1
|
Quan S, Huang H. Epigenetic contribution to cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:1-25. [PMID: 39179345 DOI: 10.1016/bs.ircmb.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Epigenetics has transformed our understanding of cancer by revealing how changes in gene activity, which do not alter the DNA itself, can initiate and progress the disease. These changes include adjustments in DNA methylation, histone configuration, and non-coding RNA activity. For instance, DNA methylation can inactivate genes that typically protect against cancer, leading to broader genomic instability. Histone modifications can alter how tightly DNA is wound, influencing which genes are active or silenced; while non-coding RNAs can interfere with the messages that direct protein production, impacting cancer-related processes. Unlike genetic mutations, which are permanent and irreversible, epigenetic changes provide a malleable target for therapeutic intervention, allowing potentially reversible adjustments to gene expression patterns. This flexibility is essential in the complex landscape of cancer where static genetic solutions may be insufficient. Additionally, epigenetics bridges the gap between genetic predispositions and environmental influences on cancer, offering a comprehensive framework for understanding how lifestyle factors and external exposures impact cancer risk and progression. The integration of epigenetics into cancer research not only enhances our understanding of the disease but also opens innovative avenues for intervention that were previously unexplored in traditional genetic-focused studies. Technologies like advanced sequencing and precise epigenetic modification are paving the way for early cancer detection and more personalized treatment approaches, highlighting the critical role of epigenetics in modern cancer care.
Collapse
Affiliation(s)
- Songhua Quan
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hao Huang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
2
|
Harris JM, Magri A, Faria AR, Tsukuda S, Balfe P, Wing PAC, McKeating JA. Oxygen-dependent histone lysine demethylase 4 restricts hepatitis B virus replication. J Biol Chem 2024; 300:105724. [PMID: 38325742 PMCID: PMC10914488 DOI: 10.1016/j.jbc.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
Mammalian cells have evolved strategies to regulate gene expression when oxygen is limited. Hypoxia-inducible factors (HIF) are the major transcriptional regulators of host gene expression. We previously reported that HIFs bind and activate hepatitis B virus (HBV) DNA transcription under low oxygen conditions; however, the global cellular response to low oxygen is mediated by a family of oxygenases that work in concert with HIFs. Recent studies have identified a role for chromatin modifiers in sensing cellular oxygen and orchestrating transcriptional responses, but their role in the HBV life cycle is as yet undefined. We demonstrated that histone lysine demethylase 4 (KDM4) can restrict HBV, and pharmacological or oxygen-mediated inhibition of the demethylase increases viral RNAs derived from both episomal and integrated copies of the viral genome. Sequencing studies demonstrated that KDM4 is a major regulator of the hepatic transcriptome, which defines hepatocellular permissivity to HBV infection. We propose a model where HBV exploits cellular oxygen sensors to replicate and persist in the liver. Understanding oxygen-dependent pathways that regulate HBV infection will facilitate the development of physiologically relevant cell-based models that support efficient HBV replication.
Collapse
Affiliation(s)
- James M Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ana Rita Faria
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter A C Wing
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Verdikt R, Thienpont B. Epigenetic remodelling under hypoxia. Semin Cancer Biol 2024; 98:1-10. [PMID: 38029868 DOI: 10.1016/j.semcancer.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Hypoxia is intrinsic to tumours and contributes to malignancy and metastasis while hindering the efficiency of existing treatments. Epigenetic mechanisms play a crucial role in the regulation of hypoxic cancer cell programs, both in the initial phases of sensing the decrease in oxygen levels and during adaptation to chronic lack of oxygen. During the latter, the epigenetic regulation of tumour biology intersects with hypoxia-sensitive transcription factors in a complex network of gene regulation that also involves metabolic reprogramming. Here, we review the current literature on the epigenetic control of gene programs in hypoxic cancer cells. We highlight common themes and features of such epigenetic remodelling and discuss their relevance for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Roxane Verdikt
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Bernard Thienpont
- Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium; KU Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Batie M, Fasanya T, Kenneth NS, Rocha S. Oxygen-regulated post-translation modifications as master signalling pathway in cells. EMBO Rep 2023; 24:e57849. [PMID: 37877678 DOI: 10.15252/embr.202357849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Oxygen is essential for viability in mammalian organisms. However, cells are often exposed to changes in oxygen availability, due to either increased demand or reduced oxygen supply, herein called hypoxia. To be able to survive and/or adapt to hypoxia, cells activate a variety of signalling cascades resulting in changes to chromatin, gene expression, metabolism and viability. Cellular signalling is often mediated via post-translational modifications (PTMs), and this is no different in response to hypoxia. Many enzymes require oxygen for their activity and oxygen can directly influence several PTMS. Here, we review the direct impact of changes in oxygen availability on PTMs such as proline, asparagine, histidine and lysine hydroxylation, lysine and arginine methylation and cysteine dioxygenation, with a focus on mammalian systems. In addition, indirect hypoxia-dependent effects on phosphorylation, ubiquitination and sumoylation will also be discussed. Direct and indirect oxygen-regulated changes to PTMs are coordinated to achieve the cell's ultimate response to hypoxia. However, specific oxygen sensitivity and the functional relevance of some of the identified PTMs still require significant research.
