1
|
Hijazi H, Manessier J, Brugiere S, Ravnsborg T, Courçon M, Brule B, Merienne K, Jensen ON, Hesse AM, Bruley C, Pflieger D. Mind Your Spectra: Points to be Aware of When Validating the Identification of Isobaric Histone Peptidoforms. J Proteome Res 2025; 24:2408-2418. [PMID: 40163023 DOI: 10.1021/acs.jproteome.4c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Mass spectrometry has become central to identifying and quantifying histone post-translational modifications (PTMs), surpassing limitations of antibody-based methods. Histones are dynamically modified by multiple structures, especially at lysine residues on their N-terminal tails, to regulate DNA-templated processes. Reliable identification of histone PTMs remains challenging and still requires manual curation. This study focused on the Lys27-Arg40 stretch of histone H3, considered four sequence variants, an increasing number of lysine PTMs and artifacts coming from histone sample processing, which resulted in many isobaric peptides. Our analysis revealed the value of low-mass b1 and cyclic immonium fragment ions to validate identification of the distinct peptidoforms. We examined how MS/MS spectra are transformed by common identification software during the conversion of raw files into peak lists, and highlighted how some parameters may erase the informative low-mass fragments. We targeted the detection of 40 H3 K27-R40 variant × PTM combinations, including the mouse-specific variants H3mm7 and H3mm13, in histone samples extracted from mouse testis and brain via a parallel reaction monitoring analysis. We only detected very low levels of unmodified H3mm7. Our work contributes to reliably deciphering the histone code shaped by distinct sequence variants and numerous combinations of PTMs.
Collapse
Affiliation(s)
- Hassan Hijazi
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, 38000 Grenoble, France
| | - Julie Manessier
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, 38000 Grenoble, France
| | - Sabine Brugiere
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, 38000 Grenoble, France
| | - Tina Ravnsborg
- VILLUM Center for Bioanalytical Sciences and Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Marie Courçon
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, 38000 Grenoble, France
| | - Baptiste Brule
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 67000 Strasbourg, France
- University of Strasbourg, 67000 Strasbourg, France
| | - Karine Merienne
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 67000 Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), 67000 Strasbourg, France
- University of Strasbourg, 67000 Strasbourg, France
| | - Ole N Jensen
- VILLUM Center for Bioanalytical Sciences and Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Anne-Marie Hesse
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, 38000 Grenoble, France
| | - Christophe Bruley
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, 38000 Grenoble, France
| | - Delphine Pflieger
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, 38000 Grenoble, France
| |
Collapse
|
2
|
Lin TT, Zhang T, Kitata RB, Liu T, Smith RD, Qian WJ, Shi T. Mass spectrometry-based targeted proteomics for analysis of protein mutations. MASS SPECTROMETRY REVIEWS 2023; 42:796-821. [PMID: 34719806 PMCID: PMC9054944 DOI: 10.1002/mas.21741] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 05/03/2023]
Abstract
Cancers are caused by accumulated DNA mutations. This recognition of the central role of mutations in cancer and recent advances in next-generation sequencing, has initiated the massive screening of clinical samples and the identification of 1000s of cancer-associated gene mutations. However, proteomic analysis of the expressed mutation products lags far behind genomic (transcriptomic) analysis. With comprehensive global proteomics analysis, only a small percentage of single nucleotide variants detected by DNA and RNA sequencing have been observed as single amino acid variants due to current technical limitations. Proteomic analysis of mutations is important with the potential to advance cancer biomarker development and the discovery of new therapeutic targets for more effective disease treatment. Targeted proteomics using selected reaction monitoring (also known as multiple reaction monitoring) and parallel reaction monitoring, has emerged as a powerful tool with significant advantages over global proteomics for analysis of protein mutations in terms of detection sensitivity, quantitation accuracy and overall practicality (e.g., reliable identification and the scale of quantification). Herein we review recent advances in the targeted proteomics technology for enhancing detection sensitivity and multiplexing capability and highlight its broad biomedical applications for analysis of protein mutations in human bodily fluids, tissues, and cell lines. Furthermore, we review recent applications of top-down proteomics for analysis of protein mutations. Unlike the commonly used bottom-up proteomics which requires digestion of proteins into peptides, top-down proteomics directly analyzes intact proteins for more precise characterization of mutation isoforms. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale targeted detection and quantification of important protein mutations are discussed.
