1
|
Acford-Palmer H, Tadesse FG, Manko E, Phelan JE, Higgins M, Osborne A, Kristan M, Walker T, Bousema T, Messenger LA, Clark TG, Campino S. Genome wide population genetics and molecular surveillance of insecticide resistance in Anopheles stephensi mosquitoes from Awash Sebat Kilo in Ethiopia. Sci Rep 2025; 15:16443. [PMID: 40355632 PMCID: PMC12069653 DOI: 10.1038/s41598-025-95814-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
Since the detection of the Asian mosquito Anopheles stephensi in Dijbouti in 2012, it has spread throughout the Horn of Africa. This invasive vector continues to expand across the continent and is a significant threat to malaria control programs. Vector control methods, including insecticide-treated nets and indoor residual spraying, have substantially reduced the malaria burden. However, the increasing prevalence of mosquitoes resistant to insecticides, including An. stephensi populations, undermines ongoing malaria elimination efforts. Understanding population structure, gene flow between populations, and the distribution of insecticide resistance mutations is essential for guiding effective malaria control strategies. Here, we generated whole genome sequencing data for An. stephensi sourced from Awash Sebat Kilo, Ethiopia (n = 27) and compared with South Asian populations (n = 45; India and Pakistan) to assess genomic diversity, population structure, and uncovering insecticide resistance mutations. Population structure analysis using genome-wide single nucleotide polymorphisms (n = 15,533,476) revealed Ethiopian isolates clustering as a distinct ancestral group, separate from South Asian isolates. Three insecticide resistance-associated SNPs (gaba gene: A296S and V327I; vgsc L1014F) were detected. Evidence of ongoing selection was found in several loci, including genes previously associated with neonicotinoids, ivermectin, DDT, and pyrethroid resistance. This study represents the first whole genome population genetics study of invasive An. stephensi, revealing genomic differences from South Asian populations, which can be used for future assessments of vector population dispersal and detection of insecticide resistance mechanisms.
Collapse
Affiliation(s)
- Holly Acford-Palmer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Fitsum G Tadesse
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Malaria and NTD Directorate, Armauer Hansen Research Institute, ALERT Hospital Compound, Addis Ababa, Ethiopia
| | - Emilia Manko
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jody E Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Matthew Higgins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ashley Osborne
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Mojca Kristan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas Walker
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, Las Vegas, USA
- Parasitology and Vector Biology (PARAVEC), School of Public Health, University of Nevada, Las Vegas, NV, USA
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
2
|
Parth, Santana S, Rôla C, Oliveira CB, Prudêncio M, Singh K, Fontinha D. Antiplasmodial and Insecticidal Activities of Third-Generation Ivermectin Hybrids. J Med Chem 2024; 67:20224-20241. [PMID: 39505355 PMCID: PMC11613448 DOI: 10.1021/acs.jmedchem.4c01606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/20/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Preclinical and/or clinical studies have demonstrated the potential of Ivermectin (IVM) for malaria control. In order to improve its antiplasmodial activity and build on previous knowledge, we have designed a third generation of hybrid molecules in which selected pharmacophores were appended to the IVM macrolide, while retaining one or both sugar moieties at the C-13 position. Moreover, we synthesized IVM hybrids that contain structural features of potent IVM metabolites. The evaluation of the in vitro antiplasmodial activity of these compounds against Plasmodium berghei pre-erythrocytic stages and Plasmodium falciparum erythrocytic stages identified molecules that displayed enhanced activity against the latter when compared to IVM. Additionally, two IVM intermediates and one IVM hybrid retained the insecticidal activity of the parental molecule, clarifying the contribution of the sugar moieties to this feature. Altogether, these results provide key structure-activity relationships to guide the rational design of new generations of IVM hybrids.
