1
|
Matkowski H, Daszkowska-Golec A. Wisdom comes after facts - An update on plants priming using phytohormones. JOURNAL OF PLANT PHYSIOLOGY 2025; 305:154414. [PMID: 39798192 DOI: 10.1016/j.jplph.2024.154414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025]
Abstract
Currently, agriculture is facing the threat of climate change. Adaptation of plants to unfavorable growth conditions is undoubtedly a great challenge for scientists. A promising solution to this problem is priming, for which chemicals, microorganisms and phytohormones can be used. The use of priming not only affects the adaptation of plants to unfavorable environmental conditions caused by water deficiency, low temperatures, heat and soil pollution, but can also improve the quantity and quality of biomass. In this review, we focus on the role of plant phytohormones in inducing priming in crop plants. We took a closer look at hormones such as abscisic acid, salicylic acid, jasmonic acid and gibberellins. We focused not only on their physiological and morphological effects, but also on what changes at the molecular level are induced by priming with phytohormones. An interesting aspect of priming is the epigenetic changes induced by phytohormones, which influence better adaptation to unfavorable conditions, which is why we addressed this topic in this review.
Collapse
Affiliation(s)
- Hubert Matkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
2
|
Tehrani SSH, Kogan A, Mikulski P, Jansen LET. Remembering foods and foes: emerging principles of transcriptional memory. Cell Death Differ 2025; 32:16-26. [PMID: 37563261 PMCID: PMC11748651 DOI: 10.1038/s41418-023-01200-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Transcriptional memory is characterized by a primed cellular state, induced by an external stimulus that results in an altered expression of primed genes upon re-exposure to the inducing signal. Intriguingly, the primed state is heritably maintained across somatic cell divisions even after the initial stimulus and target gene transcription cease. This phenomenon is widely observed across various organisms and appears to enable cells to retain a memory of external signals, thereby adapting to environmental changes. Signals range from nutrient supplies (food) to a variety of stress signals, including exposure to pathogens (foes), leading to long-term memory such as in the case of trained immunity in plants and mammals. Here, we review these priming phenomena and our current understanding of transcriptional memory. We consider different mechanistic models for how memory can work and discuss existing evidence for potential carriers of memory. Key molecular signatures include: the poising of RNA polymerase II machinery, maintenance of histone marks, as well as alterations in nuclear positioning and long-range chromatin interactions. Finally, we discuss the potential adaptive roles of transcriptional memory in the organismal response to its environment from nutrient sensing to trained immunity.
Collapse
Affiliation(s)
- Sahar S H Tehrani
- Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK
| | - Anna Kogan
- Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK
| | - Pawel Mikulski
- Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK.
| | - Lars E T Jansen
- Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK.
| |
Collapse
|
3
|
Cao S, Chen ZJ. Transgenerational epigenetic inheritance during plant evolution and breeding. TRENDS IN PLANT SCIENCE 2024; 29:1203-1223. [PMID: 38806375 PMCID: PMC11560745 DOI: 10.1016/j.tplants.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024]
Abstract
Plants can program and reprogram their genomes to create genetic variation and epigenetic modifications, leading to phenotypic plasticity. Although consequences of genetic changes are comprehensible, the basis for transgenerational inheritance of epigenetic variation is elusive. This review addresses contributions of external (environmental) and internal (genomic) factors to the establishment and maintenance of epigenetic memory during plant evolution, crop domestication, and modern breeding. Dynamic and pervasive changes in DNA methylation and chromatin modifications provide a diverse repertoire of epigenetic variation potentially for transgenerational inheritance. Elucidating and harnessing epigenetic inheritance will help us develop innovative breeding strategies and biotechnological tools to improve crop yield and resilience in the face of environmental challenges. Beyond plants, epigenetic principles are shared across sexually reproducing organisms including humans with relevance to medicine and public health.
Collapse
Affiliation(s)
- Shuai Cao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
4
|
Pratx L, Crawford T, Bäurle I. Mechanisms of heat stress-induced transcriptional memory. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102590. [PMID: 38968911 DOI: 10.1016/j.pbi.2024.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024]
Abstract
Transcriptional memory allows organisms to store information about transcriptional reprogramming in response to a stimulus. In plants, this often involves the response to an abiotic stress, which in nature may be cyclical or recurring. Such transcriptional memory confers sustained induction or enhanced re-activation in response to a recurrent stimulus, which may increase chances of survival and fitness. Heat stress (HS) has emerged as an excellent model system to study transcriptional memory in plants, and much progress has been made in elucidating the molecular mechanisms underlying this phenomenon. Here, we review how histone turnover and transcriptional co-regulator complexes contribute to reprogramming of transcriptional responses.
Collapse
Affiliation(s)
- Loris Pratx
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Tim Crawford
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Isabel Bäurle
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany.
| |
Collapse
|
5
|
Ganie SA, McMulkin N, Devoto A. The role of priming and memory in rice environmental stress adaptation: Current knowledge and perspectives. PLANT, CELL & ENVIRONMENT 2024; 47:1895-1915. [PMID: 38358119 DOI: 10.1111/pce.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Plant responses to abiotic stresses are dynamic, following the unpredictable changes of physical environmental parameters such as temperature, water and nutrients. Physiological and phenotypical responses to stress are intercalated by periods of recovery. An earlier stress can be remembered as 'stress memory' to mount a response within a generation or transgenerationally. The 'stress priming' phenomenon allows plants to respond quickly and more robustly to stressors to increase survival, and therefore has significant implications for agriculture. Although evidence for stress memory in various plant species is accumulating, understanding of the mechanisms implicated, especially for crops of agricultural interest, is in its infancy. Rice is a major food crop which is susceptible to abiotic stresses causing constraints on its cultivation and yield globally. Advancing the understanding of the stress response network will thus have a significant impact on rice sustainable production and global food security in the face of climate change. Therefore, this review highlights the effects of priming on rice abiotic stress tolerance and focuses on specific aspects of stress memory, its perpetuation and its regulation at epigenetic, transcriptional, metabolic as well as physiological levels. The open questions and future directions in this exciting research field are also laid out.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Nancy McMulkin
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Alessandra Devoto
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
6
|
Veres T, Kerestély M, Kovács BM, Keresztes D, Schulc K, Seitz E, Vassy Z, Veres DV, Csermely P. Cellular forgetting, desensitisation, stress and ageing in signalling networks. When do cells refuse to learn more? Cell Mol Life Sci 2024; 81:97. [PMID: 38372750 PMCID: PMC10876757 DOI: 10.1007/s00018-024-05112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024]
Abstract
Recent findings show that single, non-neuronal cells are also able to learn signalling responses developing cellular memory. In cellular learning nodes of signalling networks strengthen their interactions e.g. by the conformational memory of intrinsically disordered proteins, protein translocation, miRNAs, lncRNAs, chromatin memory and signalling cascades. This can be described by a generalized, unicellular Hebbian learning process, where those signalling connections, which participate in learning, become stronger. Here we review those scenarios, where cellular signalling is not only repeated in a few times (when learning occurs), but becomes too frequent, too large, or too complex and overloads the cell. This leads to desensitisation of signalling networks by decoupling signalling components, receptor internalization, and consequent downregulation. These molecular processes are examples of anti-Hebbian learning and 'forgetting' of signalling networks. Stress can be perceived as signalling overload inducing the desensitisation of signalling pathways. Ageing occurs by the summative effects of cumulative stress downregulating signalling. We propose that cellular learning desensitisation, stress and ageing may be placed along the same axis of more and more intensive (prolonged or repeated) signalling. We discuss how cells might discriminate between repeated and unexpected signals, and highlight the Hebbian and anti-Hebbian mechanisms behind the fold-change detection in the NF-κB signalling pathway. We list drug design methods using Hebbian learning (such as chemically-induced proximity) and clinical treatment modalities inducing (cancer, drug allergies) desensitisation or avoiding drug-induced desensitisation. A better discrimination between cellular learning, desensitisation and stress may open novel directions in drug design, e.g. helping to overcome drug resistance.
Collapse
Affiliation(s)
- Tamás Veres
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Márk Kerestély
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Borbála M Kovács
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Dávid Keresztes
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Klára Schulc
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Erik Seitz
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Zsolt Vassy
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Dániel V Veres
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
- Turbine Ltd, Budapest, Hungary
| | - Peter Csermely
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Wang Q, Li B, Qiu Z, Lu Z, Hang Z, Wu F, Chen X, Zhu X. Genome-Wide Identification of MYC Transcription Factors and Their Potential Functions in the Growth and Development Regulation of Tree Peony ( Paeonia suffruticosa). PLANTS (BASEL, SWITZERLAND) 2024; 13:437. [PMID: 38337970 PMCID: PMC10857424 DOI: 10.3390/plants13030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Tree peony (Paeonia suffruticosa Andr.) is a traditional Chinese flower with significant ornamental and medicinal value. Its growth and development process is regulated by some internal and external factors, and the related regulatory mechanism is largely unknown. Myelocytomatosis transcription factors (MYCs) play significant roles in various processes such as plant growth and development, the phytohormone response, and the stress response. As the identification and understanding of the MYC family in tree peony remains limited, this study aimed to address this gap by identifying a total of 15 PsMYCs in tree peony and categorizing them into six subgroups based on bioinformatics methods. Furthermore, the gene structure, conservative domains, cis-elements, and expression patterns of the PsMYCs were thoroughly analyzed to provide a comprehensive overview of their characteristics. An analysis in terms of gene structure and conserved motif composition suggested that each subtribe had similarities in function. An analysis of the promoter sequence revealed the presence of numerous cis-elements associated with plant growth and development, the hormone response, and the stress response. qRT-PCR results and the protein interaction network further demonstrated the potential functions of PsMYCs in the growth and development process. While in comparison to the control, only PsMYC2 exhibited a statistically significant variation in expression levels in response to exogenous hormone treatments and abiotic stress. A promoter activity analysis of PsMYC2 revealed its sensitivity to Flu and high temperatures, but exhibited no discernible difference under exogenous GA treatment. These findings help establish a basis for comprehending the molecular mechanism by which PsMYCs regulate the growth and development of tree peony.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xia Chen
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China; (Q.W.); (B.L.); (Z.Q.); (Z.L.); (Z.H.); (F.W.)