Collapse
Affiliation(s)
- Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Reta B. Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
3
|
Salmen F, De Jonghe J, Kaminski TS, Alemany A, Parada GE, Verity-Legg J, Yanagida A, Kohler TN, Battich N, van den Brekel F, Ellermann AL, Arias AM, Nichols J, Hemberg M, Hollfelder F, van Oudenaarden A. High-throughput total RNA sequencing in single cells using VASA-seq. Nat Biotechnol 2022; 40:1780-1793. [PMID: 35760914 PMCID: PMC9750877 DOI: 10.1038/s41587-022-01361-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/13/2022] [Indexed: 01/14/2023]
Abstract
Most methods for single-cell transcriptome sequencing amplify the termini of polyadenylated transcripts, capturing only a small fraction of the total cellular transcriptome. This precludes the detection of many long non-coding, short non-coding and non-polyadenylated protein-coding transcripts and hinders alternative splicing analysis. We, therefore, developed VASA-seq to detect the total transcriptome in single cells, which is enabled by fragmenting and tailing all RNA molecules subsequent to cell lysis. The method is compatible with both plate-based formats and droplet microfluidics. We applied VASA-seq to more than 30,000 single cells in the developing mouse embryo during gastrulation and early organogenesis. Analyzing the dynamics of the total single-cell transcriptome, we discovered cell type markers, many based on non-coding RNA, and performed in vivo cell cycle analysis via detection of non-polyadenylated histone genes. RNA velocity characterization was improved, accurately retracing blood maturation trajectories. Moreover, our VASA-seq data provide a comprehensive analysis of alternative splicing during mammalian development, which highlighted substantial rearrangements during blood development and heart morphogenesis.
Collapse
Affiliation(s)
- Fredrik Salmen
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Joachim De Jonghe
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Francis Crick Institute, London, UK
| | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Alemany
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | | | - Joe Verity-Legg
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Ayaka Yanagida
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Timo N Kohler
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Nicholas Battich
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Floris van den Brekel
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Anna L Ellermann
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alfonso Martinez Arias
- Systems Bioengineering, DCEXS, Universidad Pompeu Fabra, Doctor Aiguader 88 ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | | | - Alexander van Oudenaarden
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| |
Collapse
|
4
|
Seal RL, Denny P, Bruford EA, Gribkova AK, Landsman D, Marzluff WF, McAndrews M, Panchenko AR, Shaytan AK, Talbert PB. A standardized nomenclature for mammalian histone genes. Epigenetics Chromatin 2022; 15:34. [PMID: 36180920 PMCID: PMC9526256 DOI: 10.1186/s13072-022-00467-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
Histones have a long history of research in a wide range of species, leaving a legacy of complex nomenclature in the literature. Community-led discussions at the EMBO Workshop on Histone Variants in 2011 resulted in agreement amongst experts on a revised systematic protein nomenclature for histones, which is based on a combination of phylogenetic classification and historical symbol usage. Human and mouse histone gene symbols previously followed a genome-centric system that was not applicable across all vertebrate species and did not reflect the systematic histone protein nomenclature. This prompted a collaboration between histone experts, the Human Genome Organization (HUGO) Gene Nomenclature Committee (HGNC) and Mouse Genomic Nomenclature Committee (MGNC) to revise human and mouse histone gene nomenclature aiming, where possible, to follow the new protein nomenclature whilst conforming to the guidelines for vertebrate gene naming. The updated nomenclature has also been applied to orthologous histone genes in chimpanzee, rhesus macaque, dog, cat, pig, horse and cattle, and can serve as a framework for naming other vertebrate histone genes in the future.