Collapse
Affiliation(s)
- Parth
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India
| | - Sofia Santana
- Gulbenkian
Institute for Molecular Medicine, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Catarina Rôla
- Gulbenkian
Institute for Molecular Medicine, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Carla Bastos Oliveira
- Gulbenkian
Institute for Molecular Medicine, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Miguel Prudêncio
- Gulbenkian
Institute for Molecular Medicine, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Faculdade
de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Kamaljit Singh
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India
| | - Diana Fontinha
- Gulbenkian
Institute for Molecular Medicine, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
3
|
Appetecchia F, Fabbrizi E, Fiorentino F, Consalvi S, Biava M, Poce G, Rotili D. Transmission-Blocking Strategies for Malaria Eradication: Recent Advances in Small-Molecule Drug Development. Pharmaceuticals (Basel) 2024; 17:962. [PMID: 39065810 PMCID: PMC11279868 DOI: 10.3390/ph17070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Malaria drug research and development efforts have resurged in the last decade following the decelerating rate of mortality and malaria cases in endemic regions. The inefficiency of malaria interventions is largely driven by the spreading resistance of the Plasmodium falciparum parasite to current drug regimens and that of the malaria vector, the Anopheles mosquito, to insecticides. In response to the new eradication agenda, drugs that act by breaking the malaria transmission cycle (transmission-blocking drugs), which has been recognized as an important and additional target for intervention, are being developed. These drugs take advantage of the susceptibility of Plasmodium during population bottlenecks before transmission (gametocytes) and in the mosquito vector (gametes, zygotes, ookinetes, oocysts, sporozoites). To date, compounds targeting stage V gametocytes predominate in the chemical library of transmission-blocking drugs, and some of them have entered clinical trials. The targeting of Plasmodium mosquito stages has recently renewed interest in the development of innovative malaria control tools, which hold promise for the application of compounds effective at these stages. In this review, we highlight the major achievements and provide an update on the research of transmission-blocking drugs, with a particular focus on their chemical scaffolds, antiplasmodial activity, and transmission-blocking potential.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanna Poce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (E.F.); (F.F.); (S.C.); (M.B.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (E.F.); (F.F.); (S.C.); (M.B.)
| |
Collapse
|
4
|
Yipsirimetee A, Tipthara P, Hanboonkunupakarn B, Tripura R, Lek D, Kümpornsin K, Lee MCS, Sattabongkot J, Dondorp AM, White NJ, Kobylinski KC, Tarning J, Chotivanich K. Activity of Ivermectin and Its Metabolites against Asexual Blood Stage Plasmodium falciparum and Its Interactions with Antimalarial Drugs. Antimicrob Agents Chemother 2023; 67:e0173022. [PMID: 37338381 PMCID: PMC10368210 DOI: 10.1128/aac.01730-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/12/2023] [Indexed: 06/21/2023] Open
Abstract
Ivermectin is an endectocide used widely to treat a variety of internal and external parasites. Field trials of ivermectin mass drug administration for malaria transmission control have demonstrated a reduction of Anopheles mosquito survival and human malaria incidence. Ivermectin will mostly be deployed together with artemisinin-based combination therapies (ACT), the first-line treatment of falciparum malaria. It has not been well established if ivermectin has activity against asexual stage Plasmodium falciparum or if it interacts with the parasiticidal activity of other antimalarial drugs. This study evaluated antimalarial activity of ivermectin and its metabolites in artemisinin-sensitive and artemisinin-resistant P. falciparum isolates and assessed in vitro drug-drug interaction with artemisinins and its partner drugs. The concentration of ivermectin causing half of the maximum inhibitory activity (IC50) on parasite survival was 0.81 μM with no significant difference between artemisinin-sensitive and artemisinin-resistant isolates (P = 0.574). The ivermectin metabolites were 2-fold to 4-fold less active than the ivermectin parent compound (P < 0.001). Potential pharmacodynamic drug-drug interactions of ivermectin with artemisinins, ACT-partner drugs, and atovaquone were studied in vitro using mixture assays providing isobolograms and derived fractional inhibitory concentrations. There were no synergistic or antagonistic pharmacodynamic interactions when combining ivermectin and antimalarial drugs. In conclusion, ivermectin does not have clinically relevant activity against the asexual blood stages of P. falciparum. It also does not affect the in vitro antimalarial activity of artemisinins or ACT-partner drugs against asexual blood stages of P. falciparum.
