1
|
Curti C, Clifford MN, Kay CD, Mena P, Rodriguez-Mateos A, Del Rio D, McDougall GJ, Williamson G, Andres-Lacueva C, Bresciani L, Burton Freeman B, Cassidy A, Desjardin Y, Fraga CG, Gill CCI, Kroon PA, Kuhnert N, Ludwig IA, Manach C, Milenkovic D, Nunes Dos Santos C, Oteiza PI, Pereira-Caro G, Tomás Barberán FA, Wishart DS, Crozier A. Extended recommendations on the nomenclature for microbial catabolites of dietary (poly)phenols, with a focus on isomers. Food Funct 2025. [PMID: 40264252 DOI: 10.1039/d4fo06152g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
There is an increasing body of evidence indicating that phenolic compounds derived from microbiota-mediated breakdown of dietary (poly)phenolics in the colon are at least partially responsible for the beneficial effects of a plant-based diet. Investigating the role of these catabolites and defining their particular biological effects is challenging due to the complex microbial pathways and the diversity of structures that are produced. When reviewing the data this is further exacerbated by the inconsistency and lack of standardization in naming the microbial phenolics. Here we update the nomenclature of colonic catabolites of dietary (poly)phenols, extending the proposals of Kay et al. (Am. J. Clin. Nutr., 2020, 112, 1051-1068, DOI: 10.1093/ajcn/nqaa204), by providing additional structures, and addressing the difficulties that can arise when investigating regioisomers and stereoisomers, where subtle differences in structure can have a substantial impact on bioactivity. The information provided will help to better harmonize the literature, facilitate data retrieval and provide a reference for researchers in several fields, especially nutrition and biochemistry.
Collapse
Affiliation(s)
- Claudio Curti
- BioOrganic Synthesis Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Michael N Clifford
- School of Bioscience and Medicine, University of Surrey, Guildford, UK
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria, Australia
| | - Colin D Kay
- Department of Pediatrics, University of Arkansas Medical School, Little Rock, AR, USA
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | | | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | | | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria, Australia
| | - Cristina Andres-Lacueva
- Department of Nutrition, Food Science and Gastronomy, University of Barcelona, Barcelona, Spain
- CIBER Frailty and Healthy Aging (CIBERfes), Institute of Health Carlos III, Barcelona, Spain
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Britt Burton Freeman
- Department of Food Science and Nutrition, Illinois Institute of Technology, Chicago, ILL, USA
| | - Aedin Cassidy
- Institute for Food Security, Queen's University, Belfast, Northern Ireland, UK
| | - Yves Desjardin
- Institute for Nutrition and Functional Food, Laval University, Québec, Canada
| | - Cesar G Fraga
- Department of Nutrition, University of California, Davis, CA, USA
| | - Chris C I Gill
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, UK
| | | | | | - Iziar A Ludwig
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Claudine Manach
- Université Clermont Auvergne, INRAE, Human Nutrition Unit, Clermont-Ferrand, France
| | - Dragan Milenkovic
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, Kannapolis, NC, USA
| | | | | | - Gema Pereira-Caro
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training, Córdoba, Spain
| | - Francisco A Tomás Barberán
- Quality, Safety and Bioactivity of Plant-Derived Foods CEBAS-CSIC, Espinardo University Campus, Murcia, Spain
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh, Saudi Arabia.
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Fukuda M, Otsuka Y, Sakai K, Uni S, Junker K, Saeung A, Srisuka W, Takaoka H. Metabolomic analysis of larval stages of Onchocerca japonica (Spirurida: Onchocercidae), raised in black fly (Diptera: Simuliidae) vectors, by gas chromatography-tandem mass spectrometry. Acta Trop 2025; 263:107541. [PMID: 39933644 DOI: 10.1016/j.actatropica.2025.107541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/13/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025]
Abstract
To monitor and prevent the spread of zoonotic onchocerciasis, identification of the natural vectors (blood-sucking insects) of its causative agents, Onchocerca species, is crucial. To date, vector identification depends on the detection of infective third-stage larvae in insects by traditional dissection. We aimed to develop a novel, more efficient method for the discrimination of the four larval stages, i.e. microfilariae (Mf), first-stage larvae (L1), second-stage larvae (L2), and third-stage larvae (L3), of O. japonica by metabolomic analysis. Microfilariae of O. japonica, the causative agent of zoonotic onchocerciasis in Japan, were obtained from skin snips of wild boars and injected into newly-emerged black flies (Diptera: Simuliidae) to enable further larval development. Metabolites obtained from Mf, L1, L2, and L3 were analyzed using a gas chromatography-tandem mass spectrometer. Multivariate analysis of the data of metabolites showed the complete separation of the four larval stages. The highest level of acetoacetic acid and hydroxylamine was found in Mf and L3, respectively. Consequently, we propose that hydroxylamine is a potential marker to detect infective larvae of O. japonica in natural infections and could be a valuable tool in vector surveys, transmission studies and epidemiological surveys.