Collapse
Affiliation(s)
- Ruth L Seal
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK.
- Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0PT, UK.
| | - Paul Denny
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Elspeth A Bruford
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
- Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0PT, UK
| | - Anna K Gribkova
- Department of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - David Landsman
- Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William F Marzluff
- Integrated Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Monica McAndrews
- Mouse Genome Informatics, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Alexey K Shaytan
- Department of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA, 98109, USA
| |
Collapse
|
5
|
Rajasekaran S, Tangavel C, Anand KSSV, Soundararajan DCR, Nayagam SM, Sunmathi R, Raveendran M, Shetty AP, Kanna RM, Pushpa BT. Can Scoliotic Discs Be Controls for Molecular Studies in Intervertebral Disc Research? Insights From Proteomics. Global Spine J 2022; 12:598-609. [PMID: 32945197 PMCID: PMC9109558 DOI: 10.1177/2192568220959038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
STUDY DESIGN Proteomic analysis of human intervertebral discs. OBJECTIVES To compare the characters of scoliotic discs and discs from magnetic resonance imaging (MRI)-normal voluntary organ donors controls used in disc research employing proteomics and establish "true controls" that can be utilized for future intervertebral disc (IVD) research. METHODS Eight MRI-normal discs from 8 brain-dead voluntary organ donors (ND) and 8 scoliotic discs (SD) from 3 patients who underwent anterior surgery for adolescent idiopathic scoliosis were subjected to tandem mass spectrometry, and further analysis was performed. RESULTS Mass spectrometry identified a total of 235 proteins in ND and 438 proteins in the SD group. Proteins involved in extracellular matrix integrity (Versican, keratins KRT6A, KRT14, KRT5, and KRT 13A1, A-kinase anchor protein 13, coagulation factor XIII A chain, proteoglycan 4) and proteins involved in transcription and DNA repair (Von Willebrand factor A domain-containing 3B, eukaryotic initiation factor 2B, histone H4, leukocyte cell-derived chemotaxin 2) were found to be downregulated in SD. Inflammatory proteins (C3, C1S), and oxidative stress response proteins (peroxiredoxin-2,6, catalase, myeloperoxidase, apolipoprotein E) were found to be upregulated in SD. These changes were reflected at the pathway level also. CONCLUSION Findings of our study confirm that scoliotic discs have an abundance of inflammatory, oxidative stress response proteins, which are either absent or downregulated in the ND group indicating that scoliotic discs are not pathologically inert. Furthermore, this study has established MRI-normal discs from voluntary organ donors as the "true" control for molecular studies in IVD research.
Collapse
Affiliation(s)
- S. Rajasekaran
- Ganga Hospital, Coimbatore, Tamil
Nadu, India,S. Rajasekaran, Department of Spine Surgery,
Ganga Hospital, 313, Mettupalayam Road, Coimbatore, 641043, Tamil Nadu India.
| | | | | | | | | | - R. Sunmathi
- Ganga Research Centre, Coimbatore,
Tamil Nadu, India
| | - M. Raveendran
- Tamil Nadu Agricultural University,
Coimbatore, Tamil Nadu, India
| | | | | | | |
Collapse
|
6
|
Herchenröther A, Wunderlich TM, Lan J, Hake SB. Spotlight on histone H2A variants: From B to X to Z. Semin Cell Dev Biol 2022; 135:3-12. [PMID: 35365397 DOI: 10.1016/j.semcdb.2022.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/30/2022]
Abstract
Chromatin, the functional organization of DNA with histone proteins in eukaryotic nuclei, is the tightly-regulated template for several biological processes, such as transcription, replication, DNA damage repair, chromosome stability and sister chromatid segregation. In order to achieve a reversible control of local chromatin structure and DNA accessibility, various interconnected mechanisms have evolved. One of such processes includes the deposition of functionally-diverse variants of histone proteins into nucleosomes, the building blocks of chromatin. Among core histones, the family of H2A histone variants exhibits the largest number of members and highest sequence-divergence. In this short review, we report and discuss recent discoveries concerning the biological functions of the animal histone variants H2A.B, H2A.X and H2A.Z and how dysregulation or mutation of the latter impacts the development of disease.