Collapse
Affiliation(s)
- Achaporn Yipsirimetee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phornpimon Tipthara
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Borimas Hanboonkunupakarn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Krittikorn Kümpornsin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Calibr, Division of the Scripps Research Institute, La Jolla, California, USA
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M. Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kevin C. Kobylinski
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Thommen BT, Passecker A, Buser T, Hitz E, Voss TS, Brancucci NMB. Revisiting the Effect of Pharmaceuticals on Transmission Stage Formation in the Malaria Parasite Plasmodium falciparum. Front Cell Infect Microbiol 2022; 12:802341. [PMID: 35223540 PMCID: PMC8873190 DOI: 10.3389/fcimb.2022.802341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/21/2022] [Indexed: 12/27/2022] Open
Abstract
Malaria parasites rely on specialized stages, called gametocytes, to ensure human-to-human transmission. The formation of these sexual precursor cells is initiated by commitment of blood stage parasites to the sexual differentiation pathway. Plasmodium falciparum, the most virulent of six parasite species infecting humans, employs nutrient sensing to control the rate at which sexual commitment is initiated, and the presence of stress-inducing factors, including antimalarial drugs, has been linked to increased gametocyte production in vitro and in vivo. These observations suggest that therapeutic interventions may promote gametocytogenesis and malaria transmission. Here, we engineered a P. falciparum reporter line to quantify sexual commitment rates after exposure to antimalarials and other pharmaceuticals commonly prescribed in malaria-endemic regions. Our data reveal that some of the tested drugs indeed have the capacity to elevate sexual commitment rates in vitro. Importantly, however, these effects are only observed at drug concentrations that inhibit parasite survival and only rarely result in a net increase of gametocyte production. Using a drug-resistant parasite reporter line, we further show that the gametocytogenesis-promoting effect of drugs is linked to general stress responses rather than to compound-specific activities. Altogether, we did not observe evidence for mechanistic links between the regulation of sexual commitment and the activity of commonly used pharmaceuticals in vitro. Our data hence does not support scenarios in which currently applied therapeutic interventions would promote the spread of drug-resistant parasites or malaria transmission in general.
Collapse
Affiliation(s)
- Basil T. Thommen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Armin Passecker
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Tamara Buser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Eva Hitz
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- *Correspondence: Till S. Voss, ; Nicolas M. B. Brancucci,
| | - Nicolas M. B. Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- *Correspondence: Till S. Voss, ; Nicolas M. B. Brancucci,
| |
Collapse
|
6
|
Synthesis and antiplasmodial activity of regioisomers and epimers of second-generation dual acting ivermectin hybrids. Sci Rep 2022; 12:564. [PMID: 35022455 PMCID: PMC8755717 DOI: 10.1038/s41598-021-04532-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
With its strong effect on vector-borne diseases, and insecticidal effect on mosquito vectors of malaria, inhibition of sporogonic and blood-stage development of Plasmodium falciparum, as well as in vitro and in vivo impairment of the P. berghei development inside hepatocytes, ivermectin (IVM) continues to represent an antimalarial therapeutic worthy of investigation. The in vitro activity of the first-generation IVM hybrids synthesized by appending the IVM macrolide with heterocyclic and organometallic antimalarial pharmacophores, against the blood-stage and liver-stage infections by Plasmodium parasites prompted us to design second-generation molecular hybrids of IVM. Here, a structural modification of IVM to produce novel molecular hybrids by using sub-structures of 4- and 8-aminoquinolines, the time-tested antiplasmodial agents used for treating the blood and hepatic stage of Plasmodium infections, respectively, is presented. Successful isolation of regioisomers and epimers has been demonstrated, and the evaluation of their in vitro antiplasmodial activity against both the blood stages of P. falciparum and the hepatic stages of P. berghei have been undertaken. These compounds displayed structure-dependent antiplasmodial activity, in the nM range, which was more potent than that of IVM, its aglycon or primaquine, highlighting the superiority of this hybridization strategy in designing new antiplasmodial agents.
Collapse
|
7
|
Endo T, Takemae H, Sharma I, Furuya T. Multipurpose Drugs Active Against Both Plasmodium spp. and Microorganisms: Potential Application for New Drug Development. Front Cell Infect Microbiol 2021; 11:797509. [PMID: 35004357 PMCID: PMC8740689 DOI: 10.3389/fcimb.2021.797509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022] Open
Abstract
Malaria, a disease caused by the protozoan parasites Plasmodium spp., is still causing serious problems in endemic regions in the world. Although the WHO recommends artemisinin combination therapies for the treatment of malaria patients, the emergence of artemisinin-resistant parasites has become a serious issue and underscores the need for the development of new antimalarial drugs. On the other hand, new and re-emergences of infectious diseases, such as the influenza pandemic, Ebola virus disease, and COVID-19, are urging the world to develop effective chemotherapeutic agents against the causative viruses, which are not achieved to the desired level yet. In this review article, we describe existing drugs which are active against both Plasmodium spp. and microorganisms including viruses, bacteria, and fungi. We also focus on the current knowledge about the mechanism of actions of these drugs. Our major aims of this article are to describe examples of drugs that kill both Plasmodium parasites and other microbes and to provide valuable information to help find new ideas for developing novel drugs, rather than merely augmenting already existing drug repurposing efforts.