Collapse
Affiliation(s)
- Masako Fukuda
- Institute for Research Management, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan; Medical Education Center, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan.
| | - Yasushi Otsuka
- International Center for Island Studies, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-8580, Japan
| | - Kumiko Sakai
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Shigehiko Uni
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare Studies, Kobe Women's University, Kobe, 650-0046, Japan
| | - Kerstin Junker
- National Collection of Animal Helminths, Epidemiology, Parasites and Vectors Programme, ARC-Onderstepoort Veterinary Institute, Private Bag X05 Onderstepoort 0110, South Africa
| | - Atiporn Saeung
- Parasitology and Entomology Research Cluster (PERC), Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wichai Srisuka
- Entomology Section, Queen Sirikit Botanic Garden, P.O. Box 7, Maerim, Chiang Mai 50180, Thailand
| | - Hiroyuki Takaoka
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Higher Institution of Centre of Excellence (HICoE), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Ambe LA, Limunga E, Mbah CE, Adela N, Eric N, Ngoe M, Sone B, Lochnit G, Tachu JB, Wanji S, Taubert A, Hermosilla C, Kamena F. Identification and Characterization of Onchocerca volvulus Heat Shock Protein 70 ( OvHSP70) as Novel Diagnostic Marker of Onchocerciasis in Human Urine. Pathogens 2024; 13:293. [PMID: 38668248 PMCID: PMC11053476 DOI: 10.3390/pathogens13040293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/29/2024] Open
Abstract
Despite several decades of mass drug administration and elimination-related activities, human onchocerciasis still represents a major parasitic threat in endemic regions. Among the challenges encountered by the elimination program is the lack of a suitable diagnostic tool that is accurate and non-invasive. Currently used methods are either invasive or not suitable for monitoring large numbers of patients. Herein, we describe the identification and characterization of Onchocerca volvulus heat shock protein 70 (OvHSP70) as a novel diagnostic biomarker for human onchocerciasis, which can directly be detected in urine samples of infected patients. This nematode-specific antigen was identified through LC-MS after differential SDS-PAGE using urine-derived protein extracts from O. volvulus-infected patients in Cameroon. Polyclonal antibodies generated in rabbits after cloning and expression of OvHSP70 in Escherichia coli reliably differentiated between urine samples from infected- and uninfected patients in a hypoendemic area of human onchocerciasis. These results provide an excellent basis for further development of a non-invasive and scalable diagnostic assay for human onchocerciasis using urine samples. Such a urine-based diagnostic assay will be of major importance for the elimination program of human onchcerciasis in endemic countries.
Collapse
Affiliation(s)
- Lum Abienwi Ambe
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (E.L.); (N.E.); (M.N.); (B.S.); (J.B.T.)
- Centre for Research on Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaounde P.O. Box 13033, Cameroon; (C.E.M.); (N.A.)
| | - Elisabeth Limunga
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (E.L.); (N.E.); (M.N.); (B.S.); (J.B.T.)
| | - Clarisse Engowei Mbah
- Centre for Research on Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaounde P.O. Box 13033, Cameroon; (C.E.M.); (N.A.)
| | - Ngwewondo Adela
- Centre for Research on Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaounde P.O. Box 13033, Cameroon; (C.E.M.); (N.A.)
| | - Ndumu Eric
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (E.L.); (N.E.); (M.N.); (B.S.); (J.B.T.)
| | - Martha Ngoe
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (E.L.); (N.E.); (M.N.); (B.S.); (J.B.T.)
| | - Bertrand Sone
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (E.L.); (N.E.); (M.N.); (B.S.); (J.B.T.)