| | - Xiangtao Zhu
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China; (Q.W.); (B.L.); (Z.Q.); (Z.L.); (Z.H.); (F.W.)
| |
Collapse
|
8
|
Crawford T, Siebler L, Sulkowska A, Nowack B, Jiang L, Pan Y, Lämke J, Kappel C, Bäurle I. The Mediator kinase module enhances polymerase activity to regulate transcriptional memory after heat stress in Arabidopsis. EMBO J 2024; 43:437-461. [PMID: 38228917 PMCID: PMC10897291 DOI: 10.1038/s44318-023-00024-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
Plants are often exposed to recurring adverse environmental conditions in the wild. Acclimation to high temperatures entails transcriptional responses, which prime plants to better withstand subsequent stress events. Heat stress (HS)-induced transcriptional memory results in more efficient re-induction of transcription upon recurrence of heat stress. Here, we identified CDK8 and MED12, two subunits of the kinase module of the transcription co-regulator complex, Mediator, as promoters of heat stress memory and associated histone modifications in Arabidopsis. CDK8 is recruited to heat-stress memory genes by HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2). Like HSFA2, CDK8 is largely dispensable for the initial gene induction upon HS, and its function in transcriptional memory is thus independent of primary gene activation. In addition to the promoter and transcriptional start region of target genes, CDK8 also binds their 3'-region, where it may promote elongation, termination, or rapid re-initiation of RNA polymerase II (Pol II) complexes during transcriptional memory bursts. Our work presents a complex role for the Mediator kinase module during transcriptional memory in multicellular eukaryotes, through interactions with transcription factors, chromatin modifications, and promotion of Pol II efficiency.
Collapse
Affiliation(s)
- Tim Crawford
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Lara Siebler
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Bryan Nowack
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Li Jiang
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Yufeng Pan
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jörn Lämke
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Isabel Bäurle
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
9
|
Olmo R, Quijada NM, Morán-Diez ME, Hermosa R, Monte E. Identification of Tomato microRNAs in Late Response to Trichoderma atroviride. Int J Mol Sci 2024; 25:1617. [PMID: 38338899 PMCID: PMC10855890 DOI: 10.3390/ijms25031617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The tomato (Solanum lycopersicum) is an important crop worldwide and is considered a model plant to study stress responses. Small RNAs (sRNAs), 21-24 nucleotides in length, are recognized as a conserved mechanism for regulating gene expression in eukaryotes. Plant endogenous sRNAs, such as microRNA (miRNA), have been involved in disease resistance. High-throughput RNA sequencing was used to analyze the miRNA profile of the aerial part of 30-day-old tomato plants after the application of the fungus Trichoderma atroviride to the seeds at the transcriptional memory state. Compared to control plants, ten differentially expressed (DE) miRNAs were identified in those inoculated with Trichoderma, five upregulated and five downregulated, of which seven were known (miR166a, miR398-3p, miR408, miR5300, miR6024, miR6027-5p, and miR9471b-3p), and three were putatively novel (novel miR257, novel miR275, and novel miR1767). miRNA expression levels were assessed using real-time quantitative PCR analysis. A plant sRNA target analysis of the DE miRNAs predicted 945 potential target genes, most of them being downregulated (84%). The analysis of KEGG metabolic pathways showed that most of the targets harbored functions associated with plant-pathogen interaction, membrane trafficking, and protein kinases. Expression changes of tomato miRNAs caused by Trichoderma are linked to plant defense responses and appear to have long-lasting effects.
Collapse
Affiliation(s)
| | | | | | | | - Enrique Monte
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, 37185 Villamayor, Salamanca, Spain; (R.O.); (N.M.Q.); (M.E.M.-D.); (R.H.)
| |
Collapse
|
10
|
Krasauskas J, Ganie SA, Al-Husari A, Bindschedler L, Spanu P, Ito M, Devoto A. Jasmonates, gibberellins, and powdery mildew modify cell cycle progression and evoke differential spatiotemporal responses along the barley leaf. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:180-203. [PMID: 37611210 PMCID: PMC10735486 DOI: 10.1093/jxb/erad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Barley (Hordeum vulgare) is an important cereal crop, and its development, defence, and stress responses are modulated by different hormones including jasmonates (JAs) and the antagonistic gibberellins (GAs). Barley productivity is severely affected by the foliar biotrophic fungal pathogen Blumeria hordei. In this study, primary leaves were used to examine the molecular processes regulating responses to methyl-jasmonate (MeJA) and GA to B. hordei infection along the leaf axis. Flow cytometry, microscopy, and spatiotemporal expression patterns of genes associated with JA, GA, defence, and the cell cycle provided insights on cell cycle progression and on the gradient of susceptibility to B. hordei observed along the leaf. Notably, the combination of B. hordei with MeJA or GA pre-treatment had a different effect on the expression patterns of the analysed genes compared to individual treatments. MeJA reduced susceptibility to B. hordei in the proximal part of the leaf blade. Overall, distinctive spatiotemporal gene expression patterns correlated with different degrees of cell proliferation, growth capacity, responses to hormones, and B. hordei infection along the leaf. Our results highlight the need to further investigate differential spatial and temporal responses to pathogens at the organ, tissue, and cell levels in order to devise effective disease control strategies in crops.
Collapse
Affiliation(s)
- Jovaras Krasauskas
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Showkat Ahmad Ganie
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Aroub Al-Husari
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Laurence Bindschedler
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Pietro Spanu
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Masaki Ito
- School of Biological Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
11
|
Liu W, Thapa P, Park SW. RD29A and RD29B rearrange genetic and epigenetic markers in priming systemic defense responses against drought and salinity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111895. [PMID: 37838156 DOI: 10.1016/j.plantsci.2023.111895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Drought has become the most important limiting factor to crop productions. Research thus far has been devoted to identifying drought-responsive genes (DRGs) via breeding and engineering approaches. Still, these efforts have not resulted in a solution to combat drought's effects because the ectopic expression of most DRGs causes adverse effects that reduce plant growth and yields. Lately, we discovered that two DRGs, Response to Desiccation (RD)29A and RD29B, induced by Paenibacillus polymyxa CR1, a plant growth-promoting rhizobacterium capable of priming drought tolerance and concurrently stimulating plant growth, play pivotal roles in defense responses against drought. In this study, we employ the ChlP and qRT-PCR analyses and further clarify that P. polymyxa CR1 reformats the chromatin/transcriptional memory of RD29s, positioned as upstream controllers that fine-tune the temporal dynamic of stress-regulating transcription factors (TFs) in elaborating induced systemic drought tolerance without growth penalties. Two genes coordinate the upregulation of NAC TFs, while feedback inhibiting CBF TFs, which regulate downstream DRG expressions. This supports that RD29s are unique, feasible transgene candidates for improving plants' survival capacity in both optimal and drought conditions. However, the mode of action of RD29A and RD29B are partly independent, exerting distinct roles in disparate ecological states. When subjected to increasing NaCl concentrations, the KO mutant of RD29A (rd29a) displayed enhanced tolerance compared to WT and rd29b plants, proposing that RD29B, but not RD29A, a key player in conferring WT-like tolerance to salinity stress; further studies will be needed to optimize/maximize their applications in engineering for-profit drought and/or broad-spectrum stress tolerant crops.
Collapse
Affiliation(s)
- Wenshan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Parbati Thapa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Sang-Wook Park
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
12
|
Jené L, Munné-Bosch S. Hormonal involvement in boosting the vegetative vigour underlying caffeine-related improvements in lentil production. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111856. [PMID: 37660891 DOI: 10.1016/j.plantsci.2023.111856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Previous studies have shown that caffeine (1,3,7-trimethylxanthine) has some potential for its use as a biostimulant ingredient for boosting lentil production at suboptimal temperatures. However, some limitations to its use include its potential side effects as an emerging contaminant and the current lack of knowledge of its mechanism of action. Here, we aimed to study the mechanisms underlying improved lentil production upon caffeine application. Greenhouse-grown plants treated with caffeine (at 10-5 M, 10-4 M, and 10-3 M) were compared to an untreated, control treatment, and both reproductive and vegetative vigour were evaluated in parallel with endogenous foliar concentrations of phytohormones, including both stress and growth-related hormones. Results showed an enhanced lentil production at the highest caffeine concentration (10-3 M) which might be attributed, at least in part, to a greater vegetative vigour. The hormonal profiling revealed a dual effect. Firstly, there was a specific increase in jasmonoyl-isoleucine (JA-Ile) in the short term, which may provide a priming effect. Secondly, abscisic acid (ABA) content kept at low levels and the active cytokinin (CK) isopentenyl adenine (2-iP) increased and persisted at high levels throughout the reproductive stage. Cytokinin-mediated effects on growth, and more specifically the high CK/ABA ratios in leaves, appeared to mediate caffeine-related effects in boosting vegetative vigour. In conclusion, caffeine emerges as a compelling alkaloid for integration into biostimulant formulations due to its favorable effect in boosting lentil production through an improvement of vegetative vigour. These outcomes appear to be modulated by phytohormones, most notably jasmonates, priming plants for improved performance under suboptimal temperatures, and cytokinins, alongside ABA and its associated ratios, collectively enhancing plant growth and reproductive vigour in challenging conditions.