Collapse
Affiliation(s)
| | - Tim M Wunderlich
- Institute for Genetics, Justus Liebig University, 35390 Giessen, Germany
| | - Jie Lan
- Institute for Genetics, Justus Liebig University, 35390 Giessen, Germany.
| | - Sandra B Hake
- Institute for Genetics, Justus Liebig University, 35390 Giessen, Germany.
| |
Collapse
|
7
|
Peng Y, Li S, Onufriev A, Landsman D, Panchenko AR. Binding of regulatory proteins to nucleosomes is modulated by dynamic histone tails. Nat Commun 2021; 12:5280. [PMID: 34489435 PMCID: PMC8421395 DOI: 10.1038/s41467-021-25568-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Little is known about the roles of histone tails in modulating nucleosomal DNA accessibility and its recognition by other macromolecules. Here we generate extensive atomic level conformational ensembles of histone tails in the context of the full nucleosome, totaling 65 microseconds of molecular dynamics simulations. We observe rapid conformational transitions between tail bound and unbound states, and characterize kinetic and thermodynamic properties of histone tail-DNA interactions. Different histone types exhibit distinct binding modes to specific DNA regions. Using a comprehensive set of experimental nucleosome complexes, we find that the majority of them target mutually exclusive regions with histone tails on nucleosomal/linker DNA around the super-helical locations ± 1, ± 2, and ± 7, and histone tails H3 and H4 contribute most to this process. These findings are explained within competitive binding and tail displacement models. Finally, we demonstrate the crosstalk between different histone tail post-translational modifications and mutations; those which change charge, suppress tail-DNA interactions and enhance histone tail dynamics and DNA accessibility. The intrinsic disorder of histone tails poses challenges in their characterization. Here the authors apply extensive molecular dynamics simulations of the full nucleosome to show reversible binding to DNA with specific binding modes of different types of histone tails, where charge-altering modifications suppress tail-DNA interactions and may boost interactions between nucleosomes and nucleosome-binding proteins.
Collapse
Affiliation(s)
- Yunhui Peng
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Shuxiang Li
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Alexey Onufriev
- Physics Department, Virginia Tech, VA, USA.,Computer Science Department, Virginia Tech, VA, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, VA, USA
| | - David Landsman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
8
|
Small Mass but Strong Information: Diagnostic Ions Provide Crucial Clues to Correctly Identify Histone Lysine Modifications. Proteomes 2021; 9:proteomes9020018. [PMID: 33922761 PMCID: PMC8167651 DOI: 10.3390/proteomes9020018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
(1) Background: The proteomic analysis of histones constitutes a delicate task due to the combination of two factors: slight variations in the amino acid sequences of variants and the multiplicity of post-translational modifications (PTMs), particularly those occurring on lysine residues. (2) Methods: To dissect the relationship between both aspects, we carefully evaluated PTM identification on lysine 27 from histone H3 (H3K27) and the artefactual chemical modifications that may lead to erroneous PTM determination. H3K27 is a particularly interesting example because it can bear a range of PTMs and it sits nearby residues 29 and 31 that vary between H3 sequence variants. We discuss how the retention times, neutral losses and immonium/diagnostic ions observed in the MS/MS spectra of peptides bearing modified lysines detectable in the low-mass region might help validate the identification of modified sequences. (3) Results: Diagnostic ions carry key information, thereby avoiding potential mis-identifications due to either isobaric PTM combinations or isobaric amino acid-PTM combinations. This also includes cases where chemical formylation or acetylation of peptide N-termini artefactually occurs during sample processing or simply in the timeframe of LC-MS/MS analysis. Finally, in the very subtle case of positional isomers possibly corresponding to a given mass of lysine modification, the immonium and diagnostic ions may allow the identification of the in vivo structure.