Collapse
Affiliation(s)
- Michael Batie
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Temitope Fasanya
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Niall S Kenneth
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sonia Rocha
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Liu Y, Zhang H, Liu Y, Zhang S, Su P, Wang L, Li Y, Liang Y, Wang X, Zhao W, Chen B, Luo D, Zhang N, Yang Q. Hypoxia-induced GPCPD1 depalmitoylation triggers mitophagy via regulating PRKN-mediated ubiquitination of VDAC1. Autophagy 2023; 19:2443-2463. [PMID: 36803235 PMCID: PMC10392732 DOI: 10.1080/15548627.2023.2182482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Mitophagy, which selectively eliminates the dysfunctional and excess mitochondria by autophagy, is crucial for cellular homeostasis under stresses such as hypoxia. Dysregulation of mitophagy has been increasingly linked to many disorders including neurodegenerative disease and cancer. Triple-negative breast cancer (TNBC), a highly aggressive breast cancer subtype, is reported to be characterized by hypoxia. However, the role of mitophagy in hypoxic TNBC as well as the underlying molecular mechanism is largely unexplored. Here, we identified GPCPD1 (glycerophosphocholine phosphodiesterase 1), a key enzyme in choline metabolism, as an essential mediator in hypoxia-induced mitophagy. Under the hypoxic condition, we found that GPCPD1 was depalmitoylated by LYPLA1, which facilitated the relocating of GPCPD1 to the outer mitochondrial membrane (OMM). Mitochondria-localized GPCPD1 could bind to VDAC1, the substrate for PRKN/PARKIN-dependent ubiquitination, thus interfering with the oligomerization of VDAC1. The increased monomer of VDAC1 provided more anchor sites to recruit PRKN-mediated polyubiquitination, which consequently triggered mitophagy. In addition, we found that GPCPD1-mediated mitophagy exerted a promotive effect on tumor growth and metastasis in TNBC both in vitro and in vivo. We further determined that GPCPD1 could serve as an independent prognostic indicator in TNBC. In conclusion, our study provides important insights into a mechanistic understanding of hypoxia-induced mitophagy and elucidates that GPCPD1 could act as a potential target for the future development of novel therapy for TNBC patients.Abbreviations: ACTB: actin beta; 5-aza: 5-azacytidine; BNIP3: BCL2 interacting protein 3; BNIP3L: BCL2 interacting protein 3 like; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; ChIP: chromatin immunoprecipitation; co-IP: co-immunoprecipitation; CQ: chloroquine; CsA: cyclosporine; DOX: doxorubicin; FIS1: fission, mitochondrial 1; FUNDC1: FUN14 domain containing 1; GPCPD1: glycerophosphocholine phosphodiesterase 1; HAM: hydroxylamine; HIF1A: hypoxia inducible factor 1 subunit alpha; HRE: hypoxia response element; IF: immunofluorescence; LB: lysis buffer; LC3B/MAP1LC3B: microtubule associated protein 1 light chain 3 beta; LC-MS: liquid chromatography-mass spectrometry; LYPLA1: lysophospholipase 1; LYPLA2: lysophospholipase 2; MDA231: MDA-MB-231; MDA468: MDA-MB-468; MFN1: mitofusin 1; MFN2: mitofusin 2; MKI67: marker of proliferation Ki-67; OCR: oxygen consumption rate; OMM: outer mitochondrial membrane; OS: overall survival; PalmB: palmostatin B; PBS: phosphate-buffered saline; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; SDS: sodium dodecyl sulfate; TOMM20: translocase of outer mitochondrial membrane 20; TNBC: triple-negative breast cancer; VBIT-4: VDAC inhibitor; VDAC1: voltage dependent anion channel 1; WT: wild type.
Collapse
Affiliation(s)
- Ying Liu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Hanwen Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Yiwei Liu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Siyue Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Peng Su
- Department of Pathology, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Weijing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Dan Luo
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
- Research Institute of Breast Cancer, Shandong University, Ji’nan, Shandong, China
| |
Collapse
|
6
|
Collier H, Albanese A, Kwok CS, Kou J, Rocha S. Functional crosstalk between chromatin and hypoxia signalling. Cell Signal 2023; 106:110660. [PMID: 36990334 DOI: 10.1016/j.cellsig.2023.110660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Eukaryotic genomes are organised in a structure called chromatin, comprising of DNA and histone proteins. Chromatin is thus a fundamental regulator of gene expression, as it offers storage and protection but also controls accessibility to DNA. Sensing and responding to reductions in oxygen availability (hypoxia) have recognised importance in both physiological and pathological processes in multicellular organisms. One of the main mechanisms controlling these responses is control of gene expression. Recent findings in the field of hypoxia have highlighted how oxygen and chromatin are intricately linked. This review will focus on mechanisms controlling chromatin in hypoxia, including chromatin regulators such as histone modifications and chromatin remodellers. It will also highlight how these are integrated with hypoxia inducible factors and the knowledge gaps that persist.