Collapse
Affiliation(s)
- Laia Jené
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Spain; Institute of Nutrition and Food Safety (INSA), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
13
|
Khan RAA, Najeeb S, Chen J, Wang R, Zhang J, Hou J, Liu T. Insights into the molecular mechanism of Trichoderma stimulating plant growth and immunity against phytopathogens. PHYSIOLOGIA PLANTARUM 2023; 175:e14133. [PMID: 38148197 DOI: 10.1111/ppl.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Trichoderma species have received significant interest as beneficial fungi for boosting plant growth and immunity against phytopathogens. By establishing a mutualistic relationship with plants, Trichoderma causes a series of intricate signaling events that eventually promote plant growth and improve disease resistance. The mechanisms contain the indirect or direct involvement of Trichoderma in enhancing plant growth by modulating phytohormones signaling pathways, improving uptake and accumulation of nutrients, and increasing soil bioavailability of nutrients. They contribute to plant resistance by stimulating systemic acquired resistance through salicylic acid, jasmonic acid, and ethylene signaling. A cascade of signal transduction processes initiated by the interaction of Trichoderma and plants regulate the expression of defense-related genes, resulting in the synthesis of defense hormones and pathogenesis-related proteins (PRPs), which collectively improve plant resistance. Additionally, advancements in omics technologies has led to the identification of key pathways, their regulating genes, and molecular interactions in the plant defense and growth promotion responses induced by Trichoderma. Deciphering the molecular mechanism behind Trichoderma's induction of plant defense and immunity is essential for harnessing the full plant beneficial potential of Trichoderma. This review article sheds light on the molecular mechanisms that underlie the positive effects of Trichoderma-induced plant immunity and growth and opens new opportunities for developing environmentally friendly and innovative approaches to improve plant immunity and growth.
Collapse
Affiliation(s)
- Raja Asad Ali Khan
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Saba Najeeb
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR, China
| | - Rui Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Jing Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Jumei Hou
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Tong Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| |
Collapse
|
14
|
Harris CJ, Amtmann A, Ton J. Epigenetic processes in plant stress priming: Open questions and new approaches. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102432. [PMID: 37523900 DOI: 10.1016/j.pbi.2023.102432] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
Priming reflects the capacity of plants to memorise environmental stress experience and improve their response to recurring stress. Epigenetic modifications in DNA and associated histone proteins may carry short-term and long-term memory in the same plant or mediate transgenerational effects, but the evidence is still largely circumstantial. New experimental tools now enable scientists to perform targeted manipulations that either prevent or generate a particular epigenetic modification in a particular location of the genome. Such 'reverse epigenetics' approaches allow for the interrogation of causality between individual priming-induced modifications and their role for altering gene expression and plant performance under recurring stress. Furthermore, combining site-directed epigenetic manipulation with conditional and cell-type specific promoters creates novel opportunities to test and engineer spatiotemporal patterns of priming.
Collapse
Affiliation(s)
- C Jake Harris
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Anna Amtmann
- School of Molecular Biosciences, University of Glasgow, Glasgow, G128QQ, UK.
| | - Jurriaan Ton
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
15
|
Woo SL, Hermosa R, Lorito M, Monte E. Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat Rev Microbiol 2023; 21:312-326. [PMID: 36414835 DOI: 10.1038/s41579-022-00819-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
Abstract
Trichoderma is a cosmopolitan and opportunistic ascomycete fungal genus including species that are of interest to agriculture as direct biological control agents of phytopathogens. Trichoderma utilizes direct antagonism and competition, particularly in the rhizosphere, where it modulates the composition of and interactions with other microorganisms. In its colonization of plants, on the roots or as an endophyte, Trichoderma has evolved the capacity to communicate with the plant and produce numerous multifaceted benefits to its host. The intricacy of this plant-microorganism association has stimulated a marked interest in research on Trichoderma, ranging from its capacity as a plant growth promoter to its ability to prime local and systemic defence responses against biotic and abiotic stresses and to activate transcriptional memory affecting plant responses to future stresses. This Review discusses the ecophysiology and diversity of Trichoderma and the complexity of its relationships in the agroecosystem, highlighting its potential as a direct and indirect biological control agent, biostimulant and biofertilizer, which are useful multipurpose properties for agricultural applications. We also highlight how the present legislative framework might accommodate the demonstrated evidence of Trichoderma proficiency as a plant-beneficial microorganism contributing towards eco-sustainable agriculture.
Collapse
Affiliation(s)
- Sheridan L Woo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Enrique Monte
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| |
Collapse
|
16
|
Fang T, Qian C, Daoura BG, Yan X, Fan X, Zhao P, Liao Y, Shi L, Chang Y, Ma XF. A novel TF molecular switch-mechanism found in two contrasting ecotypes of a psammophyte, Agriophyllum squarrosum, in regulating transcriptional drought memory. BMC PLANT BIOLOGY 2023; 23:167. [PMID: 36997861 PMCID: PMC10061855 DOI: 10.1186/s12870-023-04154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Prior drought stress may change plants response patterns and subsequently increase their tolerance to the same condition, which can be referred to as "drought memory" and proved essential for plants well-being. However, the mechanism of transcriptional drought memory in psammophytes remains unclear. Agriophyllum squarrosum, a pioneer species on mobile dunes, is widely spread in Northern China's vast desert areas with outstanding ability of water use efficiency. Here we conducted dehydration-rehydration treatment on A. squarrosum semi-arid land ecotype AEX and arid land ecotype WW to dissect the drought memory mechanism of A. squarrosum, and to determine the discrepancy in drought memory of two contrasting ecotypes that had long adapted to water heterogeneity. RESULT Physiological traits monitoring unveiled the stronger ability and longer duration in drought memory of WW than that of AEX. A total of 1,642 and 1,339 drought memory genes (DMGs) were identified in ecotype AEX and WW, respectively. Furthermore, shared DMGs among A. squarrosum and the previously studied species depicted that drought memory commonalities in higher plants embraced pathways like primary and secondary metabolisms; while drought memory characteristics in A. squarrosum were mainly related to response to heat, high light intensity, hydrogen peroxide, and dehydration, which might be due to local adaptation to desert circumstances. Heat shock proteins (HSPs) occupied the center of the protein-protein interaction (PPI) network in drought memory transcription factors (TF), thus playing a key regulatory role in A. squarrosum drought memory. Co-expression analysis of drought memory TFs and DMGs uncovered a novel regulating module, whereby pairs of TFs might function as molecular switches in regulating DMG transforming between high and low expression levels, thus promoting drought memory reset. CONCLUSION Based on the co-expression analysis, protein-protein interaction prediction, and drought memory metabolic network construction, a novel regulatory module of transcriptional drought memory in A. squarrosum was hypothesized here, whereby recurrent drought signal is activated by primary TF switches, then amplified by secondary amplifiers, and thus regulates downstream complicated metabolic networks. The present research provided valuable molecular resources on plants' stress-resistance basis and shed light on drought memory in A. squarrosum.
Collapse
Affiliation(s)
- Tingzhou Fang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chaoju Qian
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
| | - Bachir Goudia Daoura
- Department of Biology, Faculty of Sciences and Technology, Dan Dicko Dankoulodo University, POBox 465, Maradi, Niger
| | - Xia Yan
- Key Laboratory of Eco-hydrology of Inland River Basin, Northwest Institute of Eco- Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, 730000 China
| | - Xingke Fan
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
| | - Pengshu Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuqiu Liao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Liang Shi
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuxiao Chang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Science, Shenzhen, 518000 China
| | - Xiao-Fei Ma
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
| |
Collapse
|
17
|
Gomez MY, Schroeder MM, Chieb M, McLain NK, Gachomo EW. Bradyrhizobium japonicum IRAT FA3 promotes salt tolerance through jasmonic acid priming in Arabidopsis thaliana. BMC PLANT BIOLOGY 2023; 23:60. [PMID: 36710321 PMCID: PMC9885586 DOI: 10.1186/s12870-022-03977-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 12/05/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plant growth promoting rhizobacteria (PGPR), such as Bradyrhizobium japonicum IRAT FA3, are able to improve seed germination and plant growth under various biotic and abiotic stress conditions, including high salinity stress. PGPR can affect plants' responses to stress via multiple pathways which are often interconnected but were previously thought to be distinct. Although the overall impacts of PGPR on plant growth and stress tolerance have been well documented, the underlying mechanisms are not fully elucidated. This work contributes to understanding how PGPR promote abiotic stress by revealing major plant pathways triggered by B. japonicum under salt stress. RESULTS The plant growth-promoting rhizobacterial (PGPR) strain Bradyrhizobium japonicum IRAT FA3 reduced the levels of sodium in Arabidopsis thaliana by 37.7%. B. japonicum primed plants as it stimulated an increase in jasmonates (JA) and modulated hydrogen peroxide production shortly after inoculation. B. japonicum-primed plants displayed enhanced shoot biomass, reduced lipid peroxidation and limited sodium accumulation under salt stress conditions. Q(RT)-PCR analysis of JA and abiotic stress-related gene expression in Arabidopsis plants pretreated with B. japonicum and followed by six hours of salt stress revealed differential gene expression compared to non-inoculated plants. Response to Desiccation (RD) gene RD20 and reactive oxygen species scavenging genes CAT3 and MDAR2 were up-regulated in shoots while CAT3 and RD22 were increased in roots by B. japonicum, suggesting roles for these genes in B. japonicum-mediated salt tolerance. B. japonicum also influenced reductions of RD22, MSD1, DHAR and MYC2 in shoots and DHAR, ADC2, RD20, RD29B, GTR1, ANAC055, VSP1 and VSP2 gene expression in roots under salt stress. CONCLUSION Our data showed that MYC2 and JAR1 are required for B. japonicum-induced shoot growth in both salt stressed and non-stressed plants. The observed microbially influenced reactions to salinity stress in inoculated plants underscore the complexity of the B. japonicum jasmonic acid-mediated plant response salt tolerance.
