrichment analysis for biological processes showed that the upregulated transcripts in the SbIII-resistant line are associated with protein phosphorylation, microtubule-based movement, ubiquitination, host–parasite interaction, cellular process and other categories. The downregulated transcripts in the SbIII-resistant line are assigned in the GO categories: ribonucleoprotein complex, ribosome biogenesis, rRNA processing, nucleosome assembly and translation. Conclusions The transcriptomic profile of L. infantum showed a robust set of genes from different metabolic pathways associated with the antimony resistance phenotype in this parasite. Our results address the complex and multifactorial antimony resistance mechanisms in Leishmania, identifying several candidate genes that may be further evaluated as molecular targets for chemotherapy of leishmaniasis.![]()
Collapse
Affiliation(s)
- Juvana Moreira Andrade
- Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Leilane Oliveira Gonçalves
- Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.,Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | - Davi Alvarenga Lima
- Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.,Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | | | - Daniela de Melo Resende
- Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.,Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Ana Maria Murta Santi
- Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Luciana Marcia de Oliveira
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France
| | | | - Renato Guimarães Delfino
- Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Pascale Pescher
- Unité de Parasitologie moléculaire et Signalisation, Département de Parasitologie et Mycologie, Institut Pasteur, Paris, France
| | - Gerald F Späth
- Unité de Parasitologie moléculaire et Signalisation, Département de Parasitologie et Mycologie, Institut Pasteur, Paris, France
| | - Jeronimo Conceição Ruiz
- Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil. .,Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.
| | | |
Collapse
|
5
|
Hamrouni S, Bras-Gonçalves R, Kidar A, Aoun K, Chamakh-Ayari R, Petitdidier E, Messaoudi Y, Pagniez J, Lemesre JL, Meddeb-Garnaoui A. Design of multi-epitope peptides containing HLA class-I and class-II-restricted epitopes derived from immunogenic Leishmania proteins, and evaluation of CD4+ and CD8+ T cell responses induced in cured cutaneous leishmaniasis subjects. PLoS Negl Trop Dis 2020; 14:e0008093. [PMID: 32176691 PMCID: PMC7098648 DOI: 10.1371/journal.pntd.0008093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 03/26/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Human leishmaniasis is a public health problem worldwide for which the development of a vaccine remains a challenge. T cell-mediated immune responses are crucial for protection. Peptide vaccines based on the identification of immunodominant T cell epitopes able to induce T cell specific immune responses constitute a promising strategy. Here, we report the identification of human leukocyte antigen class-I (HLA-I) and -II (HLA-II)-restricted multi-epitope peptides from Leishmania proteins that we have previously described as vaccine candidates. Promastigote Surface Antigen (PSA), LmlRAB (L. major large RAB GTPase) and Histone (H2B) were screened, in silico, for T cell epitopes. 6 HLA-I and 5 HLA-II-restricted multi-epitope peptides, able to bind to the most frequent HLA molecules, were designed and used as pools to stimulate PBMCs from individuals with healed cutaneous leishmaniasis. IFN-γ, IL-10, TNF-α and granzyme B (GrB) production was evaluated by ELISA/CBA. The frequency of IFN-γ-producing T cells was quantified by ELISpot. T cells secreting cytokines and memory T cells were analyzed by flow cytometry. 16 of 25 peptide pools containing HLA-I, HLA-II or HLA-I and -II peptides were able to induce specific and significant IFN-γ levels. No IL-10 was detected. 6 peptide pools were selected among those inducing the highest IFN-γ levels for further characterization. 3/6 pools were able to induce a significant increase of the percentages of CD4+IFN-γ+, CD8+IFN-γ+ and CD4+GrB+ T cells. The same pools also induced a significant increase of the percentages of bifunctional IFN-γ+/TNF-α+CD4+ and/or central memory T cells. We identified highly promiscuous HLA-I and -II restricted epitope combinations from H2B, PSA and LmlRAB proteins that stimulate both CD4+ and CD8+ T cell responses in recovered individuals. These multi-epitope peptides could be used as potential components of a polytope vaccine for human leishmaniasis. The control of leishmaniasis, a neglected tropical disease of public health importance, caused by protozoan parasites of the genus Leishmania, mainly relies on chemotherapy, which is highly toxic. Currently, there is no vaccine against human leishmaniasis. Peptide-based vaccines consisting of T cell epitopes identified within proteins of interest by epitope predictive algorithms are a promising strategy for vaccine development. Here, we identified multi-epitope peptides composed of HLA-I and -II-restricted epitopes, using immunoinformatic tools, within Leishmania proteins previously described as potential vaccine candidates. We showed that multi-epitope peptides used as pools were able to activate IFN-γ producing CD4+ as well as CD8+ T cells, both required for parasite elimination. In addition, granzyme B-producing CD4+ T cells, bifunctional CD4+ IFN-γ+/TNF-α+ and/or TNF-α+/IL-2+ T cells as well as CD4+ and CD8+ central memory T cells, all involved in Leishmania infection control, were significantly increased in response to multi-epitope peptide stimulation. As far as we know, no study has described the detection of both CD4+ and CD8+ T cell populations in response to stimulation by both HLA-I and II-restricted peptides in humans. The immunogenic HLA-I and -II-restricted multi-epitope peptides identified in this study could constitute potential vaccine candidates against human leishmaniasis.