Collapse
|
9
|
Amatori S, Tavolaro S, Gambardella S, Fanelli M. The dark side of histones: genomic organization and role of oncohistones in cancer. Clin Epigenetics 2021; 13:71. [PMID: 33827674 PMCID: PMC8025322 DOI: 10.1186/s13148-021-01057-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Background The oncogenic role of histone mutations is one of the most relevant discovery in cancer epigenetics. Recurrent mutations targeting histone genes have been described in pediatric brain tumors, chondroblastoma, giant cell tumor of bone and other tumor types. The demonstration that mutant histones can be oncogenic and drive the tumorigenesis in pediatric tumors, led to the coining of the term “oncohistones.” The first identified histone mutations were localized at or near residues normally targeted by post-translational modifications (PTMs) in the histone N-terminal tails and suggested a possible interference with histone PTMs regulation and reading. Main body In this review, we describe the peculiar organization of the multiple genes that encode histone proteins, and the latter advances in both the identification and the biological role of histone mutations in cancer. Recent works show that recurrent somatic mutations target both N-terminal tails and globular histone fold domain in diverse tumor types. Oncohistones are often dominant-negative and occur at higher frequencies in tumors affecting children and adolescents. Notably, in many cases the mutations target selectively only some of the genes coding the same histone protein and are frequently associated with specific tumor types or, as documented for histone variant H3.3 in pediatric glioma, with peculiar tumors arising from specific anatomic locations. Conclusion The overview of the most recent advances suggests that the oncogenic potential of histone mutations can be exerted, together with the alteration of histone PTMs, through the destabilization of nucleosome and DNA–nucleosome interactions, as well as through the disruption of higher-order chromatin structure. However, further studies are necessary to fully elucidate the mechanism of action of oncohistones, as well as to evaluate their possible application to cancer classification, prognosis and to the identification of new therapies.
Collapse
Affiliation(s)
- Stefano Amatori
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032, Fano, PU, Italy.
| | - Simona Tavolaro
- Fredis Associazione, Via Edoardo Jenner 30, 00151, Rome, Italy
| | - Stefano Gambardella
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032, Fano, PU, Italy.,IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032, Fano, PU, Italy.
| |
Collapse
|
10
|
Espiritu D, Gribkova AK, Gupta S, Shaytan AK, Panchenko AR. Molecular Mechanisms of Oncogenesis through the Lens of Nucleosomes and Histones. J Phys Chem B 2021; 125:3963-3976. [PMID: 33769808 DOI: 10.1021/acs.jpcb.1c00694] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At the cellular level, cancer is the disease of both the genome and the epigenome, and the interplay between genetic mutations and epigenetic states may occur at the level of elementary chromatin units, the nucleosomes. They are formed by a segment of DNA wrapped around an octamer of histone proteins. In this review, we survey various mechanisms of cancer etiology and progression mediated by histones and nucleosomes. In particular, we discuss the effects of mutations in histones, changes in their expression and slicing on epigenetic dysregulation and carcinogenesis. The links between cancer phenotypes and differential expression of histone variants and isoforms are summarized. Finally, we discourse the geometric and steric effects of DNA compaction in nucleosomes on DNA mutation rate, interactions with transcription factors, including pioneer transcription factors, and prospects of cancer cells' genome and epigenome editing.
