1
|
Smout MJ, Laha T, Chaiyadet S, Brindley PJ, Loukas A. Mechanistic insights into liver-fluke-induced bile-duct cancer. Trends Parasitol 2024; 40:1183-1196. [PMID: 39521672 DOI: 10.1016/j.pt.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Liver fluke infection is a major risk for cholangiocarcinoma (CCA). It has been established that the Asian liver flukes, Clonorchis sinensis and Opisthorchis viverrini secrete growth factors, digestive enzymes, and extracellular vesicles (EVs) which contribute to abnormal cell development in the bile ducts where the worms reside. These secretions - combined with aberrant inflammation and repeated cycles of chronic wounding at the site of parasite attachment and grazing on the epithelium - promote biliary hyperplasia and fibrosis and ultimately malignant transformation. Application of post-genomic and gene-editing tools to the study of liver fluke immunobiology and pathogenesis has accelerated the discovery of essential virulence factors to which targeted therapies and diagnostics can be directed.
Collapse
Affiliation(s)
- Michael J Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Sujittra Chaiyadet
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paul J Brindley
- Department of Microbiology, Immunology, and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, George Washington University, Washington, DC, USA
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| |
Collapse
|
2
|
Kovner A, Kapushchak Y, Zaparina O, Ponomarev D, Pakharukova M. Liver Fluke-Derived Molecules Accelerate Skin Repair Processes in a Mouse Model of Type 2 Diabetes Mellitus. Int J Mol Sci 2024; 25:12002. [PMID: 39596069 PMCID: PMC11593665 DOI: 10.3390/ijms252212002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Chronic nonhealing wounds, such as diabetic ulcers, are among the most serious complications of diabetes mellitus. Consequently, the search for new therapeutic strategies remains highly relevant. Based on our previous data on acute wounds, bioactive molecules derived from the liver fluke Opisthorchis felineus hold promise as a novel approach to wound healing. The aim of this study was to investigate the wound-healing properties of excretory-secretory products (ESP) and inactivated eggs of O. felineus in a model of type 2 diabetes mellitus. Two-month-old mice of the BKS.Cg + Leprdb/+Leprdb/OlaHsd (db/db) strain were inflicted with superficial wounds of 5 mm in diameter. Mouse groups included several controls (methylcellulose as the vehicle and human recombinant PDGF as the positive control) and specific-treatment groups (ESP and inactivated O. felineus eggs). Histopathological, immunohistochemical, and RT-PCR studies using markers for M1/M2 polarization, angiogenesis, and extracellular matrix remodeling were carried out. Additionally, an image analysis of Masson's trichrome-stained skin sections was performed. The proliferation of HaCaT cells under ESP and egg treatment was also assessed. The present study reveals a significant increase in the percentage of wound healing in ESP- and egg-treated groups, which significantly exceeded the control values after 14 days. Wound treatment with either ESP or worm eggs resulted in (i) a reduction in inflammation with a canonical M1-to-M2 polarization shift, (ii) the modulation of the vascular response, and (iii) dermal extracellular matrix remodeling. All results are comparable to those of the positive control group treated with PDGF. This study also reveals that ESP, but not O. felineus eggs, stimulated keratinocyte proliferation in vitro. The results indicate the high wound-healing potential of liver fluke bioactive molecules and open prospects for further research on these new promising therapeutic approaches.
Collapse
Affiliation(s)
- Anna Kovner
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia; (Y.K.); (O.Z.); (D.P.); (M.P.)
| | - Yaroslav Kapushchak
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia; (Y.K.); (O.Z.); (D.P.); (M.P.)
| | - Oxana Zaparina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia; (Y.K.); (O.Z.); (D.P.); (M.P.)
| | - Dmitry Ponomarev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia; (Y.K.); (O.Z.); (D.P.); (M.P.)