Collapse
Affiliation(s)
- Melissa Y Gomez
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Mercedes M Schroeder
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Maha Chieb
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Nathan K McLain
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Emma W Gachomo
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA.
| |
Collapse
|
18
|
Seiml-Buchinger V, Reifschneider E, Bittner A, Baier M. Ascorbate peroxidase postcold regulation of chloroplast NADPH dehydrogenase activity controls cold memory. PLANT PHYSIOLOGY 2022; 190:1997-2016. [PMID: 35946757 PMCID: PMC9614503 DOI: 10.1093/plphys/kiac355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Exposure of Arabidopsis (Arabidopsis thaliana) to 4°C imprints a cold memory that modulates gene expression in response to a second (triggering) stress stimulus applied several days later. Comparison of plastid transcriptomes of cold-primed and control plants directly before they were exposed to the triggering stimulus showed downregulation of several subunits of chloroplast NADPH dehydrogenase (NDH) and regulatory subunits of ATP synthase. NDH is, like proton gradient 5 (PGR5)-PGR5-like1 (PGRL1), a thylakoid-embedded, ferredoxin-dependent plastoquinone reductase that protects photosystem I and stabilizes ATP synthesis by cyclic electron transport (CET). Like PGRL1A and PGRL1B transcript levels, ndhA and ndhD transcript levels decreased during the 24-h long priming cold treatment. PGRL1 transcript levels were quickly reset in the postcold phase, but expression of ndhA remained low. The transcript abundances of other ndh genes decreased within the next days. Comparison of thylakoid-bound ascorbate peroxidase (tAPX)-free and transiently tAPX-overexpressing or tAPX-downregulating Arabidopsis lines demonstrated that ndh expression is suppressed by postcold induction of tAPX. Four days after cold priming, when tAPX protein accumulation was maximal, NDH activity was almost fully lost. Lack of the NdhH-folding chaperonin Crr27 (Cpn60β4), but not lack of the NDH activity modulating subunits NdhM, NdhO, or photosynthetic NDH subcomplex B2 (PnsB2), strengthened priming regulation of zinc finger of A. thaliana 10, which is a nuclear-localized target gene of the tAPX-dependent cold-priming pathway. We conclude that cold-priming modifies chloroplast-to-nucleus stress signaling by tAPX-mediated suppression of NDH-dependent CET and that plastid-encoded NdhH, which controls subcomplex A assembly, is of special importance for memory stabilization.
Collapse
Affiliation(s)
- Victoria Seiml-Buchinger
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Berlin 14195,Germany
| | - Elena Reifschneider
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Berlin 14195,Germany
| | - Andras Bittner
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Berlin 14195,Germany
| | - Margarete Baier
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Berlin 14195,Germany
| |
Collapse
|
19
|
Wang Y, Zhu W, Ren F, Zhao N, Xu S, Sun P. Transcriptional Memory in Taraxacum mongolicum in Response to Long-Term Different Grazing Intensities. PLANTS 2022; 11:plants11172251. [PMID: 36079633 PMCID: PMC9460496 DOI: 10.3390/plants11172251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022]
Abstract
Grazing, as an important land use method in grassland, has a significant impact on the morphological and physiological traits of plants. However, little is known about how the molecular mechanism of plant responds to different grazing intensities. Here, we investigated the response of Taraxacum mongolicum to light grazing and heavy grazing intensities in comparison with a non-grazing control. Using de novo transcriptome assembly, T. mongolicum leaves were compared for the expression of the different genes under different grazing intensities in natural grassland. In total, 194,253 transcripts were de novo assembled and comprised in nine leaf tissues. Among them, 11,134 and 9058 genes were differentially expressed in light grazing and heavy grazing grassland separately, with 5867 genes that were identified as co-expression genes in two grazing treatments. The Nr, SwissProt, String, GO, KEGG, and COG analyses by BLASTx searches were performed to determine and further understand the biological functions of those differentially expressed genes (DEGs). Analysis of the expression patterns of 10 DEGs by quantitative real-time RT-PCR (qRT-PCR) confirmed the accuracy of the RNA-Seq results. Based on a comparative transcriptome analysis, the most significant transcriptomic changes that were observed under grazing intensity were related to plant hormone and signal transduction pathways, carbohydrate and secondary metabolism, and photosynthesis. In addition, heavy grazing resulted in a stronger transcriptomic response compared with light grazing through increasing the of the secondary metabolism- and photosynthesis-related genes. These changes in key pathways and related genes suggest that they may synergistically respond to grazing to increase the resilience and stress tolerance of T. mongolicum. Our findings provide important clues for improving grassland use and protection and understanding the molecular mechanisms of plant response to grazing.
Collapse
Affiliation(s)
- Yalin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Wenyan Zhu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471003, China
| | - Fei Ren
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Na Zhao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471003, China
| | - Shixiao Xu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471003, China
- Correspondence: (S.X.); (P.S.); Tel.: +86-13997163501 (S.X.); +86-13525415882 (P.S.)
| | - Ping Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Correspondence: (S.X.); (P.S.); Tel.: +86-13997163501 (S.X.); +86-13525415882 (P.S.)
| |
Collapse
|
20
|
Nair AU, Bhukya DPN, Sunkar R, Chavali S, Allu AD. Molecular basis of priming-induced acquired tolerance to multiple abiotic stresses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3355-3371. [PMID: 35274680 DOI: 10.1093/jxb/erac089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/04/2022] [Indexed: 05/04/2023]
Abstract
The growth, survival, and productivity of plants are constantly challenged by diverse abiotic stresses. When plants are exposed to stress for the first time, they can capture molecular information and store it as a form of memory, which enables them to competently and rapidly respond to subsequent stress(es). This process is referred to as a priming-induced or acquired stress response. In this review, we discuss how (i) the storage and retrieval of the information from stress memory modulates plant physiological, cellular, and molecular processes in response to subsequent stress(es), (ii) the intensity, recurrence, and duration of priming stimuli influences the outcomes of the stress response, and (iii) the varying responses at different plant developmental stages. We highlight current understanding of the distinct and common molecular processes manifested at the epigenetic, (post-)transcriptional, and post-translational levels mediated by stress-associated molecules and metabolites, including phytohormones. We conclude by emphasizing how unravelling the molecular circuitry underlying diverse priming-stimuli-induced stress responses could propel the use of priming as a management practice for crop plants. This practice, in combination with precision agriculture, could aid in increasing yield quantity and quality to meet the rapidly rising demand for food.
Collapse
Affiliation(s)
- Akshay U Nair
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Durga Prasad Naik Bhukya
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Annapurna Devi Allu
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| |
Collapse
|
21
|
Khan A, Khan V, Pandey K, Sopory SK, Sanan-Mishra N. Thermo-Priming Mediated Cellular Networks for Abiotic Stress Management in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:866409. [PMID: 35646001 PMCID: PMC9136941 DOI: 10.3389/fpls.2022.866409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 05/05/2023]
Abstract
Plants can adapt to different environmental conditions and can survive even under very harsh conditions. They have developed elaborate networks of receptors and signaling components, which modulate their biochemistry and physiology by regulating the genetic information. Plants also have the abilities to transmit information between their different parts to ensure a holistic response to any adverse environmental challenge. One such phenomenon that has received greater attention in recent years is called stress priming. Any milder exposure to stress is used by plants to prime themselves by modifying various cellular and molecular parameters. These changes seem to stay as memory and prepare the plants to better tolerate subsequent exposure to severe stress. In this review, we have discussed the various ways in which plants can be primed and illustrate the biochemical and molecular changes, including chromatin modification leading to stress memory, with major focus on thermo-priming. Alteration in various hormones and their subsequent role during and after priming under various stress conditions imposed by changing climate conditions are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
22
|
Wu X, Li X, Huang Y, Hu B. Identification of AhATL1 interaction proteins participating in drought stress memory in peanut. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2021.2013734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Xinquan Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, Guangdong, PR China
| | - Xiaoyan Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, Guangdong, PR China
| | - Yinglin Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, Guangdong, PR China
| | - Bo Hu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, Guangdong, PR China
| |
Collapse
|
23
|
Bittner A, Hause B, Baier M. Cold-priming causes dampening of oxylipin biosynthesis and signalling during the early cold- and light-triggering response of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7163-7179. [PMID: 34185054 PMCID: PMC8547158 DOI: 10.1093/jxb/erab314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/27/2021] [Indexed: 05/21/2023]
Abstract
Cold-priming uncouples cold and light regulation of otherwise tightly co-regulated genes. In this study, we focused on the early regulatory processes in Arabidopsis within the first 2 h in cold and in high light after a 5-d lag-phase at 20 °C and 24 h cold-priming at 4 °C. Priming quickly modified gene expression in a trigger-specific manner. In the early stress-response phase during cold and high-light triggering, it reduced the regulatory amplitudes of many up- and down-regulated genes. A third of the priming-regulated genes were jasmonate-sensitive, including the full set of genes required for oxylipin biosynthesis. Analysis of wild-type and mutant plants based on qPCR demonstrated that biosynthesis of the jasmonic acid (JA) precursor 12-oxo phytenoic acid (OPDA) relative to the availability of JA dampened the response of the genes for oxylipin biosynthesis. In oxylipin biosynthetic mutants, cold-priming more strongly affected genes involved in the biosynthesis of OPDA than in its conversion to JA. In addition, priming-dependent dampening of the triggering response was more linked to OPDA than to regulation of the JA concentration. Spray application of OPDA prior to triggering counteracted the priming effect. Regulation of the oxylipin hub was controlled by modulation of the oxylipin-sensitivity of the genes for OPDA biosynthesis, but it was insensitive to priming-induced accumulation of thylakoid ascorbate peroxidase, thus identifying a parallel-acting cold-priming pathway.
Collapse
Affiliation(s)
- Andras Bittner
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 12–16, 14195 Berlin, Germany
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Margarete Baier
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 12–16, 14195 Berlin, Germany
| |
Collapse
|
24
|
Detecting drought regulators using stochastic inference in Bayesian networks. PLoS One 2021; 16:e0255486. [PMID: 34398879 PMCID: PMC8367000 DOI: 10.1371/journal.pone.0255486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/18/2021] [Indexed: 11/19/2022] Open
Abstract
Drought is a natural hazard that affects crops by inducing water stress. Water stress, induced by drought accounts for more loss in crop yield than all the other causes combined. With the increasing frequency and intensity of droughts worldwide, it is essential to develop drought-resistant crops to ensure food security. In this paper, we model multiple drought signaling pathways in Arabidopsis using Bayesian networks to identify potential regulators of drought-responsive reporter genes. Genetically intervening at these regulators can help develop drought-resistant crops. We create the Bayesian network model from the biological literature and determine its parameters from publicly available data. We conduct inference on this model using a stochastic simulation technique known as likelihood weighting to determine the best regulators of drought-responsive reporter genes. Our analysis reveals that activating MYC2 or inhibiting ATAF1 are the best single node intervention strategies to regulate the drought-responsive reporter genes. Additionally, we observe simultaneously activating MYC2 and inhibiting ATAF1 is a better strategy. The Bayesian network model indicated that MYC2 and ATAF1 are possible regulators of the drought response. Validation experiments showed that ATAF1 negatively regulated the drought response. Thus intervening at ATAF1 has the potential to create drought-resistant crops.