Collapse
Affiliation(s)
- Daniel Espiritu
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Anna K Gribkova
- Department of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia.,Sirius University of Science and Technology, 1 Olympic Avenue, Sochi, 354340, Russia
| | - Shubhangi Gupta
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Alexey K Shaytan
- Department of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia.,Sirius University of Science and Technology, 1 Olympic Avenue, Sochi, 354340, Russia.,Bioinformatics Lab, Faculty of Computer Science, HSE University, 11 Pokrovsky Boulevard, Moscow, 109028, Russia
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, Ontario, Canada.,Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Li Y, Mi P, Chen X, Wu J, Qin W, Shen Y, Zhang P, Tang Y, Cheng CY, Sun F. Dynamic Profiles and Transcriptional Preferences of Histone Modifications During Spermiogenesis. Endocrinology 2021; 162:5974117. [PMID: 33175103 DOI: 10.1210/endocr/bqaa210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 02/07/2023]
Abstract
During spermiogenesis, extensive histone modifications take place in developing haploid spermatids besides morphological alterations of the genetic material to form compact nuclei. Better understanding on the overall transcriptional dynamics and preferences of histones and enzymes involved in histone modifications may provide valuable information to dissect the epigenetic characteristics and unique chromatin status during spermiogenesis. Using single-cell RNA-Sequencing, the expression dynamics of histone variants, writers, erasers, and readers of histone acetylation and methylation, as well as histone phosphorylation, ubiquitination, and chaperones were assessed through transcriptome profiling during spermiogenesis. This approach provided an unprecedented panoramic perspective of the involving genes in epigenetic modifier/histone variant expression during spermiogenesis. Results reported here revealed the transcriptional ranks of histones, histone modifications, and their readers during spermiogenesis, emphasizing the unique preferences of epigenetic regulation in spermatids. These findings also highlighted the impact of spermatid metabolic preferences on epigenetic modifications. Despite the observed rising trend on transcription levels of all encoding genes and histone variants, the transcriptome profile of genes in histone modifications and their readers displayed a downward expression trend, suggesting that spermatid nuclei condensation is a progressive process that occurred in tandem with a gradual decrease in overall epigenetic activity during spermiogenesis.
Collapse
Affiliation(s)
- Yinchuan Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Panpan Mi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xue Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Yiqi Shen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Pingbao Zhang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
12
|
Histone Lysine-to-Methionine Mutation as Anticancer Drug Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1283:85-96. [PMID: 33155140 DOI: 10.1007/978-981-15-8104-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Histone modification stands for a vital genetic information form, which shows tight correlation with the modulation of normal physiological activities by genes. Abnormal regulation of histone methylation due to histone modification enzyme changes and histone mutations plays an important role in the development of cancer. Histone mutations, especially H3K27M and H3K36M, have been identified in various cancers such as pediatric DIPG (diffuse intrinsic pontine glioma) and chondroblastoma respectively. "K to M" mutation results overall downregulation of methylation on these lysine residues. Also, "K to M" mutant histones can inhibit the enzymatic activity of the responsible HMT (histone methyltransferase); for instance, SETD2 indicates H3K36 methylation, and Ezh2 represents H3K27 methylation. In-depth analysis of the mechanism of tumor formation triggered by the K to M mutation results in possible targeted therapies. This chapter is going to briefly introduce the mechanism of histone lysine-to-methionine mutation and review the recently identified targeted therapeutic strategies.
Collapse
|
13
|
Le Blévec E, Muroňová J, Ray PF, Arnoult C. Paternal epigenetics: Mammalian sperm provide much more than DNA at fertilization. Mol Cell Endocrinol 2020; 518:110964. [PMID: 32738444 DOI: 10.1016/j.mce.2020.110964] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
The spermatozoon is a highly differentiated cell with unique characteristics: it is mobile, thanks to its flagellum, and is very compact. The sperm cytoplasm is extremely reduced, containing no ribosomes, and therefore does not allow translation, and its nucleus contains very closed chromatin, preventing transcription. This DNA compaction is linked to the loss of nucleosomes and the replacement of histones by protamines. Based on these characteristics, sperm was considered to simply deliver paternal DNA to the oocyte. However, some parts of the sperm DNA remain organized in a nucleosomal format, and bear epigenetic information. In addition, the nucleus and the cytoplasm contain a multitude of RNAs of different types, including non-coding RNAs (ncRNAs) which also carry epigenetic information. For a long time, these RNAs were considered residues of spermatogenesis. After briefly describing the mechanisms of compaction of sperm DNA, we focus this review on the origin and function of the different ncRNAs. We present studies demonstrating the importance of these RNAs in embryonic development and transgenerational adaptation to stress. We also look at other epigenetic marks, such as DNA methylation or post-translational modifications of histones, and show that they are sensitive to environmental stress and transmissible to offspring. The post-fertilization role of certain sperm-borne proteins is also discussed.