Collapse
Affiliation(s)
- Harry Collier
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Adam Albanese
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Chun-Sui Kwok
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Jiahua Kou
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Sonia Rocha
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom.
| |
Collapse
|
7
|
Kim J, Lee H, Yi SJ, Kim K. Gene regulation by histone-modifying enzymes under hypoxic conditions: a focus on histone methylation and acetylation. Exp Mol Med 2022; 54:878-889. [PMID: 35869366 PMCID: PMC9355978 DOI: 10.1038/s12276-022-00812-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Oxygen, which is necessary for sustaining energy metabolism, is consumed in many biochemical reactions in eukaryotes. When the oxygen supply is insufficient for maintaining multiple homeostatic states at the cellular level, cells are subjected to hypoxic stress. Hypoxia induces adaptive cellular responses mainly through hypoxia-inducible factors (HIFs), which are stabilized and modulate the transcription of various hypoxia-related genes. In addition, many epigenetic regulators, such as DNA methylation, histone modification, histone variants, and adenosine triphosphate-dependent chromatin remodeling factors, play key roles in gene expression. In particular, hypoxic stress influences the activity and gene expression of histone-modifying enzymes, which controls the posttranslational modification of HIFs and histones. This review covers how histone methylation and histone acetylation enzymes modify histone and nonhistone proteins under hypoxic conditions and surveys the impact of epigenetic modifications on gene expression. In addition, future directions in this area are discussed. New sequencing technologies are revealing how cells respond to hypoxia, insufficient oxygen, by managing gene activation. In multicellular organisms, gene activation is managed by how tightly a section of DNA is wound around proteins called histones; genes in tightly packed regions are inaccessible and inactive, whereas those in looser regions can be activated. Kyunghwan Kim, Sun-Ju Yi, and co-workers at Chungbuk National University in South Korea have reviewed recent data on how cells regulate gene activity under hypoxic conditions. Advances in sequencing technology have allowed genome-wide studies of how hypoxia affects DNA structure and gene activation, revealing that gene-specific modifications may be more important than genome-wide modifications. Hypoxia is implicated in several diseases, such as cancer and chronic metabolic diseases, and a better understanding of how it affects gene activation may help identify new treatments for hypoxia-related diseases.
Collapse
|
8
|
Batie M, Kenneth NS, Rocha S. Systems approaches to understand oxygen sensing: how multi-omics has driven advances in understanding oxygen-based signalling. Biochem J 2022; 479:245-257. [PMID: 35119457 PMCID: PMC8883490 DOI: 10.1042/bcj20210554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/11/2022]
Abstract
Hypoxia is a common denominator in the pathophysiology of a variety of human disease states. Insight into how cells detect, and respond to low oxygen is crucial to understanding the role of hypoxia in disease. Central to the hypoxic response is rapid changes in the expression of genes essential to carry out a wide range of functions to adapt the cell/tissue to decreased oxygen availability. These changes in gene expression are co-ordinated by specialised transcription factors, changes to chromatin architecture and intricate balances between protein synthesis and destruction that together establish changes to the cellular proteome. In this article, we will discuss the advances of our understanding of the cellular oxygen sensing machinery achieved through the application of 'omics-based experimental approaches.
Collapse
Affiliation(s)
- Michael Batie
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L697ZB, U.K
| | - Niall S. Kenneth
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L697ZB, U.K
| | - Sonia Rocha
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L697ZB, U.K
| |
Collapse
|
9
|
Schönberger K, Obier N, Romero-Mulero MC, Cauchy P, Mess J, Pavlovich PV, Zhang YW, Mitterer M, Rettkowski J, Lalioti ME, Jäcklein K, Curtis JD, Féret B, Sommerkamp P, Morganti C, Ito K, Ghyselinck NB, Trompouki E, Buescher JM, Pearce EL, Cabezas-Wallscheid N. Multilayer omics analysis reveals a non-classical retinoic acid signaling axis that regulates hematopoietic stem cell identity. Cell Stem Cell 2022; 29:131-148.e10. [PMID: 34706256 PMCID: PMC9093043 DOI: 10.1016/j.stem.2021.10.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 08/05/2021] [Accepted: 10/06/2021] [Indexed: 02/08/2023]
Abstract
Hematopoietic stem cells (HSCs) rely on complex regulatory networks to preserve stemness. Due to the scarcity of HSCs, technical challenges have limited our insights into the interplay between metabolites, transcription, and the epigenome. In this study, we generated low-input metabolomics, transcriptomics, chromatin accessibility, and chromatin immunoprecipitation data, revealing distinct metabolic hubs that are enriched in HSCs and their downstream multipotent progenitors. Mechanistically, we uncover a non-classical retinoic acid (RA) signaling axis that regulates HSC function. We show that HSCs rely on Cyp26b1, an enzyme conventionally considered to limit RA effects in the cell. In contrast to the traditional view, we demonstrate that Cyp26b1 is indispensable for production of the active metabolite 4-oxo-RA. Further, RA receptor beta (Rarb) is required for complete transmission of 4-oxo-RA-mediated signaling to maintain stem cells. Our findings emphasize that a single metabolite controls stem cell fate by instructing epigenetic and transcriptional attributes.