Collapse
|
25
|
Tong J, Hu M, Han B, Ji Y, Wang B, Liang H, Liu M, Wu Z, Liu N. Determination of reliable reference genes for gene expression studies in Chinese chive (Allium tuberosum) based on the transcriptome profiling. Sci Rep 2021; 11:16558. [PMID: 34400673 PMCID: PMC8367972 DOI: 10.1038/s41598-021-95849-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/22/2021] [Indexed: 12/31/2022] Open
Abstract
Chinese chive (Allium tuberosum) is widely cultivated around the world for its unique flavor, nutrient, and medicinal values, yet its molecular mechanism on flavor formation and other metabolic pathways remains intangible. The elucidation of these complex processes begins with investigating the expression of the genes of interest, however the appropriate reference genes (RGs) for normalizing the gene expression are still unavailable in A. tuberosum. To fill this lacuna, transcriptome-wide screening was undertaken to identify the most stable genes according to the analysis of their FPKM values. The expression stability of the RGs was further evaluated using geNorm, NormFinder, BestKeeper, and RefFinder algorithms. The comprehensive analysis showed that GLY1 and SKP1, instead of two traditionally used RGs (eIF1α and ACT2), were the most stable genes across diverse A. tuberosum tissues, indicating the necessity to carefully validate the stability of RGs prior to their use for normalizations. As indicated by geNorm, the normalizations with at least two RGs could give more accurate results. qRT-PCR experiments were conducted with randomly selected genes, demonstrating that normalization with a combination of GLY1 and SKP1 resulted in reliable normalization results. Our finding represents the first attempt toward establishing a standardized qRT-PCR analysis in this economically important vegetable.
Collapse
Affiliation(s)
- Jing Tong
- Key Laboratory of Urban Agriculture (North) of Minstry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Manman Hu
- Key Laboratory of Urban Agriculture (North) of Minstry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Beibei Han
- Key Laboratory of Urban Agriculture (North) of Minstry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yanhai Ji
- Key Laboratory of Urban Agriculture (North) of Minstry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Baoju Wang
- Key Laboratory of Urban Agriculture (North) of Minstry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hao Liang
- Key Laboratory of Urban Agriculture (North) of Minstry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Mingchi Liu
- Key Laboratory of Urban Agriculture (North) of Minstry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zhanhui Wu
- Key Laboratory of Urban Agriculture (North) of Minstry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Ning Liu
- Key Laboratory of Urban Agriculture (North) of Minstry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
26
|
Srivastava AK, Suresh Kumar J, Suprasanna P. Seed 'primeomics': plants memorize their germination under stress. Biol Rev Camb Philos Soc 2021; 96:1723-1743. [PMID: 33961327 DOI: 10.1111/brv.12722] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Seed priming is a pre-germination treatment administered through various chemical, physical and biological agents, which induce mild stress during the early phases of germination. Priming facilitates synchronized seed germination, better seedling establishment, improved plant growth and enhanced yield, especially in stressful environments. In parallel, the phenomenon of 'stress memory' in which exposure to a sub-lethal stress leads to better responses to future or recurring lethal stresses has gained widespread attention in recent years. The versatility and realistic yield gains associated with seed priming and its connection with stress memory make a critical examination useful for the design of robust approaches for maximizing future yield gains. Herein, a literature review identified selenium, salicylic acid, poly-ethylene glycol, CaCl2 and thiourea as the seed priming agents (SPRs) for which the most studies have been carried out. The average priming duration for SPRs generally ranged from 2 to 48 h, i.e. during phase I/II of germination. The major signalling events for regulating early seed germination, including the DOG1 (delay of germination 1)-abscisic acid (ABA)-heme regulatory module, ABA-gibberellic acid antagonism and nucleus-organelle communication are detailed. We propose that both seed priming and stress memory invoke a 'bet-hedging' strategy in plants, wherein their growth under optimal conditions is compromised in exchange for better growth under stressful conditions. The molecular basis of stress memory is explained at the level of chromatin reorganization, alternative transcript splicing, metabolite accumulation and autophagy. This provides a useful framework to study similar mechanisms operating during seed priming. In addition, we highlight the potential for merging findings on seed priming with those of stress memory, with the dual benefit of advancing fundamental research and boosting crop productivity. Finally, a roadmap for future work, entailing identification of SPR-responsive varieties and the development of dual/multiple-benefit SPRs, is proposed for enhancing SPR-mediated agricultural productivity worldwide.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Jisha Suresh Kumar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
27
|
Martínez-Aguilar K, Hernández-Chávez JL, Alvarez-Venegas R. Priming of seeds with INA and its transgenerational effect in common bean (Phaseolus vulgaris L.) plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110834. [PMID: 33691968 DOI: 10.1016/j.plantsci.2021.110834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/04/2021] [Accepted: 01/30/2021] [Indexed: 05/14/2023]
Abstract
Priming is a mechanism of defense that prepares the plant's immune system for a faster and/or stronger activation of cellular defenses against future exposure to different types of stress. This enhanced resistance can be achieved by using inorganic and organic compounds which imitate the biological induction of systemic acquired resistance. INA (2,6 dichloro-isonicotinic acid) was the first synthetic compound created as a resistance inducer for plant-pathogen interactions. However, the use of INA to activate primed resistance in common bean, at the seed stage and during germination, remains experimentally unexplored. Here, we test the hypothesis that INA-seed treatment would induce resistance in common bean plants to Pseudomonas syringae pv. phaseolicola, and that the increased resistance is not accompanied by a tradeoff between plant defense and growth. Additionally, it was hypothesized that treating seeds with INA has a transgenerational priming effect. We provide evidence that seed treatment activates a primed state for disease resistance, in which low nucleosome enrichment and reduced histone activation marks during the priming phase, are associated with a defense-resistant phenotype, characterized by symptom appearance, pathogen accumulation, yield, and changes in gene expression. In addition, the priming status for induced resistance can be inherited to its offspring.
Collapse
|
28
|
DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance. Proc Natl Acad Sci U S A 2021; 118:2023981118. [PMID: 33771925 DOI: 10.1073/pnas.2023981118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyploidy is a prominent feature for genome evolution in many animals and all flowering plants. Plant polyploids often show enhanced fitness in diverse and extreme environments, but the molecular basis for this remains elusive. Soil salinity presents challenges for many plants including agricultural crops. Here we report that salt tolerance is enhanced in tetraploid rice through lower sodium uptake and correlates with epigenetic regulation of jasmonic acid (JA)-related genes. Polyploidy induces DNA hypomethylation and potentiates genomic loci coexistent with many stress-responsive genes, which are generally associated with proximal transposable elements (TEs). Under salt stress, the stress-responsive genes including those in the JA pathway are more rapidly induced and expressed at higher levels in tetraploid than in diploid rice, which is concurrent with increased jasmonoyl isoleucine (JA-Ile) content and JA signaling to confer stress tolerance. After stress, elevated expression of stress-responsive genes in tetraploid rice can induce hypermethylation and suppression of the TEs adjacent to stress-responsive genes. These induced responses are reproducible in a recurring round of salt stress and shared between two japonica tetraploid rice lines. The data collectively suggest a feedback relationship between polyploidy-induced hypomethylation in rapid and strong stress response and stress-induced hypermethylation to repress proximal TEs and/or TE-associated stress-responsive genes. This feedback regulation may provide a molecular basis for selection to enhance adaptation of polyploid plants and crops during evolution and domestication.
Collapse
|
29
|
Mayer BF, Charron J. Transcriptional memories mediate the plasticity of cold stress responses to enable morphological acclimation in Brachypodium distachyon. THE NEW PHYTOLOGIST 2021; 229:1615-1634. [PMID: 32966623 PMCID: PMC7820978 DOI: 10.1111/nph.16945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/04/2020] [Indexed: 05/03/2023]
Abstract
Plants that successfully acclimate to stress can resume growth under stressful conditions. The grass Brachypodium distachyon can grow a cold-adaptive morphology during cold acclimation. Studies on transcriptional memory (TM) have revealed that plants can be primed for stress by adjusting their transcriptional responses, but the function of TM in stress acclimation is not well understood. We investigated the function of TM during cold acclimation in B. distachyon. Quantitative polymerase chain reaction (qPCR), RNA-seq and chromatin immunoprecipitation qPCR analyses were performed on plants exposed to repeated episodes of cold to characterize the presence and stability of TM during the stress and growth responses of cold acclimation. Transcriptional memory mainly dampened stress responses as growth resumed and as B. distachyon became habituated to cold stress. Although permanent on vernalization gene VRN1, TMs were short-term and reversible on cold-stress genes. Growing under cold conditions also coincided with the acquisition of new and targeted cold-induced transcriptional responses. Overall, TM provided plasticity to cold stress responses during cold acclimation in B. distachyon, leading to stress habituation, acquired stress responses, and resumed growth. Our study shows that chromatin-associated TMs are involved in tuning plant responses to environmental change and, as such, regulate both stress and developmental components that characterize cold-climate adaptation in B. distachyon.
Collapse
Affiliation(s)
- Boris F. Mayer
- Department of Plant ScienceMcGill University21, 111 LakeshoreSainte‐Anne‐de‐BellevueCanada
| | - Jean‐Benoit Charron
- Department of Plant ScienceMcGill University21, 111 LakeshoreSainte‐Anne‐de‐BellevueCanada
| |
Collapse
|
30
|
Zhai Q, Deng L, Li C. Mediator subunit MED25: at the nexus of jasmonate signaling. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:78-86. [PMID: 32777679 DOI: 10.1016/j.pbi.2020.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 05/26/2023]
Abstract
Upon perception by plant cells, the immunity hormone jasmonate (JA) triggers a genome-wide transcriptional program, which is largely regulated by the master transcription factor MYC2. The function of MYC2 depends on its physical and functional interaction with MED25, a subunit of the Mediator transcriptional co-activator complex. In addition to interacting with MYC2 and RNA polymerase II for preinitiation complex formation, MED25 also interacts with multiple genetic and epigenetic regulators and controls almost every step of MYC2-dependent transcription, including nuclear hormone receptor activation, epigenetic regulation, mRNA processing, transcriptional termination, and chromatin loop formation. These diversified functions have ascribed MED25 to a signal-processing and signal-integrating center during JA-regulated gene transcription. This review is focused on the interactions of MED25 with diverse transcriptional regulators and how these mechanistic interactions contribute to the initiation, amplification, and fine tuning of the transcriptional output of JA signaling.