Collapse
Affiliation(s)
- Takuro Endo
- Laboratory of Veterinary Infectious Diseases, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Indu Sharma
- Department of Biological Sciences, Hampton University, Hampton, VA, United States
| | - Tetsuya Furuya
- Laboratory of Veterinary Infectious Diseases, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
8
|
Singh L, Singh K. Ivermectin: A Promising Therapeutic for Fighting Malaria. Current Status and Perspective. J Med Chem 2021; 64:9711-9731. [PMID: 34242031 DOI: 10.1021/acs.jmedchem.1c00498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Finding new chemotherapeutic interventions to treat malaria through repurposing of time-tested drugs and rigorous design of new drugs using tools of rational drug design remains one of the most sought strategies at the disposal of medicinal chemists. Ivermectin, a semisynthetic derivative of avermectin B1, is among the efficacious drugs used in mass drug administration drives employed against onchocerciasis, lymphatic filariasis, and several other parasitic diseases in humans. In this review, we present the prowess of ivermectin, a potent endectocide, in the control of malaria through vector control to reduce parasite transmission combined with efficacious chemoprevention to reduce malaria-related fatalities.
Collapse
Affiliation(s)
- Lovepreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar-143 005, India
| | - Kamaljit Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar-143 005, India
| |
Collapse
|
9
|
A Model for Assessing the Quantitative Effects of Heterogeneous Affinity in Malaria Transmission along with Ivermectin Mass Administration. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Using an agent-based model of malaria, we present numerical evidence that in communities of individuals having an affinity varying within a broad range of values, disease transmission may increase up to 300%. Moreover, our findings provide new insight into how to combine different strategies for the prevention of malaria transmission. In particular, we uncover a relationship between the level of heterogeneity and the level of conventional and unconventional anti-malarial drug administration (ivermectin and gametocidal agents), which, when taken together, will define a control parameter, tuning between disease persistence and elimination. Finally, we also provide evidence that the entomological inoculation rate, as well as the product between parasite and sporozoite rates are both good indicators of malaria incidence in the presence of heterogeneity in disease transmission and may configure a possible improvement in that setting, upon classical standard measures such as the basic reproductive number.
Collapse
|
10
|
Ivermectin: An Anthelmintic, an Insecticide, and Much More. Trends Parasitol 2020; 37:48-64. [PMID: 33189582 DOI: 10.1016/j.pt.2020.10.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
Here we tell the story of ivermectin, describing its anthelmintic and insecticidal actions and recent studies that have sought to reposition ivermectin for the treatment of other diseases that are not caused by helminth and insect parasites. The standard theory of its anthelmintic and insecticidal mode of action is that it is a selective positive allosteric modulator of glutamate-gated chloride channels found in nematodes and insects. At higher concentrations, ivermectin also acts as an allosteric modulator of ion channels found in host central nervous systems. In addition, in tissue culture, at concentrations higher than anthelmintic concentrations, ivermectin shows antiviral, antimalarial, antimetabolic, and anticancer effects. Caution is required before extrapolating from these preliminary repositioning experiments to clinical use, particularly for Covid-19 treatment, because of the high concentrations of ivermectin used in tissue-culture experiments.