Collapse
Affiliation(s)
- Katharina Schönberger
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Nadine Obier
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | | | - Pierre Cauchy
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Julian Mess
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany
| | - Polina V Pavlovich
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Yu Wei Zhang
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Michael Mitterer
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Jasmin Rettkowski
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Freiburg, Germany
| | - Maria-Eleni Lalioti
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Karin Jäcklein
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Jonathan D Curtis
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Betty Féret
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 Centre National de la Recherche Scientifique (CNRS) et Université de Strasbourg (UNISTRA), U1258 Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France
| | - Pia Sommerkamp
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Norbert B Ghyselinck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 Centre National de la Recherche Scientifique (CNRS) et Université de Strasbourg (UNISTRA), U1258 Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France
| | - Eirini Trompouki
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | - Nina Cabezas-Wallscheid
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany.
| |
Collapse
|
10
|
Ardila DC, Aggarwal V, Singh M, Chattopadhyay A, Chaparala S, Sant S. Identifying Molecular Signatures of Distinct Modes of Collective Migration in Response to the Microenvironment Using Three-Dimensional Breast Cancer Models. Cancers (Basel) 2021; 13:cancers13061429. [PMID: 33804802 PMCID: PMC8004051 DOI: 10.3390/cancers13061429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary The objective of this study was to investigate the role of two microenvironmental factors, namely, tumor-intrinsic hypoxia and secretome in inducing collective migration. We utilized three-dimensional (3D) discrete-sized microtumor models, which recapitulate hallmarks of transition of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC). Tumor-intrinsic hypoxia induced directional migration in large hypoxic microtumors while secretome from large microtumors induced radial migration in non-hypoxic microtumors. This highlights the emergence phenotypic heterogeneity and plasticity in cancer cells in response to different microenvironmental stimuli. To unravel mechanisms underlying these two distinct modes of migration, we performed differential gene expression analysis of hypoxia- and secretome-induced migratory phenotypes using non-migratory, non-hypoxic microtumors as controls. We proposed unique gene signature sets related to tumor-intrinsic hypoxia, hypoxia-induced epithelial-mesenchymal transition (EMT), as well as hypoxia-induced directional migration and secretome-induced radial migration. Abstract Collective cell migration is a key feature of transition of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) among many other cancers, yet the microenvironmental factors and underlying mechanisms that trigger collective migration remain poorly understood. Here, we investigated two microenvironmental factors, tumor-intrinsic hypoxia and tumor-secreted factors (secretome), as triggers of collective migration using three-dimensional (3D) discrete-sized microtumor models that recapitulate hallmarks of DCIS-IDC transition. Interestingly, the two factors induced two distinct modes of collective migration: directional and radial migration in the 3D microtumors generated from the same breast cancer cell line model, T47D. Without external stimulus, large (600 µm) T47D microtumors exhibited tumor-intrinsic hypoxia and directional migration, while small (150 µm), non-hypoxic microtumors exhibited radial migration only when exposed to the secretome of large microtumors. To investigate the mechanisms underlying hypoxia- and secretome-induced directional vs. radial migration modes, we performed differential gene expression analysis of hypoxia- and secretome-induced migratory microtumors compared with non-hypoxic, non-migratory small microtumors as controls. We propose unique gene signature sets related to tumor-intrinsic hypoxia, hypoxia-induced epithelial-mesenchymal transition (EMT), as well as hypoxia-induced directional migration and secretome-induced radial migration. Gene Set Enrichment Analysis (GSEA) and protein-protein interaction (PPI) network analysis revealed enrichment and potential interaction between hypoxia, EMT, and migration gene signatures for the hypoxia-induced directional migration. In contrast, hypoxia and EMT were not enriched in the secretome-induced radial migration, suggesting that complete EMT may not be required for radial migration. Survival analysis identified unique genes associated with low survival rate and poor prognosis in TCGA-breast invasive carcinoma dataset from our tumor-intrinsic hypoxia gene signature (CXCR4, FOXO3, LDH, NDRG1), hypoxia-induced EMT gene signature (EFEMP2, MGP), and directional migration gene signature (MAP3K3, PI3K3R3). NOS3 was common between hypoxia and migration gene signature. Survival analysis from secretome-induced radial migration identified ATM, KCNMA1 (hypoxia gene signature), and KLF4, IFITM1, EFNA1, TGFBR1 (migration gene signature) to be associated with poor survival rate. In conclusion, our unique 3D cultures with controlled microenvironments respond to different microenvironmental factors, tumor-intrinsic hypoxia, and secretome by adopting distinct collective migration modes and their gene expression analysis highlights the phenotypic heterogeneity and plasticity of epithelial cancer cells.