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Julius Babila Tachu
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (E.L.); (N.E.); (M.N.); (B.S.); (J.B.T.)
| | - Samuel Wanji
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon;
- Research Foundation in Tropical Disease and Environment (REFOTDE), Buea P.O. Box 474, Cameroon
| | - Anja Taubert
- Biomedical Research Center Seltersberg (BFS), Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (A.T.); (C.H.)
| | - Carlos Hermosilla
- Biomedical Research Center Seltersberg (BFS), Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (A.T.); (C.H.)
| | - Faustin Kamena
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (E.L.); (N.E.); (M.N.); (B.S.); (J.B.T.)
| |
Collapse
|
4
|
Ferreira MU, Crainey JL, Gobbi FG. The search for better treatment strategies for mansonellosis: an expert perspective. Expert Opin Pharmacother 2023; 24:1685-1692. [PMID: 37477269 DOI: 10.1080/14656566.2023.2240235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Four species of the Mansonella genus infect millions of people across sub-Saharan Africa and Central and South America. Most infections are asymptomatic, but mansonellosis can be associated with nonspecific clinical manifestations such as fever, headache, arthralgia, and ocular lesions (M. ozzardi); pruritus, arthralgia, abdominal pain, angioedema, skin rash, and fatigue (M. perstans and perhaps Mansonella sp. 'DEUX'); and pruritic dermatitis and chronic lymphadenitis (M. perstans). AREAS COVERED We searched the PubMed and SciELO databases for publications on mansonelliasis in English, Spanish, Portuguese, or French that appeared until 1 May 2023. Literature data show that anthelmintics - single-dose ivermectin for M. ozzardi, repeated doses of mebendazole alone or in combination with diethylcarbamazine (DEC) for M. perstans, and DEC alone for M. streptocerca - are effective against microfilariae. Antibiotics that target Wolbachia endosymbionts, such as doxycycline, are likely to kill adult worms of most, if not all, Mansonella species, but the currently recommended 6-week regimen is relatively impractical. New anthelmintics and shorter antibiotic regimens (e.g. with rifampin) have shown promise in experimental filarial infections and may proceed to clinical trials. EXPERT OPINION We recommend that human infections with Mansonella species be treated, regardless of any apparent clinical manifestations. We argue that mansonellosis, despite being widely considered a benign infection, may represent a direct or indirect cause of significant morbidity that remains poorly characterized at present.
Collapse
Affiliation(s)
- Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - James Lee Crainey
- Laboratory of Ecology and Transmissible Diseases in the Amazon, Leônidas and Maria Deane Institute, Fiocruz, Manaus, Brazil
| | - Federico G Gobbi
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
5
|
Arndts K, Kegele J, Massarani AS, Ritter M, Wagner T, Pfarr K, Lämmer C, Dörmann P, Peisker H, Menche D, Al-Bahra M, Prazeres da Costa C, Schmutzhard E, Matuja W, Hoerauf A, Layland-Heni LE, Winkler AS. Epilepsy and nodding syndrome in association with an Onchocerca volvulus infection drive distinct immune profile patterns. PLoS Negl Trop Dis 2023; 17:e0011503. [PMID: 37535695 PMCID: PMC10426931 DOI: 10.1371/journal.pntd.0011503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/15/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Previous studies have described the association of onchocerciasis (caused by Onchocerca volvulus) with epilepsy, including nodding syndrome, although a clear etiological link is still missing. Cases are found in different African countries (Tanzania, South Sudan, Uganda, Democratic Republic of the Congo, Central African Republic and Cameroon). In our study we investigated immunological parameters (cytokine, chemokine, immunoglobulin levels) in individuals from the Mahenge area, Tanzania, presenting with either epilepsy or nodding syndrome with or without O. volvulus infection and compared them to O. volvulus negative individuals from the same endemic area lacking neurological disorders. Additionally, cell differentiation was performed using blood smears and systemic levels of neurodegeneration markers, leiomodin-1 and N-acetyltyramine-O, β-glucuronide (NATOG) were determined. Our findings revealed that cytokines, most chemokines and neurodegeneration markers were comparable between both groups presenting with epilepsy or nodding syndrome. However, we observed elevated eosinophil percentages within the O. volvulus positive epilepsy/nodding syndrome patients accompanied with increased eosinophilic cationic protein (ECP) and antigen-specific IgG levels in comparison to those without an O. volvulus infection. Furthermore, highest levels of NATOG were found in O. volvulus positive nodding syndrome patients. These findings highlight that the detection of distinct biomarkers might be useful for a differential diagnosis of epilepsy and nodding syndrome in O. volvulus endemic areas. Trial-registration: NCT03653975.