Collapse
Affiliation(s)
- Sarra Hamrouni
- Laboratoire de Parasitologie Médicale, Biotechnologie et Biomolécules, Institut Pasteur de Tunis, Tunis, Tunisie
- Faculté des Sciences de Bizerte, Université de Carthage, Tunis, Tunisie
- UMR INTERTRYP, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | | | | | - Karim Aoun
- Laboratoire de Parasitologie Médicale, Biotechnologie et Biomolécules, Institut Pasteur de Tunis, Tunis, Tunisie
| | - Rym Chamakh-Ayari
- Laboratoire de Parasitologie Médicale, Biotechnologie et Biomolécules, Institut Pasteur de Tunis, Tunis, Tunisie
- Faculté des Sciences de Bizerte, Université de Carthage, Tunis, Tunisie
| | - Elodie Petitdidier
- UMR INTERTRYP, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Yasmine Messaoudi
- Laboratoire de Parasitologie Médicale, Biotechnologie et Biomolécules, Institut Pasteur de Tunis, Tunis, Tunisie
- Faculté des Sciences de Bizerte, Université de Carthage, Tunis, Tunisie
- UMR INTERTRYP, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Julie Pagniez
- UMR INTERTRYP, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Jean-Loup Lemesre
- UMR INTERTRYP, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Amel Meddeb-Garnaoui
- Laboratoire de Parasitologie Médicale, Biotechnologie et Biomolécules, Institut Pasteur de Tunis, Tunis, Tunisie
- * E-mail:
| |
Collapse
|
6
|
NOORPISHEH GHADIMI S, HOMAYOON L, SHAHRIARIRAD R, FATEHPOUR S, RASTEGARIAN M, SARKARI B. Attenuated Leishmania major Induce a High Level of Protection against Leishmania infantum in BALB/c Mice. IRANIAN JOURNAL OF PARASITOLOGY 2019; 14:310-317. [PMID: 31543920 PMCID: PMC6737356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/11/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND The current study aimed to investigate the possible cross-protective effects of attenuated L. major against L. infantum in BALB/c mice. METHODS This experimental study was performed in 2017 in Shiraz University of Medical Sciences, Shiraz, Iran. The attenuated strain of L. major was prepared by continuous weekly subculturing of the parasite. Forty-eight female BALB/c mice were divided into eight groups. Group 1 injected (ID) with wild type of L. major; group 2 injected (IV) with L. infantum; group 3 injected (ID) with attenuated L. major; group 4 injected (ID) with attenuated L. major, and after three weeks challenged (IV) with L. infantum; group 5 injected (IP) with attenuated L. major; group 6 injected (IP) with attenuated L. major, and challenged (IV) with L. infantum (IV); group 7 injected (IV) with attenuated L. major; and finally group 8 injected (IV) with attenuated L. major and after three weeks challenged (IV) with L. infantum. Forty-five days post-infection, the parasite load in the spleen and liver of the mice was determined as Leishman-Donovan units (LDU). RESULTS The differences in mean of LDU of spleen between different groups were statistically significant (P<0.048). In addition, the differences in percent of infection in liver between pairwise comparisons of groups were statistically significant (P<0.05). The highest intensity of infection was observed in group 2 while low intensity of infection was seen in groups 3, 4 and 5. CONCLUSION Live attenuated L. major can induce substantial protection against L. infantum, particularly when the parasites were injected intravenously.
Collapse
Affiliation(s)
- Shamsi NOORPISHEH GHADIMI
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila HOMAYOON
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza SHAHRIARIRAD
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shakila FATEHPOUR
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Bahador SARKARI
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|