| | - Maria Pakharukova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia; (Y.K.); (O.Z.); (D.P.); (M.P.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Pan X, He Q, Yin Y, Xu A, Wu A, Yi X, Zhong Z, Wu Y, Li X. Extracellular vesicles of Clonorchis sinensis promote the malignant phenotypes of cholangiocarcinoma via NF-κB/EMT axis. PLoS Negl Trop Dis 2024; 18:e0012545. [PMID: 39466826 PMCID: PMC11516169 DOI: 10.1371/journal.pntd.0012545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/17/2024] [Indexed: 10/30/2024] Open
Abstract
Clonorchis sinensis infection is an important risk factor for cholangiocarcinoma (CCA). It has been reported that extracellular vesicles (EVs) are involved in the parasite-host interaction, and EVs of C. sinensis (CsEVs) can contribute to biliary injuries and inflammation. However, uncertainty surrounds the function of CsEVs in the progression of CCA. In this study, differential ultracentrifugation was used to separate CsEVs from the culture supernatant of C. sinensis adult worms, and they were then identified by transmission electron microscopy, nanoparticle tracking analysis and proteome assays. CCK8, EdU-488 and colony formation assays were used to explore the effect of CsEVs on the proliferation of CCA cells in vitro. Wound healing assays, transwell assays and in vivo lung metastasis model were conducted to evaluate the migration and invasion abilities. Moreover, the involvement of EMT process, as well as NF-κB and ERK signaling pathway was assessed. Results showed that CsEVs were successfully isolated and could be taken up by CCA cells, which promoted proliferation by accelerating cell cycle progression. In addition, CsEVs could facilitate cell metastasis by triggering the epithelial-mesenchymal transition (EMT). Mechanistically, activation of NF-κB signaling pathway was involved in the CsEVs-mediated EMT, which could be reversed partly by BAY 11-7082 (an inhibitor of NF-κB). In conclusion, these findings suggested that CsEVs could induce the aberrant proliferation and metastasis of CCA cells by stimulating the NF-κB/EMT axis, providing a novel theoretical explanation for liver fluke-associated CCA.
Collapse
Affiliation(s)
- Xiaowen Pan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
- China Atomic Energy Authority Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, China
| | - Qing He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
- China Atomic Energy Authority Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yingxuan Yin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
- China Atomic Energy Authority Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, China
- Department of Blood Transfusion, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Anyuan Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
- China Atomic Energy Authority Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, China
| | - Aoxun Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
- China Atomic Energy Authority Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, China
| | - Xueqing Yi
- Department of Basic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zifeng Zhong
- Department of Basic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yinjuan Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
- China Atomic Energy Authority Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
- China Atomic Energy Authority Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, China
| |
Collapse
|
4
|
Dong C, Hui P, Wu Z, Li J, Man X. CircRNA LOC729852 promotes bladder cancer progression by regulating macrophage polarization and recruitment via the miR-769-5p/IL-10 axis. J Cell Mol Med 2024; 28:e18225. [PMID: 38506082 PMCID: PMC10951884 DOI: 10.1111/jcmm.18225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
Circular RNAs (circRNAs) function as tumour promoters or suppressors in bladder cancer (BLCA) by regulating genes involved in macrophage recruitment and polarization. However, the underlying mechanisms are largely unknown. The aim of this study was to determine the biological role of circLOC729852 in BLCA. CircLOC729852 was upregulated in BLCA tissues and correlated with increased proliferation, migration and epithelial mesenchymal transition (EMT) of BCLA cells. MiR-769-5p was identified as a target for circLOC729852, which can upregulate IL-10 expression by directly binding to and suppressing miR-769-5p. Furthermore, our results indicated that the circLOC729852/miR-769-5p/IL-10 axis modulates autophagy signalling in BLCA cells and promotes the recruitment and M2 polarization of TAMs by activating the JAK2/STAT3 signalling pathway. In addition, circLOC729852 also promoted the growth of BLCA xenografts and M2 macrophage infiltration in vivo. Thus, circLOC729852 functions as an oncogene in BLCA by inducing secretion of IL-10 by the M2 TAMs, which then facilitates tumour cell growth and migration. Taken together, circLOC729852 is a potential diagnostic biomarker and therapeutic target for BLCA.
Collapse
Affiliation(s)
- Changming Dong
- Department of Urology, China Medical UniversityThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningPR China
| | - Pengyu Hui
- Department of UrologyThe Second Affiliated Hospital of Xi'an Medical UniversityXi'anShaanxiChina
| | - Zhengqi Wu
- Department of Urology, China Medical UniversityThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jianfeng Li
- Department of Urology, China Medical UniversityThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xiaojun Man
- Department of Urology, China Medical UniversityThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningPR China
| |
Collapse
|
5
|
Bowhay CR, Hanington PC. Animal granulins: In the GRN scheme of things. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105115. [PMID: 38101714 DOI: 10.1016/j.dci.2023.105115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Granulins are conserved in nearly all metazoans, with an intriguing loss in insects. These pleiotropic peptides are involved in numerous physiological and pathological processes yet have been overwhelmingly examined in mammalian systems. While work in other animal models has been informative, a richer understanding of the proteins should be obtained by integrating knowledge from all available contexts. The main bodies of work described here include 1) the structure-function relationships of progranulin and its cleavage products, 2) the role of expanded granulin gene families and different isoforms in fish immunology, 3) the release of granulin peptides to promote host angiogenesis by parasitic worms, 4) a diversity of molluscan uses for granulins, including immune activation in intermediate hosts to trematodes, 5) knowledge gained on lysosomal functions from C. elegans and the stress-related activities of granulins. We provide an overview of functional reports across the Metazoa to inform much-needed future research.
Collapse
Affiliation(s)
- Christina R Bowhay
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Patrick C Hanington
- School of Public Health, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|