Collapse
Affiliation(s)
- Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Bäurle I, Trindade I. Chromatin regulation of somatic abiotic stress memory. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5269-5279. [PMID: 32076719 DOI: 10.1093/jxb/eraa098] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/19/2020] [Indexed: 05/20/2023]
Abstract
In nature, plants are often subjected to periods of recurrent environmental stress that can strongly affect their development and productivity. To cope with these conditions, plants can remember a previous stress, which allows them to respond more efficiently to a subsequent stress, a phenomenon known as priming. This ability can be maintained at the somatic level for a few days or weeks after the stress is perceived, suggesting that plants can store information of a past stress during this recovery phase. While the immediate responses to a single stress event have been extensively studied, knowledge on priming effects and how stress memory is stored is still scarce. At the molecular level, memory of a past condition often involves changes in chromatin structure and organization, which may be maintained independently from transcription. In this review, we will summarize the most recent developments in the field and discuss how different levels of chromatin regulation contribute to priming and plant abiotic stress memory.
Collapse
Affiliation(s)
- Isabel Bäurle
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Inês Trindade
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
32
|
Wang L, Wu Y, Tian Y, Dai T, Xie G, Xu Y, Chen F. Overexpressing Jatropha curcas CBF2 in Nicotiana benthamiana improved plant tolerance to drought stress. Gene 2020; 742:144588. [PMID: 32179173 DOI: 10.1016/j.gene.2020.144588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Jatropha curcas is an important bioenergy oil plant, and often planted on barren land to save the area of arable land. It is significant to improve the adaptability of J. curcas to various abiotic stresses. In the present study, we transferred a J. curcas gene, encoding a CBF2 transcription factor, into Nicotiana benthamiana. Under drought treatment, the JcCBF2 transgenic lines showed improved survival rate, leaf water retention and active oxygen scavenging capacity, but reduced photosynthesis and transpiration rate, suggesting that JcCBF2 played an important role in improving plant drought tolerance. Overexpressing JcCBF2 decreased leaf area and increased leaf thickness. To explore the possible mechanisms for the change of leaf anatomical structure, the leaves of wild-type and overexpression lines under drought stress were RNA sequenced. Genes involved in the plant hormones signal transduction were found to be enriched. Cytokinin and indole-3-acetic acid were the major plant hormones whose abundance increased. Quantitative RT-PCR analysis showed expression of NbMYB21, NbMYB86 and NbMYB44 and both abscisic acid (ABA) and jasmonic acid (JA) related genes in the overexpression lines were increased under drought stress. These results indicated that JcCBF2 was able to positively regulate plant drought response by changing the leaf anatomical structure and possibly through JA and ABA signalling pathways. Our work may help us to understand the drought tolerant mechanism.
Collapse
Affiliation(s)
- Linghui Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yan Wu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yinshuai Tian
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Tingwei Dai
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Guilan Xie
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Ying Xu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Fang Chen
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
33
|
Crespo-Salvador Ó, Sánchez-Giménez L, López-Galiano MJ, Fernández-Crespo E, Schalschi L, García-Robles I, Rausell C, Real MD, González-Bosch C. The Histone Marks Signature in Exonic and Intronic Regions Is Relevant in Early Response of Tomato Genes to Botrytis cinerea and in miRNA Regulation. PLANTS 2020; 9:plants9030300. [PMID: 32121544 PMCID: PMC7154849 DOI: 10.3390/plants9030300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
Research into the relationship between epigenetic regulation and resistance to biotic stresses provides alternatives for plant protection and crop improvement. To unravel the mechanisms underlying tomato responses to Botrytis cinerea, we performed a chromatin immunoprecipitation (ChIP) analysis showing the increase in H3K9ac mark along the early induced genes SlyDES, SlyDOX1, and SlyLoxD encoding oxylipin-pathway enzymes, and SlyWRKY75 coding for a transcriptional regulator of hormonal signaling. This histone mark showed a more distinct distribution than the previously studied H3K4me3. The RNAPol-ChIP analysis reflected the actual gene transcription associated with increased histone modifications. A different pattern of marks in the oxylipin-related genes against P. syringae supported a pathogen-specific profile, while no significant differences occurred in SlyWRKY75. The epigenetic regulation of SlyWRKY75 by the intron-binding miR1127-3p was supported by the presence of SlyWRKY75 pre-mRNA in control plants. Interestingly, mRNA was found to be accumulated in response to B. cinerea and P. syringae, while reduction in miRNA only occurred against B. cinerea. The intronic region presented a similar pattern of marks than the rest of the gene in both pathosystems, except for H3K4me3 in the miRNA binding site upon B. cinerea. We located the gene encoding Sly-miR1127-3p, which presented reduced H3K4me3 on its promoter against B. cinerea.
Collapse
Affiliation(s)
- Óscar Crespo-Salvador
- Department of Biochemistry and Molecular Biology, University of Valencia, Agrochemical and Food Technology Institute (CSIC), 46980 Paterna, Valencia, Spain; (Ó.C.-S.); (L.S.-G.)
| | - Lorena Sánchez-Giménez
- Department of Biochemistry and Molecular Biology, University of Valencia, Agrochemical and Food Technology Institute (CSIC), 46980 Paterna, Valencia, Spain; (Ó.C.-S.); (L.S.-G.)
| | - Mª José López-Galiano
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (M.J.L.-G.); (I.G.-R.); (C.R.); (M.D.R.)
| | - Emma Fernández-Crespo
- Plant Physiology Area, Biochemistry and Biotechnology Group, Department CAMN, University Jaume I, 12071 Castellón, Spain; (E.F.-C.); (L.S.)
| | - Loredana Schalschi
- Plant Physiology Area, Biochemistry and Biotechnology Group, Department CAMN, University Jaume I, 12071 Castellón, Spain; (E.F.-C.); (L.S.)
| | - Inmaculada García-Robles
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (M.J.L.-G.); (I.G.-R.); (C.R.); (M.D.R.)
| | - Carolina Rausell
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (M.J.L.-G.); (I.G.-R.); (C.R.); (M.D.R.)
| | - M Dolores Real
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (M.J.L.-G.); (I.G.-R.); (C.R.); (M.D.R.)
| | - Carmen González-Bosch
- Department of Biochemistry and Molecular Biology, University of Valencia, Agrochemical and Food Technology Institute (CSIC), 46980 Paterna, Valencia, Spain; (Ó.C.-S.); (L.S.-G.)
- Correspondence: ; Tel.: +34-963900022
| |
Collapse
|
34
|
Learning of Signaling Networks: Molecular Mechanisms. Trends Biochem Sci 2020; 45:284-294. [PMID: 32008897 DOI: 10.1016/j.tibs.2019.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/28/2019] [Accepted: 12/31/2019] [Indexed: 01/03/2023]
Abstract
Molecular processes of neuronal learning have been well described. However, learning mechanisms of non-neuronal cells are not yet fully understood at the molecular level. Here, we discuss molecular mechanisms of cellular learning, including conformational memory of intrinsically disordered proteins (IDPs) and prions, signaling cascades, protein translocation, RNAs [miRNA and long noncoding RNA (lncRNA)], and chromatin memory. We hypothesize that these processes constitute the learning of signaling networks and correspond to a generalized Hebbian learning process of single, non-neuronal cells, and we discuss how cellular learning may open novel directions in drug design and inspire new artificial intelligence methods.
Collapse
|
35
|
Jasmonates: Mechanisms and functions in abiotic stress tolerance of plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101210] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Avramova Z. Defence-related priming and responses to recurring drought: Two manifestations of plant transcriptional memory mediated by the ABA and JA signalling pathways. PLANT, CELL & ENVIRONMENT 2019; 42:983-997. [PMID: 30299553 DOI: 10.1111/pce.13458] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 05/20/2023]
Abstract
Collective evidence from agricultural practices and from scientific research has demonstrated that plants can alter their phenotypic responses to repeated biotic and abiotic stresses or their elicitors. A coordinated reaction at the organismal, cellular, and genome levels has suggested that plants can "remember" an earlier stress and modify their future responses, accordingly. Stress memory may increase a plant's survival chances by improving its tolerance/avoidance abilities and may provide a mechanism for acclimation and adaptation. Understanding the mechanisms that regulate plant stress memory is not only an intellectually challenging topic but has important implications for agricultural practices as well. Here, I focus exclusively on specific aspects of the transcription memory in response to recurring dehydration stresses and the memory-type responses to insect damage in a process known as "priming." The questions discussed are (a) whether/how the two memory phenomena are connected at the level of transcriptional regulation; (b) how differential transcription is achieved mechanistically under a repeated stress; and (c) whether similar molecular and/or epigenetic mechanisms are involved. Possible biological relevance of transcriptional stress memory and its preservation in plant evolution are also discussed.