Collapse
Affiliation(s)
- Diana Catalina Ardila
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.C.A.); (V.A.); (M.S.)
| | - Vaishali Aggarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.C.A.); (V.A.); (M.S.)
| | - Manjulata Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.C.A.); (V.A.); (M.S.)
| | - Ansuman Chattopadhyay
- Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA 15219, USA; (A.C.); (S.C.)
| | - Srilakshmi Chaparala
- Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA 15219, USA; (A.C.); (S.C.)
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.C.A.); (V.A.); (M.S.)
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- UPMC-Hillman Cancer Center, Pittsburgh, PA 15260, USA
- Correspondence: ; Tel.: +1-412-6489804
| |
Collapse
|
11
|
Kindrick JD, Mole DR. Hypoxic Regulation of Gene Transcription and Chromatin: Cause and Effect. Int J Mol Sci 2020; 21:E8320. [PMID: 33171917 PMCID: PMC7664190 DOI: 10.3390/ijms21218320] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022] Open
Abstract
Cellular responses to low oxygen (hypoxia) are fundamental to normal physiology and to the pathology of many common diseases. Hypoxia-inducible factor (HIF) is central to this by enhancing the transcriptional activity of many hundreds of genes. The cellular response to HIF is cell-type-specific and is largely governed by the pre-existing epigenetic landscape. Prior to activation, HIF-binding sites and the promoters of HIF-target genes are already accessible, in contact with each other through chromatin looping and display markers of activity. However, hypoxia also modulates the epigenetic environment, both in parallel to and as a consequence of HIF activation. This occurs through a combination of oxygen-sensitive changes in enzyme activity, transcriptional activation of epigenetic modifiers, and localized recruitment to chromatin by HIF and activated RNApol2. These hypoxic changes in the chromatin environment may both contribute to and occur as a consequence of transcriptional regulation. Nevertheless, they have the capacity to both modulate and extend the transcriptional response to hypoxia.
Collapse
Affiliation(s)
| | - David R. Mole
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FZ, UK;
| |
Collapse
|
12
|
Ma T, Ye Z, Wang L. Genome Wide Approaches to Identify Protein-DNA Interactions. Curr Med Chem 2020; 26:7641-7654. [PMID: 29848263 DOI: 10.2174/0929867325666180530115711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/27/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Transcription factors are DNA-binding proteins that play key roles in many fundamental biological processes. Unraveling their interactions with DNA is essential to identify their target genes and understand the regulatory network. Genome-wide identification of their binding sites became feasible thanks to recent progress in experimental and computational approaches. ChIP-chip, ChIP-seq, and ChIP-exo are three widely used techniques to demarcate genome-wide transcription factor binding sites. OBJECTIVE This review aims to provide an overview of these three techniques including their experiment procedures, computational approaches, and popular analytic tools. CONCLUSION ChIP-chip, ChIP-seq, and ChIP-exo have been the major techniques to study genome- wide in vivo protein-DNA interaction. Due to the rapid development of next-generation sequencing technology, array-based ChIP-chip is deprecated and ChIP-seq has become the most widely used technique to identify transcription factor binding sites in genome-wide. The newly developed ChIP-exo further improves the spatial resolution to single nucleotide. Numerous tools have been developed to analyze ChIP-chip, ChIP-seq and ChIP-exo data. However, different programs may employ different mechanisms or underlying algorithms thus each will inherently include its own set of statistical assumption and bias. So choosing the most appropriate analytic program for a given experiment needs careful considerations. Moreover, most programs only have command line interface so their installation and usage will require basic computation expertise in Unix/Linux.
Collapse
Affiliation(s)
- Tao Ma
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905, United States
| | - Zhenqing Ye
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905, United States
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905, United States
| |
Collapse
|
13
|
Faux T, Rytkönen KT, Laiho A, Elo LL. RepViz: a replicate-driven R tool for visualizing genomic regions. BMC Res Notes 2019; 12:441. [PMID: 31324268 PMCID: PMC6642542 DOI: 10.1186/s13104-019-4473-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/12/2019] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Visualization of sequencing data is an integral part of genomic data analysis. Although there are several tools to visualize sequencing data on genomic regions, they do not offer user-friendly ways to view simultaneously different groups of replicates. To address this need, we developed a tool that allows efficient viewing of both intra- and intergroup variation of sequencing counts on a genomic region, as well as their comparison to the output of user selected analysis methods, such as peak calling. RESULTS We present an R package RepViz for replicate-driven visualization of genomic regions. With ChIP-seq and ATAC-seq data we demonstrate its potential to aid visual inspection involved in the evaluation of normalization, outlier behavior, detected features from differential peak calling analysis, and combined analysis of multiple data types. RepViz is readily available on Bioconductor ( https://www.bioconductor.org/packages/devel/bioc/html/RepViz.html ) and on Github ( https://github.com/elolab/RepViz ).