Collapse
|
11
|
El-Saber Batiha G, Alqahtani A, Ilesanmi OB, Saati AA, El-Mleeh A, Hetta HF, Magdy Beshbishy A. Avermectin Derivatives, Pharmacokinetics, Therapeutic and Toxic Dosages, Mechanism of Action, and Their Biological Effects. Pharmaceuticals (Basel) 2020; 13:E196. [PMID: 32824399 PMCID: PMC7464486 DOI: 10.3390/ph13080196] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Avermectins are a group of drugs that occurs naturally as a product of fermenting Streptomyces avermitilis, an actinomycetes, isolated from the soil. Eight different structures, including ivermectin, abamectin, doramectin, eprinomectin, moxidectin, and selamectin, were isolated and divided into four major components (A1a, A2a, B1a and B2a) and four minor components (A1b, A2b, B1b, and B2b). Avermectins are generally used as a pesticide for the treatment of pests and parasitic worms as a result of their anthelmintic and insecticidal properties. Additionally, they possess anticancer, anti-diabetic, antiviral, antifungal, and are used for treatment of several metabolic disorders. Avermectin generally works by preventing the transmission of electrical impulse in the muscle and nerves of invertebrates, by amplifying the glutamate effects on the invertebrates-specific gated chloride channel. Avermectin has unwanted effects or reactions, especially when administered indiscriminately, which include respiratory failure, hypotension, and coma. The current review examines the mechanism of actions, biosynthesis, safety, pharmacokinetics, biological toxicity and activities of avermectins.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Omotayo B. Ilesanmi
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, Otuoke 561, Nigeria;
| | - Abdullah A. Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University Makkah, Mecca 24382, Saudi Arabia;
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shibin Al Kawm 32511, Egypt;
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45221, USA
| | - Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro 080-8555, Hokkaido, Japan
| |
Collapse
|
12
|
Repurposing Drugs to Fight Hepatic Malaria Parasites. Molecules 2020; 25:molecules25153409. [PMID: 32731386 PMCID: PMC7435416 DOI: 10.3390/molecules25153409] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Malaria remains one of the most prevalent infectious diseases worldwide, primarily affecting some of the most vulnerable populations around the globe. Despite achievements in the treatment of this devastating disease, there is still an urgent need for the discovery of new drugs that tackle infection by Plasmodium parasites. However, de novo drug development is a costly and time-consuming process. An alternative strategy is to evaluate the anti-plasmodial activity of compounds that are already approved for other purposes, an approach known as drug repurposing. Here, we will review efforts to assess the anti-plasmodial activity of existing drugs, with an emphasis on the obligatory and clinically silent liver stage of infection. We will also review the current knowledge on the classes of compounds that might be therapeutically relevant against Plasmodium in the context of other communicable diseases that are prevalent in regions where malaria is endemic. Repositioning existing compounds may constitute a faster solution to the current gap of prophylactic and therapeutic drugs that act on Plasmodium parasites, overall contributing to the global effort of malaria eradication.
Collapse
|
13
|
Singh L, Fontinha D, Francisco D, Mendes AM, Prudêncio M, Singh K. Molecular Design and Synthesis of Ivermectin Hybrids Targeting Hepatic and Erythrocytic Stages of Plasmodium Parasites. J Med Chem 2020; 63:1750-1762. [PMID: 32011136 DOI: 10.1021/acs.jmedchem.0c00033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ivermectin is a powerful endectocide, which reduces the incidence of vector-borne diseases. Besides its strong insecticidal effect on mosquito vectors of the disease, ivermectin inhibits Plasmodium falciparum sporogonic and blood stage development and impairs Plasmodium berghei development inside hepatocytes, both in vitro and in vivo. Herein, we present the first report on structural modification of ivermectin to produce dual-action molecular hybrids with good structure-dependent in vitro activity against both the hepatic and erythrocytic stages of P. berghei and P. falciparum infection, suggesting inclusion of ivermectin antimalarial hybrids in malaria control strategies. The most active hybrid displayed over threefold and 10-fold higher in vitro activity than ivermectin against hepatic and blood stage infections, respectively. Although an overwhelming insecticidal effect against Anopheles stephensi mosquitoes in laboratory conditions was not noticed, in silico docking analysis supports allosteric binding to glutamate-gated chloride channels similar to ivermectin.
Collapse
Affiliation(s)
- Lovepreet Singh
- Department of Chemistry , Guru Nanak Dev University , Amritsar 143 005 , India
| | - Diana Fontinha
- Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Av. Prof. Egas Moniz , Lisboa 1649-028 , Portugal
| | - Denise Francisco
- Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Av. Prof. Egas Moniz , Lisboa 1649-028 , Portugal
| | - Antonio M Mendes
- Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Av. Prof. Egas Moniz , Lisboa 1649-028 , Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Av. Prof. Egas Moniz , Lisboa 1649-028 , Portugal
| | - Kamaljit Singh
- Department of Chemistry , Guru Nanak Dev University , Amritsar 143 005 , India
| |
Collapse
|