Collapse
Affiliation(s)
- Zoya Avramova
- School of Biological Sciences, UNL, Lincoln, Nebraska
| |
Collapse
|
37
|
Zhou Y, Zhu H, He S, Zhai H, Zhao N, Xing S, Wei Z, Liu Q. A Novel Sweetpotato Transcription Factor Gene IbMYB116 Enhances Drought Tolerance in Transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1025. [PMID: 31475022 PMCID: PMC6704235 DOI: 10.3389/fpls.2019.01025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/22/2019] [Indexed: 05/17/2023]
Abstract
Several members of the MYB transcription factor family have been found to regulate growth, developmental processes, metabolism, and biotic and abiotic stress responses in plants. However, the role of MYB116 in plants is still unclear. In this study, a MYB transcription factor gene IbMYB116 was cloned and characterized from the sweetpotato [Ipomoea batatas (L.) Lam.] line Xushu55-2, a line that is considered to be drought resistant. We show here that IbMYB116 is a nuclear protein and that it possesses a transactivation domain at the C terminus. This gene exhibited a high expression level in the leaf tissues of Xushu55-2 and was strongly induced by PEG6000 and methyl-jasmonate (MeJA). The IbMYB116-overexpressing Arabidopsis plants showed significantly enhanced drought tolerance, increased MeJA content, and a decreased H2O2 level under drought stress. The overexpression of IbMYB116 in Arabidopsis systematically upregulated jasmonic acid (JA) biosynthesis genes and activated the JA signaling pathway as well as reactive oxygen species (ROS)-scavenging system genes under drought stress conditions. The overall results suggest that the IbMYB116 gene might enhance drought tolerance by activating a ROS-scavenging system through the JA signaling pathway in transgenic Arabidopsis. These findings reveal, for the first time, the crucial role of IbMYB116 in the drought tolerance of plants.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Shaozhen He
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Ning Zhao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shihan Xing
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zihao Wei
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Qingchang Liu,
| |
Collapse
|
38
|
Cheng CH, Shen BN, Shang QW, Liu LYD, Peng KC, Chen YH, Chen FF, Hu SF, Wang YT, Wang HC, Wu HY, Lo CT, Lin SS. Gene-to-Gene Network Analysis of the Mediation of Plant Innate Immunity by the Eliciting Plant Response-Like 1 (Epl1) Elicitor of Trichoderma formosa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:683-691. [PMID: 29436965 DOI: 10.1094/mpmi-01-18-0002-ta] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A new clade, Trichoderma formosa, secretes eliciting plant response-like 1 (Epl1), a small peptide elicitor that stimulates plant immunity. Nicotiana benthamiana pretreated with Epl1 for 3 days developed immunity against Tomato mosaic virus (ToMV) infection. The transcriptome profiles of T. formosa and N. benthamiana were obtained by deep sequencing; the transcript of Epl1 is 736 nt in length and encodes a 12-kDa peptide. Identifying critical genes in Epl1-mediated immunity was challenging due to high similarity between the transcriptome expression profiles of Epl1-treated and ToMV-infected N. benthamiana samples. Therefore, an efficient bioinformatics data mining approach was used for high-throughput transcriptomic assays in this study. We integrated gene-to-gene network analysis into the ContigViews transcriptome database, and genes related to jasmonic acid and ethylene signaling, salicylic acid signaling, leucine-rich repeats, transcription factors, and histone variants were hubs in the gene-to-gene networks. In this study, the Epl1 of T. formosa triggers plant immunity against various pathogen infections. Moreover, we demonstrated that high-throughput data mining and gene-to-gene network analysis can be used to identify critical candidate genes for further studies on the mechanisms of plant immunity.
Collapse
Affiliation(s)
- Chi-Hua Cheng
- 1 Department of Biotechnology, National Formosa University, Yulin, Taiwan
| | - Bing-Nan Shen
- 2 Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Qian-Wen Shang
- 2 Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Kou-Cheng Peng
- 4 Institute of Biotechnology, National Dong-Hwa University, Hualien, Taiwan
| | - Yan-Huey Chen
- 2 Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Fang-Fang Chen
- 2 Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Sin-Fen Hu
- 2 Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yu-Tai Wang
- 5 National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Hao-Ching Wang
- 6 Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Yi Wu
- 7 Instrumentation Center, National Taiwan University
| | - Chaur-Tsuen Lo
- 1 Department of Biotechnology, National Formosa University, Yulin, Taiwan
| | - Shih-Shun Lin
- 2 Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- 5 National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
- 8 Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan; and
- 9 Center of Biotechnology, National Taiwan University
| |
Collapse
|
39
|
González-Bosch C. Priming plant resistance by activation of redox-sensitive genes. Free Radic Biol Med 2018; 122:171-180. [PMID: 29277443 DOI: 10.1016/j.freeradbiomed.2017.12.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
Abstract
Priming by natural compounds is an interesting alternative for sustainable agriculture, which also contributes to explore the molecular mechanisms associated with stress tolerance. Although hosts and stress types eventually determine the mode of action of plant-priming agents, it highlights that many of them act on redox signalling. These include vitamins thiamine, riboflavin and quercetin; organic acids like pipecolic, azelaic and hexanoic; volatile organic compounds such as methyl jasmonate; cell wall components like chitosans and oligogalacturonides; H2O2, etc. This review provides data on how priming inducers promote stronger and faster responses to stress by modulating the oxidative environment, and interacting with signalling pathways mediated by salycilic acid, jasmonic acid and ethylene. The histone modifications involved in priming that affect the transcription of defence-related genes are also discussed. Despite the evolutionary distance between plants and animals, and the fact that the plant innate immunity takes place in each plant cell, they show many similarities in the molecular mechanisms that underlie pathogen perception and further signalling to activate defence responses. This review highlights the similarities between priming through redox signalling in plants and in mammalian cells. The strategies used by pathogens to manipulate the host´s recognition and the further activation of defences also show similarities in both kingdoms. Moreover, phytochemicals like sulforaphane and 12-oxo-phytodienoic acid prime both plant and mammalian responses by activating redox-sensitive genes. Hence research data into the priming of plant defences can provide additional information and a new viewpoint for priming mammalian defence, and vice versa.
Collapse
Affiliation(s)
- Carmen González-Bosch
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Instituto de Agroquímica y Tecnología de Alimentos (IATA/CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
40
|
López-Galiano MJ, González-Hernández AI, Crespo-Salvador O, Rausell C, Real MD, Escamilla M, Camañes G, García-Agustín P, González-Bosch C, García-Robles I. Epigenetic regulation of the expression of WRKY75 transcription factor in response to biotic and abiotic stresses in Solanaceae plants. PLANT CELL REPORTS 2018; 37:167-176. [PMID: 29079899 DOI: 10.1007/s00299-017-2219-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/05/2017] [Indexed: 05/12/2023]
Abstract
SlyWRKY75: gene expression was induced in response to biotic stresses, especially in Botrytis cinerea-infected tomato plants, in which Sly-miR1127-3p is a putative SlyWRKY75 regulator and epigenetic marks were detected. WRKY75 transcription factor involved in Pi homeostasis was recently found also induced in defense against necrotrophic pathogens. In this study, we analyzed by RT-qPCR the expression of SlyWRKY75 gene in tomato plants in response to abiotic stresses (drought or heat) and biotic stresses (Colorado potato beetle larvae infestation, Pseudomonas syringae or Botrytis cinerea infection) being only differentially expressed following biotic stresses, especially upon B. cinerea infection (55-fold induction). JA and JA-Ile levels were significantly increased in tomato plants under biotic stresses compared with control plants, indicating that SlyWRKY75 might be a transcriptional regulator of the JA pathway. The contribution of miRNAs and epigenetic molecular mechanisms to the regulation of this gene in B. cinerea-infected tomato plants was explored. We identified a putative Sly-miR1127-3p miRNA predicted to bind the intronic region of the SlyWRKY75 genomic sequence. Sly-miR1127-3p miRNA was repressed in infected plants (0.4-fold) supporting that it might act as an epigenetic regulation factor of SlyWRKY75 gene expression rather than via the post-transcriptional mechanisms of canonical miRNAs. It has been proposed that certain miRNAs can mediate DNA methylation in the plant nucleus broadening miRNA functions with transcriptional gene silencing by targeting intron-containing pre-mRNAs. Histone modifications analysis by chromatin immunoprecipitation (ChIP) demonstrated the presence of the activator histone modification H3K4me3 on SlyWRKY75 transcription start site and gene body. The induction of this gene in response to B. cinerea correlates with the presence of an activator mark. Thus, miRNAs and chromatin modifications might cooperate as epigenetic factors to modulate SlyWRKY75 gene expression.
Collapse
Affiliation(s)
- María José López-Galiano
- Department of Genetics, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Ana I González-Hernández
- Plant Physiology Area, Biochemistry and Biotechnology Laboratory, Department CAMN, University Jaume I, 12071, Castellón, Spain
| | - Oscar Crespo-Salvador
- Department of Biochemistry and Molecular Biology, University of Valencia, IATA (CSIC), 46980, Paterna, Valencia, Spain
| | - Carolina Rausell
- Department of Genetics, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - M Dolores Real
- Department of Genetics, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Mónica Escamilla
- Department of Biochemistry and Molecular Biology, University of Valencia, IATA (CSIC), 46980, Paterna, Valencia, Spain
| | - Gemma Camañes
- Plant Physiology Area, Biochemistry and Biotechnology Laboratory, Department CAMN, University Jaume I, 12071, Castellón, Spain
| | - Pilar García-Agustín
- Plant Physiology Area, Biochemistry and Biotechnology Laboratory, Department CAMN, University Jaume I, 12071, Castellón, Spain
| | - Carmen González-Bosch
- Department of Biochemistry and Molecular Biology, University of Valencia, IATA (CSIC), 46980, Paterna, Valencia, Spain
| | - Inmaculada García-Robles
- Department of Genetics, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
41
|
Crespo-Salvador Ó, Escamilla-Aguilar M, López-Cruz J, López-Rodas G, González-Bosch C. Determination of histone epigenetic marks in Arabidopsis and tomato genes in the early response to Botrytis cinerea. PLANT CELL REPORTS 2018; 37:153-166. [PMID: 29119291 DOI: 10.1007/s00299-017-2218-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/05/2017] [Indexed: 05/25/2023]
Abstract
Determination of histone epigenetic marks in Arabidopsis and tomato genes in the early response to Botrytis cinerea may contribute to find biomarkers of the early detection of this devastating pathogen. Recent studies have linked epigenetic modifications with plant responses to biotic stresses. Information about specific histone marks upon necrotrophic pathogens is scarce. Here we wondered whether the altered responsiveness of specific genes in plants infected with Botrytis cinerea was associated with changes in chromatin structure. We performed a chromatin immunoprecipitation analysis that obtained differential epigenetic signature of activating marks H3K4me3, H3K9ac, and the repressor one H3K27me3 on both the promoter and the body of the highly induced PR1 in Arabidopsis plants infected with B. cinerea at 24 and 33 h after inoculation. We also determined the histone marks' profile in two differentially expressed genes in response to B. cinerea, as well as to oxidative stress, given its relevance in this infection. These are both the induced CYP71A13, which encodes a cytochrome P450 involved in camalexin synthesis, and is essential against this necrotroph and the repressed EXL7 (Exordium-like 1). We also adapted our protocol in tomato plants infected with B. cinerea. At 24 hpi, H3K4me3 level increased on the promoter and at different locations of the body of the genes induced upon B. cinerea, including DES (divinyl ethyl synthase), LoxD (lipoxygenase D), DOX1 (α-dioxygenase 1), PR2 (pathogenesis-related protein2), WRKY53 and WRKY33. The histone modifications determined herein will allow future studies on epigenetic marks and their transgenerational inheritance in plants infected with B. cinerea. In addition, the analyzed genes are potential biomarkers of B. cinerea infection that could contribute to its early detection in tomato and related crops.