Collapse
Affiliation(s)
- Thomas Faux
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland.
| | - Kalle T Rytkönen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland.,Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland.
| |
Collapse
|
14
|
Abstract
Hypoxia signals directly to chromatin via histone demethylases to alter gene expression
Collapse
Affiliation(s)
- Paolo Gallipoli
- Wellcome Trust-MRC Cambridge Stem Cell Institute; Department of Haematology, University of Cambridge; and Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Brian J P Huntly
- Wellcome Trust-MRC Cambridge Stem Cell Institute; Department of Haematology, University of Cambridge; and Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, UK.
| |
Collapse
|
15
|
Chakraborty AA, Laukka T, Myllykoski M, Ringel AE, Booker MA, Tolstorukov MY, Meng YJ, Meier SR, Jennings RB, Creech AL, Herbert ZT, McBrayer SK, Olenchock BA, Jaffe JD, Haigis MC, Beroukhim R, Signoretti S, Koivunen P, Kaelin WG. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science 2019; 363:1217-1222. [PMID: 30872525 DOI: 10.1126/science.aaw1026] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Oxygen sensing is central to metazoan biology and has implications for human disease. Mammalian cells express multiple oxygen-dependent enzymes called 2-oxoglutarate (OG)-dependent dioxygenases (2-OGDDs), but they vary in their oxygen affinities and hence their ability to sense oxygen. The 2-OGDD histone demethylases control histone methylation. Hypoxia increases histone methylation, but whether this reflects direct effects on histone demethylases or indirect effects caused by the hypoxic induction of the HIF (hypoxia-inducible factor) transcription factor or the 2-OG antagonist 2-hydroxyglutarate (2-HG) is unclear. Here, we report that hypoxia promotes histone methylation in a HIF- and 2-HG-independent manner. We found that the H3K27 histone demethylase KDM6A/UTX, but not its paralog KDM6B, is oxygen sensitive. KDM6A loss, like hypoxia, prevented H3K27 demethylation and blocked cellular differentiation. Restoring H3K27 methylation homeostasis in hypoxic cells reversed these effects. Thus, oxygen directly affects chromatin regulators to control cell fate.
Collapse
Affiliation(s)
- Abhishek A Chakraborty
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Tuomas Laukka
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland
| | - Matti Myllykoski
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland
| | - Alison E Ringel
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew A Booker
- Department of Informatics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Michael Y Tolstorukov
- Department of Informatics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yuzhong Jeff Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,The Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel R Meier
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Rebecca B Jennings
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda L Creech
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Zachary T Herbert
- Molecular Biology Core Facility, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Samuel K McBrayer
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Benjamin A Olenchock
- Division of Cardiovascular Medicine, Department of Medicine, The Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Jacob D Jaffe
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland.
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
16
|
Batie M, Frost J, Frost M, Wilson JW, Schofield P, Rocha S. Hypoxia induces rapid changes to histone methylation and reprograms chromatin. Science 2019; 363:1222-1226. [DOI: 10.1126/science.aau5870] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/05/2018] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
Oxygen is essential for the life of most multicellular organisms. Cells possess enzymes called molecular dioxygenases that depend on oxygen for activity. A subclass of molecular dioxygenases is the histone demethylase enzymes, which are characterized by the presence of a Jumanji-C (JmjC) domain. Hypoxia can alter chromatin, but whether this is a direct effect on JmjC-histone demethylases or due to other mechanisms is unknown. Here, we report that hypoxia induces a rapid and hypoxia-inducible factor–independent induction of histone methylation in a range of human cultured cells. Genomic locations of histone-3 lysine-4 trimethylation (H3K4me3) and H3K36me3 after a brief exposure of cultured cells to hypoxia predict the cell’s transcriptional response several hours later. We show that inactivation of one of the JmjC-containing enzymes, lysine demethylase 5A (KDM5A), mimics hypoxia-induced cellular responses. These results demonstrate that oxygen sensing by chromatin occurs via JmjC-histone demethylase inhibition.