Collapse
Affiliation(s)
- Kathrin Arndts
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, German
| | - Josua Kegele
- Hertie Institute for Clinical Brain Research, Department of Neurology and Epileptology, University of Tübingen, Tübingen, Germany
| | - Alain S. Massarani
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, German
| | - Manuel Ritter
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, German
| | - Thomas Wagner
- Center for Pediatric and Adolescent Medicine, University Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | - Kenneth Pfarr
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, German
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Christine Lämmer
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, German
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Helga Peisker
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Dirk Menche
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Mazen Al-Bahra
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Clarissa Prazeres da Costa
- German Center for Infection Research (DZIF), Partner Site Munich, Germany
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
- Center for Global Health, School of Medicine, Technical University of Munich, Munich, Germany
| | - Erich Schmutzhard
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - William Matuja
- Department of Neurology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, German
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
| | - Laura E. Layland-Heni
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, German
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Andrea S. Winkler
- Center for Global Health, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Neurology, Technical University of Munich, Munich, Germany
- Department of Community Medicine and Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Clifford MN, King LJ, Kerimi A, Pereira-Caro MG, Williamson G. Metabolism of phenolics in coffee and plant-based foods by canonical pathways: an assessment of the role of fatty acid β-oxidation to generate biologically-active and -inactive intermediates. Crit Rev Food Sci Nutr 2022; 64:3326-3383. [PMID: 36226718 DOI: 10.1080/10408398.2022.2131730] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
ω-Phenyl-alkenoic acids are abundant in coffee, fruits, and vegetables. Along with ω-phenyl-alkanoic acids, they are produced from numerous dietary (poly)phenols and aromatic amino acids in vivo. This review addresses how phenyl-ring substitution and flux modulates their gut microbiota and endogenous β-oxidation. 3',5'-Dihydroxy-derivatives (from alkyl-resorcinols, flavanols, proanthocyanidins), and 4'-hydroxy-phenolic acids (from tyrosine, p-coumaric acid, naringenin) are β-oxidation substrates yielding benzoic acids. In contrast, 3',4',5'-tri-substituted-derivatives, 3',4'-dihydroxy-derivatives and 3'-methoxy-4'-hydroxy-derivatives (from coffee, tea, cereals, many fruits and vegetables) are poor β-oxidation substrates with metabolism diverted via gut microbiota dehydroxylation, phenylvalerolactone formation and phase-2 conjugation, possibly a strategy to conserve limited pools of coenzyme A. 4'-Methoxy-derivatives (citrus fruits) or 3',4'-dimethoxy-derivatives (coffee) are susceptible to hepatic "reverse" hydrogenation suggesting incompatibility with enoyl-CoA-hydratase. Gut microbiota-produced 3'-hydroxy-4'-methoxy-derivatives (citrus fruits) and 3'-hydroxy-derivatives (numerous (poly)phenols) are excreted as the phenyl-hydracrylic acid β-oxidation intermediate suggesting incompatibility with hydroxy-acyl-CoA dehydrogenase, albeit with considerable inter-individual variation. Further investigation is required to explain inter-individual variation, factors determining the amino acid to which C6-C3 and C6-C1 metabolites are conjugated, the precise role(s) of l-carnitine, whether glycine might be limiting, and whether phenolic acid-modulation of β-oxidation explains how phenolic acids affect key metabolic conditions, such as fatty liver, carbohydrate metabolism and insulin resistance.