Collapse
Affiliation(s)
- Óscar Crespo-Salvador
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, 46980, Paterna, Valencia, Spain
| | - Mónica Escamilla-Aguilar
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, 46980, Paterna, Valencia, Spain
| | - Jaime López-Cruz
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, 46980, Paterna, Valencia, Spain
| | - Gerardo López-Rodas
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Dr. Moliner 50, Burjassot, Valencia, Spain
- Institute of health research INCLIVA, Valencia, Spain
| | - Carmen González-Bosch
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
42
|
Dhakarey R, Raorane ML, Treumann A, Peethambaran PK, Schendel RR, Sahi VP, Hause B, Bunzel M, Henry A, Kohli A, Riemann M. Physiological and Proteomic Analysis of the Rice Mutant cpm2 Suggests a Negative Regulatory Role of Jasmonic Acid in Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:1903. [PMID: 29250082 PMCID: PMC5715382 DOI: 10.3389/fpls.2017.01903] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/20/2017] [Indexed: 05/18/2023]
Abstract
It is widely known that numerous adaptive responses of drought-stressed plants are stimulated by chemical messengers known as phytohormones. Jasmonic acid (JA) is one such phytohormone. But there are very few reports revealing its direct implication in drought related responses or its cross-talk with other phytohormones. In this study, we compared the morpho-physiological traits and the root proteome of a wild type (WT) rice plant with its JA biosynthesis mutant coleoptile photomorphogenesis 2 (cpm2), disrupted in the allene oxide cyclase (AOC) gene, for insights into the role of JA under drought. The mutant had higher stomatal conductance, higher water use efficiency and higher shoot ABA levels under severe drought as compared to the WT. Notably, roots of cpm2 were better developed compared to the WT under both, control and drought stress conditions. Root proteome was analyzed using the Tandem Mass Tag strategy to better understand this difference at the molecular level. Expectedly, AOC was unique but notably highly abundant under drought in the WT. Identification of other differentially abundant proteins (DAPs) suggested increased energy metabolism (i.e., increased mobilization of resources) and reactive oxygen species scavenging in cpm2 under drought. Additionally, various proteins involved in secondary metabolism, cell growth and cell wall synthesis were also more abundant in cpm2 roots. Proteome-guided transcript, metabolite, and histological analyses provided further insights into the favorable adaptations and responses, most likely orchestrated by the lack of JA, in the cpm2 roots. Our results in cpm2 are discussed in the light of JA crosstalk to other phytohormones. These results together pave the path for understanding the precise role of JA during drought stress in rice.
Collapse
Affiliation(s)
- Rohit Dhakarey
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
- International Rice Research Institute, Los Baños, Philippines
| | - Manish L. Raorane
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
- International Rice Research Institute, Los Baños, Philippines
| | - Achim Treumann
- Newcastle University Protein and Proteome Analysis, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | - Rachel R. Schendel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Vaidurya P. Sahi
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Bettina Hause
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Amelia Henry
- International Rice Research Institute, Los Baños, Philippines
| | - Ajay Kohli
- International Rice Research Institute, Los Baños, Philippines
| | - Michael Riemann
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
43
|
Differential expression by chromatin modifications of alcohol dehydrogenase 1 of Chorispora bungeana in cold stress. Gene 2017; 636:1-16. [PMID: 28912063 DOI: 10.1016/j.gene.2017.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/03/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
Epigenetic modifications regulate plant genes to cope with a variety of environmental stresses. Chorispora bungeana is an alpine subnival plant with strong tolerance to multiple abiotic stresses, especially cold stress. In this study, we characterized the alcohol dehydrogenase 1 gene from Chorispora bungeana, CbADH1, that is up-regulated in cold conditions. Overexpression of CbADH1 in Arabidopsis thaliana improved cold tolerance, as indicated by a decreased lethal temperature (LT50). Chromatin immunoprecipitation assays showed that histone H3 is removed from the promoter region and the middle-coding region of the gene. H3K9 acetylation and H3K4 trimethylation increased throughout the gene and in the proximal promoter region, respectively. Moreover, increased Ser5P and Ser2P polymerase II accumulation further indicated changes in the transcription initiation and elongation of CbADH1 were due to the cold stress. Taken together, our results suggested that CbADH1 is highly expressed during cold stress, and is regulated by epigenetic modifications. This study expands our understanding of the regulation of gene expression by epigenetic modifications in response to environmental cues.
Collapse
|
44
|
Avramova Z. The jasmonic acid-signalling and abscisic acid-signalling pathways cross talk during one, but not repeated, dehydration stress: a non-specific 'panicky' or a meaningful response? PLANT, CELL & ENVIRONMENT 2017; 40:1704-1710. [PMID: 28447364 DOI: 10.1111/pce.12967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
Experiencing diverse and recurring biotic and abiotic stresses throughout life, plants have evolved mechanisms to respond, survive and, eventually, adapt to changing habitats. The initial response to drought involves a large number of genes that are involved also in response to other stresses. According to current models, this initial response is non-specific, becoming stress-specific only at later time points. The question, then, is whether non-specific activation of various stress-signalling systems leading to the expression of numerous stress-regulated genes is a false-alarm (panicky) response or whether it has biologically relevant consequences for the plant. Here, it is argued that the initial activation of genes associated other stresses reflects an important event during which stress-specific mechanisms are generated to prevent subsequent activation of non-drought signalling pathways. How plants discriminate between a first and a repeated dehydration stress and how repression of non-drought specific genes is achieved will be discussed on the example of jasmonic acid-associated Arabidopsis genes activated by a first, but not subsequent, dehydration stresses. Revealing how expression of various biotic/abiotic stress responding genes is prevented under recurring drought spells may be critical for our understanding of how plants respond to dynamically changing environments.
Collapse
Affiliation(s)
- Zoya Avramova
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| |
Collapse
|
45
|
Kazan K. The Multitalented MEDIATOR25. FRONTIERS IN PLANT SCIENCE 2017; 8:999. [PMID: 28659948 PMCID: PMC5467580 DOI: 10.3389/fpls.2017.00999] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/26/2017] [Indexed: 05/19/2023]
Abstract
The multi-subunit Mediator complex, which links DNA-bound transcription factors to RNA Pol II during transcription, is an essential regulator of gene expression in all eukaryotes. Individual subunits of the Mediator complex integrate numerous endogenous and exogenous signals. In this paper, diverse regulatory functions performed by MEDIATOR25 (MED25), one of the subunits of the plant Mediator complex are reviewed. MED25 was first identified as a regulator of flowering time and named PHYTOCHROME AND FLOWERING TIME1 (PFT1). Since then, MED25 has been implicated in a range of other plant functions that vary from hormone signaling (JA, ABA, ethylene, and IAA) to biotic and abiotic stress tolerance and plant development. MED25 physically interacts with transcriptional activators (e.g., AP2/ERFs, MYCs, and ARFs), repressors (e.g., JAZs and Aux/IAAs), and other Mediator subunits (MED13 and MED16). In addition, various genetic and epigenetic interactions involving MED25 have been reported. These features make MED25 one of the most multifunctional Mediator subunits and provide new insights into the transcriptional control of gene expression in plants.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, BrisbaneQLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, The University of Queensland, BrisbaneQLD, Australia
- *Correspondence: Kemal Kazan,
| |
Collapse
|
46
|
Liu N, Staswick PE, Avramova Z. Memory responses of jasmonic acid-associated Arabidopsis genes to a repeated dehydration stress. PLANT, CELL & ENVIRONMENT 2016; 39:2515-2529. [PMID: 27451106 DOI: 10.1111/pce.12806] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 05/22/2023]
Abstract
Dehydration stress activates numerous genes co-regulated by diverse signaling pathways. Upon repeated exposures, however, a subset of these genes does not respond maintaining instead transcription at their initial pre-stressed levels ('revised-response' genes). Most of these genes are involved in jasmonic acid (JA) biosynthesis, JA-signaling and JA-mediated stress responses. How these JA-associated genes are regulated to provide different responses to similar dehydration stresses is an enigma. Here, we investigate molecular mechanisms that contribute to this transcriptional behavior. The memory-mechanism is stress-specific: one exposure to dehydration stress or to abscisic acid (ABA) is required to prevent transcription in the second. Both ABA-mediated and JA-mediated pathways are critical for the activation of these genes, but the two signaling pathways interact differently during a single or multiple encounters with dehydration stress. Synthesis of JA during the first (S1) but not the second dehydration stress (S2) accounts for the altered transcriptional responses. We propose a model for these memory responses, wherein lack of MYC2 and of JA synthesis in S2 is responsible for the lack of expression of downstream genes. The similar length of the memory displayed by different memory-type genes suggests biological relevance for transcriptional memory as a gene-regulating mechanism during recurring bouts of drought.
Collapse
Affiliation(s)
- Ning Liu
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Paul E Staswick
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Zoya Avramova
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|