Collapse
|
17
|
Eckert F, Zwirner K, Boeke S, Thorwarth D, Zips D, Huber SM. Rationale for Combining Radiotherapy and Immune Checkpoint Inhibition for Patients With Hypoxic Tumors. Front Immunol 2019; 10:407. [PMID: 30930892 PMCID: PMC6423917 DOI: 10.3389/fimmu.2019.00407] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022] Open
Abstract
In order to compensate for the increased oxygen consumption in growing tumors, tumors need angiogenesis and vasculogenesis to increase the supply. Insufficiency in this process or in the microcirculation leads to hypoxic tumor areas with a significantly reduced pO2, which in turn leads to alterations in the biology of cancer cells as well as in the tumor microenvironment. Cancer cells develop more aggressive phenotypes, stem cell features and are more prone to metastasis formation and migration. In addition, intratumoral hypoxia confers therapy resistance, specifically radioresistance. Reactive oxygen species are crucial in fixing DNA breaks after ionizing radiation. Thus, hypoxic tumor cells show a two- to threefold increase in radioresistance. The microenvironment is enriched with chemokines (e.g., SDF-1) and growth factors (e.g., TGFβ) additionally reducing radiosensitivity. During recent years hypoxia has also been identified as a major factor for immune suppression in the tumor microenvironment. Hypoxic tumors show increased numbers of myeloid derived suppressor cells (MDSCs) as well as regulatory T cells (Tregs) and decreased infiltration and activation of cytotoxic T cells. The combination of radiotherapy with immune checkpoint inhibition is on the rise in the treatment of metastatic cancer patients, but is also tested in multiple curative treatment settings. There is a strong rationale for synergistic effects, such as increased T cell infiltration in irradiated tumors and mitigation of radiation-induced immunosuppressive mechanisms such as PD-L1 upregulation by immune checkpoint inhibition. Given the worse prognosis of patients with hypoxic tumors due to local therapy resistance but also increased rate of distant metastases and the strong immune suppression induced by hypoxia, we hypothesize that the subgroup of patients with hypoxic tumors might be of special interest for combining immune checkpoint inhibition with radiotherapy.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kerstin Zwirner
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan M. Huber
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
18
|
Repression of Human Papillomavirus Oncogene Expression under Hypoxia Is Mediated by PI3K/mTORC2/AKT Signaling. mBio 2019; 10:mBio.02323-18. [PMID: 30755508 PMCID: PMC6372795 DOI: 10.1128/mbio.02323-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oncogenic HPV types are major human carcinogens. Under hypoxia, HPV-positive cancer cells can repress the viral E6/E7 oncogenes and induce a reversible growth arrest. This response could contribute to therapy resistance, immune evasion, and tumor recurrence upon reoxygenation. Here, we uncover evidence that HPV oncogene repression is mediated by hypoxia-induced activation of canonical PI3K/mTORC2/AKT signaling. AKT-dependent downregulation of E6/E7 is only observed under hypoxia and occurs, at least in part, at the transcriptional level. Quantitative proteome analyses identify additional factors as candidates to be involved in AKT-dependent E6/E7 repression and/or hypoxic PI3K/mTORC2/AKT activation. These results connect PI3K/mTORC2/AKT signaling with HPV oncogene regulation, providing new mechanistic insights into the cross talk between oncogenic HPVs and their host cells. Hypoxia is linked to therapeutic resistance and poor clinical prognosis for many tumor entities, including human papillomavirus (HPV)-positive cancers. Notably, HPV-positive cancer cells can induce a dormant state under hypoxia, characterized by a reversible growth arrest and strong repression of viral E6/E7 oncogene expression, which could contribute to therapy resistance, immune evasion and tumor recurrence. The present work aimed to gain mechanistic insights into the pathway(s) underlying HPV oncogene repression under hypoxia. We show that E6/E7 downregulation is mediated by hypoxia-induced stimulation of AKT signaling. Ablating AKT function in hypoxic HPV-positive cancer cells by using chemical inhibitors efficiently counteracts E6/E7 repression. Isoform-specific activation or downregulation of AKT1 and AKT2 reveals that both AKT isoforms contribute to hypoxic E6/E7 repression and act in a functionally redundant manner. Hypoxic AKT activation and consecutive E6/E7 repression is dependent on the activities of the canonical upstream AKT regulators phosphoinositide 3-kinase (PI3K) and mechanistic target of rapamycin (mTOR) complex 2 (mTORC2). Hypoxic downregulation of E6/E7 occurs, at least in part, at the transcriptional level. Modulation of E6/E7 expression by the PI3K/mTORC2/AKT cascade is hypoxia specific and not observed in normoxic HPV-positive cancer cells. Quantitative proteome analyses identify additional factors as candidates to be involved in hypoxia-induced activation of the PI3K/mTORC2/AKT signaling cascade and in the AKT-dependent repression of the E6/E7 oncogenes under hypoxia. Collectively, these data uncover a functional key role of the PI3K/mTORC2/AKT signaling cascade for viral oncogene repression in hypoxic HPV-positive cancer cells and provide new insights into the poorly understood cross talk between oncogenic HPVs and their host cells under hypoxia.