Collapse
Affiliation(s)
- Michael N Clifford
- School of Bioscience and Medicine, University of Surrey, Guildford, UK
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| | - Laurence J King
- School of Bioscience and Medicine, University of Surrey, Guildford, UK
| | - Asimina Kerimi
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| | - Maria Gema Pereira-Caro
- Department of Food Science and Health, Instituto Andaluz de Investigacion y Formacion Agraria Pesquera Alimentaria y de la Produccion Ecologica, Sevilla, Spain
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| |
Collapse
|
7
|
Yeshi K, Ruscher R, Loukas A, Wangchuk P. Immunomodulatory and biological properties of helminth-derived small molecules: Potential applications in diagnostics and therapeutics. FRONTIERS IN PARASITOLOGY 2022; 1:984152. [PMID: 39816468 PMCID: PMC11731824 DOI: 10.3389/fpara.2022.984152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2025]
Abstract
Parasitic helminths secrete and excrete a vast array of molecules known to help skew or suppress the host's immune response, thereby establishing a niche for sustained parasite maintenance. Indeed, the immunomodulatory potency of helminths is attributed mainly to excretory/secretory products (ESPs). The ESPs of helminths and the identified small molecules (SM) are reported to have diverse biological and pharmacological properties. The available literature reports only limited metabolites, and the identity of many metabolites remains unknown due to limitations in the identification protocols and helminth-specific compound libraries. Many metabolites are known to be involved in host-parasite interactions and pathogenicity. For example, fatty acids (e.g., stearic acid) detected in the infective stages of helminths are known to have a role in host interaction through facilitating successful penetration and migration inside the host. Moreover, excreted/secreted SM detected in helminth species are found to possess various biological properties, including anti-inflammatory activities, suggesting their potential in developing immunomodulatory drugs. For example, helminths-derived somatic tissue extracts and whole crude ESPs showed anti-inflammatory properties by inhibiting the secretion of proinflammatory cytokines from human peripheral blood mononuclear cells and suppressing the pathology in chemically-induced experimental mice model of colitis. Unlike bigger molecules like proteins, SM are ideal candidates for drug development since they are small structures, malleable, and lack immunogenicity. Future studies should strive toward identifying unknown SM and isolating the under-explored niche of helminth metabolites using the latest metabolomics technologies and associated software, which hold potential keys for finding new diagnostics and novel therapeutics.
Collapse
Affiliation(s)
- Karma Yeshi
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia
| | | | | | | |
Collapse
|
8
|
Lagatie O, Batsa Debrah L, Debrah AY, Stuyver LJ. Whole blood transcriptome analysis in onchocerciasis. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100100. [PMID: 36082138 PMCID: PMC9445278 DOI: 10.1016/j.crpvbd.2022.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
Abstract
Identifying the molecular mechanisms controlling the host’s response to infection with Onchocerca volvulus is important to understand how the human host controls such parasitic infection. Little is known of the cellular immune response upon infection with O. volvulus. We performed a transcriptomic study using PAXgene-preserved whole blood from 30 nodule-positive individuals and 21 non-endemic controls. It was found that of the 45,042 transcripts that were mapped to the human genome, 544 were found to be upregulated and 447 to be downregulated in nodule-positive individuals (adjusted P-value < 0.05). Pathway analysis was performed on this set of differentially expressed genes, which demonstrated an impact on oxidative phosphorylation and protein translation. Upstream regulator analysis showed that the mTOR associated protein RICTOR appears to play an important role in inducing the transcriptional changes in infected individuals. Functional analysis of the genes affected by infection indicated a suppression of antibody response, Th17 immune response and proliferation of activated T lymphocytes. Multiple regression models were used to select 22 genes that could contribute significantly in the generation of a classifier to predict infection with O. volvulus. For these 22 genes, as well as for 8 reference target genes, validated RT-qPCR assays were developed and used to re-analyze the discovery sample set. These data were used to perform elastic net regularized logistic regression and a panel of 7 genes was found to be the best performing classifier. The resulting algorithm returns a value between 0 and 1, reflecting the predicted probability of being infected. A validation panel of 69 nodule-positive individuals and 5 non-endemic controls was used to validate the performance of this classifier. Based on this validation set only, a sensitivity of 94.2% and a specificity of 60.0% was obtained. When combining the discovery test set and validation set, a sensitivity of 96.0% and a specificity of 92.3% was obtained. Large-scale validation approaches will be necessary to define the intended use for this classifier. Besides the use as marker for infection in MDA efficacy surveys and epidemiological transmission studies, this classifier might also hold potential as pharmacodynamic marker in macrofilaricide clinical trials. Whole blood transcriptome analysis was performed in onchocerciasis patients. Suppression of antibodies, Th17, and proliferation of activated T cells. RICTOR plays an important role in inducing the transcriptional changes. A 7-gene expression classifier was built as a tool for onchocerciasis detection.