Collapse
|
19
|
Oricchio E, Katanayeva N, Donaldson MC, Sungalee S, Pasion JP, Béguelin W, Battistello E, Sanghvi VR, Jiang M, Jiang Y, Teater M, Parmigiani A, Budanov AV, Chan FC, Shah SP, Kridel R, Melnick AM, Ciriello G, Wendel HG. Genetic and epigenetic inactivation of SESTRIN1 controls mTORC1 and response to EZH2 inhibition in follicular lymphoma. Sci Transl Med 2018; 9:9/396/eaak9969. [PMID: 28659443 DOI: 10.1126/scitranslmed.aak9969] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/03/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022]
Abstract
Follicular lymphoma (FL) is an incurable form of B cell lymphoma. Genomic studies have cataloged common genetic lesions in FL such as translocation t(14;18), frequent losses of chromosome 6q, and mutations in epigenetic regulators such as EZH2 Using a focused genetic screen, we identified SESTRIN1 as a relevant target of the 6q deletion and demonstrate tumor suppression by SESTRIN1 in vivo. Moreover, SESTRIN1 is a direct target of the lymphoma-specific EZH2 gain-of-function mutation (EZH2Y641X ). SESTRIN1 inactivation disrupts p53-mediated control of mammalian target of rapamycin complex 1 (mTORC1) and enables mRNA translation under genotoxic stress. SESTRIN1 loss represents an alternative to RRAGC mutations that maintain mTORC1 activity under nutrient starvation. The antitumor efficacy of pharmacological EZH2 inhibition depends on SESTRIN1, indicating that mTORC1 control is a critical function of EZH2 in lymphoma. Conversely, EZH2Y641X mutant lymphomas show increased sensitivity to RapaLink-1, a bifunctional mTOR inhibitor. Hence, SESTRIN1 contributes to the genetic and epigenetic control of mTORC1 in lymphoma and influences responses to targeted therapies.
Collapse
Affiliation(s)
- Elisa Oricchio
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Natalya Katanayeva
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Maria Christine Donaldson
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Stephanie Sungalee
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Joyce P Pasion
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Elena Battistello
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Viraj R Sanghvi
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Man Jiang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanwen Jiang
- Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Matt Teater
- Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Anita Parmigiani
- Department of Human and Molecular Genetics, Goodwin Research Laboratories, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrei V Budanov
- Department of Human and Molecular Genetics, Goodwin Research Laboratories, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Fong Chun Chan
- Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada.,Bioinformatics Graduate Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sohrab P Shah
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Robert Kridel
- Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada.,Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Ari M Melnick
- Division of Hematology/Oncology, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Giovanni Ciriello
- Department of Computational Biology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
20
|
PRC1 Prevents Replication Stress during Chondrogenic Transit Amplification. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
Prickaerts P, Adriaens ME, Beucken TVD, Koch E, Dubois L, Dahlmans VEH, Gits C, Evelo CTA, Chan-Seng-Yue M, Wouters BG, Voncken JW. Hypoxia increases genome-wide bivalent epigenetic marking by specific gain of H3K27me3. Epigenetics Chromatin 2016; 9:46. [PMID: 27800026 PMCID: PMC5080723 DOI: 10.1186/s13072-016-0086-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 12/15/2022] Open
Abstract
Background Trimethylation at histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3) controls gene activity during development and differentiation. Whether H3K4me3 and H3K27me3 changes dynamically in response to altered microenvironmental conditions, including low-oxygen conditions commonly present in solid tumors, is relatively unknown. Demethylation of H3K4me3 and H3K27me3 is mediated by oxygen and 2-oxoglutarate dioxygenases enzymes, suggesting that oxygen deprivation (hypoxia) may influence histone trimethylation. Using the MCF7 breast epithelial adenocarcinoma cell model, we have determined the relationship between epigenomic and transcriptomic reprogramming as a function of fluctuating oxygen tension. Results We find that in MCF7, H3K4me3 and H3K27me3 marks rapidly increase at specific locations throughout the genome and are largely reversed upon reoxygenation. Whereas dynamic changes are relatively highest for H3K27me3 marking under hypoxic conditions, H3K4me3 occupation is identified as the defining epigenetic marker of transcriptional control. In agreement with the global increase of H3K27 trimethylation, we provide direct evidence that the histone H3K27me3 demethylase KDM6B/JMJD3 is inactivated by limited oxygen. In situ immunohistochemical analysis confirms a marked rise of histone trimethylation in hypoxic tumor areas. Acquisition of H3K27me3 at H3K4me3-marked loci results in a striking increase in “bivalent” epigenetic marking. Hypoxia-induced bivalency substantially overlaps with embryonal stem cell-associated genic bivalency and is retained at numerous loci upon reoxygenation. Transcriptional activity is selectively and progressively dampened at bivalently marked loci upon repeated exposure to hypoxia, indicating that this subset of genes uniquely maintains the potential for epigenetic regulation by KDM activity. Conclusions These data suggest that dynamic regulation of the epigenetic state within the tumor environment may have important consequences for tumor plasticity and biology. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0086-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peggy Prickaerts
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michiel E Adriaens
- Department of Bioinformatics (BiGCaT), Maastricht University Medical Centre, Maastricht, The Netherlands.,Maastricht Centre for Systems Biology (MaCSBio), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Twan van den Beucken
- Maastricht Radiation Oncology (MaastRO) Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands.,Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, ON Canada
| | - Elizabeth Koch
- Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, ON Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Ludwig Dubois
- Maastricht Radiation Oncology (MaastRO) Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Vivian E H Dahlmans
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Caroline Gits
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Chris T A Evelo
- Department of Bioinformatics (BiGCaT), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michelle Chan-Seng-Yue
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, ON Canada
| | - Bradly G Wouters
- Maastricht Radiation Oncology (MaastRO) Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands.,Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, ON Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON Canada
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|