Collapse
Affiliation(s)
- Ole Lagatie
- Johnson & Johnson Global Public Health, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
- Corresponding author.
| | - Linda Batsa Debrah
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alex Y. Debrah
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lieven J. Stuyver
- Johnson & Johnson Global Public Health, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
9
|
Lagatie O, Njumbe Ediage E, Van Roosbroeck D, Van Asten S, Verheyen A, Batsa Debrah L, Debrah A, Odiere MR, T’Kindt R, Dumont E, Sandra K, Dillen L, Verhaeghe T, Vreeken R, Cuyckens F, Stuyver LJ. Multimodal biomarker discovery for active Onchocerca volvulus infection. PLoS Negl Trop Dis 2021; 15:e0009999. [PMID: 34843471 PMCID: PMC8659328 DOI: 10.1371/journal.pntd.0009999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/09/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022] Open
Abstract
The neglected tropical disease onchocerciasis, or river blindness, is caused by infection with the filarial nematode Onchocerca volvulus. Current estimates indicate that 17 million people are infected worldwide, the majority of them living in Africa. Today there are no non-invasive tests available that can detect ongoing infection, and that can be used for effective monitoring of elimination programs. In addition, to enable pharmacodynamic studies with novel macrofilaricide drug candidates, surrogate endpoints and efficacy biomarkers are needed but are non-existent. We describe the use of a multimodal untargeted mass spectrometry-based approach (metabolomics and lipidomics) to identify onchocerciasis-associated metabolites in urine and plasma, and of specific lipid features in plasma of infected individuals (O. volvulus infected cases: 68 individuals with palpable nodules; lymphatic filariasis cases: 8 individuals; non-endemic controls: 20 individuals). This work resulted in the identification of elevated concentrations of the plasma metabolites inosine and hypoxanthine as biomarkers for filarial infection, and of the urine metabolite cis-cinnamoylglycine (CCG) as biomarker for O. volvulus. During the targeted validation study, metabolite-specific cutoffs were determined (inosine: 34.2 ng/ml; hypoxanthine: 1380 ng/ml; CCG: 29.7 ng/ml) and sensitivity and specificity profiles were established. Subsequent evaluation of these biomarkers in a non-endemic population from a different geographical region invalidated the urine metabolite CCG as biomarker for O. volvulus. The plasma metabolites inosine and hypoxanthine were confirmed as biomarkers for filarial infection. With the availability of targeted LC-MS procedures, the full potential of these 2 biomarkers in macrofilaricide clinical trials, MDA efficacy surveys, and epidemiological transmission studies can be investigated. Today’s diagnosis of infection with the filarial parasite Onchocerca volvulus mainly depends on the microscopic analysis of skin biopsies and serological testing. The work presented here describes the use of multiple mass spectrometry-based screening methods (metabolomics and lipidomics) to search for biomarkers indicative of infection with Onchocerca volvulus. This resulted in the identification of elevated concentrations of the plasma metabolites inosine and hypoxanthine as biomarkers for filarial infection, and of the urine metabolite cis-cinnamoylglycine as biomarker for O. volvulus. Further evaluation of these biomarkers in a geographically distinct non-endemic population however invalidated the use of urine cis-cinnamoylglycine. These findings are of utmost importance as it not only opens new avenues in the development of non-invasive diagnostic tools for filarial infections, but also emphasizes the need for evaluation and validation of newly discovered biomarkers in different populations from different geographies.
Collapse
Affiliation(s)
- Ole Lagatie
- J&J Global Public Health, Janssen R&D, Beerse, Belgium
- * E-mail:
| | | | | | | | - Ann Verheyen
- J&J Global Public Health, Janssen R&D, Beerse, Belgium
| | - Linda Batsa Debrah
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alex Debrah
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Maurice R. Odiere
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Ruben T’Kindt
- Research Institute for Chromatography (RIC), Kortrijk, Belgium
| | - Emmie Dumont
- Research Institute for Chromatography (RIC), Kortrijk, Belgium
| | - Koen Sandra
- Research Institute for Chromatography (RIC), Kortrijk, Belgium
| | - Lieve Dillen
- Discovery Sciences, Janssen R&D, Beerse, Belgium
| | | | - Rob Vreeken
- Discovery Sciences, Janssen R&D, Beerse, Belgium
| | | | | |
Collapse
|