Collapse
Affiliation(s)
- Emilie Le Blévec
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France; IMV Technologies, ZI N° 1 Est, L'Aigle, F-61300, France
| | - Jana Muroňová
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France.
| |
Collapse
|
14
|
Molaro A, Wood AJ, Janssens D, Kindelay SM, Eickbush MT, Wu S, Singh P, Muller CH, Henikoff S, Malik HS. Biparental contributions of the H2A.B histone variant control embryonic development in mice. PLoS Biol 2020; 18:e3001001. [PMID: 33362208 PMCID: PMC7757805 DOI: 10.1371/journal.pbio.3001001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Histone variants expand chromatin functions in eukaryote genomes. H2A.B genes are testis-expressed short histone H2A variants that arose in placental mammals. Their biological functions remain largely unknown. To investigate their function, we generated a knockout (KO) model that disrupts all 3 H2A.B genes in mice. We show that H2A.B KO males have globally altered chromatin structure in postmeiotic germ cells. Yet, they do not show impaired spermatogenesis or testis function. Instead, we find that H2A.B plays a crucial role postfertilization. Crosses between H2A.B KO males and females yield embryos with lower viability and reduced size. Using a series of genetic crosses that separate parental and zygotic contributions, we show that the H2A.B status of both the father and mother, but not of the zygote, affects embryonic viability and growth during gestation. We conclude that H2A.B is a novel parental-effect gene, establishing a role for short H2A histone variants in mammalian development. We posit that parental antagonism over embryonic growth drove the origin and ongoing diversification of short histone H2A variants in placental mammals.
Collapse
Affiliation(s)
- Antoine Molaro
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Anna J. Wood
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Derek Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Selina M. Kindelay
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael T. Eickbush
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Steven Wu
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Priti Singh
- Comparative Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Charles H. Muller
- Male Fertility Laboratory, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
15
|
Peng Y, Markov Y, Goncearenco A, Landsman D, Panchenko AR. Data sets on human histone interaction networks. Data Brief 2020; 33:106555. [PMID: 33299912 PMCID: PMC7701981 DOI: 10.1016/j.dib.2020.106555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/28/2022] Open
Abstract
Here, we present the data of human histone interactomes generated and analysed in the research article by Peng et al., 2020 [1]. The histone interactome data provide a comprehensive mapping of human histone/nucleosome interaction networks by using different data sources from the structural, chemical cross-linking, and high-throughput studies. The histone interactions are presented at different levels of granularity in networks, including protein, domain, and residue-levels. All human histone interactome Cytoscape session files are available at https://github.com/Panchenko-Lab/Human-histone-interactome.
Collapse
Affiliation(s)
- Yunhui Peng
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, United States
| | - Yaroslav Markov
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, United States.,Computational Biology and Bioinformatics, Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, United States
| | - Alexander Goncearenco
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, United States.,VantAI, New York, NY, United States
| | - David Landsman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, United States
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON, Canada
| |
Collapse
|
16
|
Peng Y, Markov Y, Goncearenco A, Landsman D, Panchenko AR. Human Histone Interaction Networks: An Old Concept, New Trends. J Mol Biol 2020; 433:166684. [PMID: 33098859 DOI: 10.1016/j.jmb.2020.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022]
Abstract
To elucidate the properties of human histone interactions on the large scale, we perform a comprehensive mapping of human histone interaction networks by using data from structural, chemical cross-linking and various high-throughput studies. Histone interactomes derived from different data sources show limited overlap and complement each other. It inspires us to integrate these data into the combined histone global interaction network which includes 5308 proteins and 10,330 interactions. The analysis of topological properties of the human histone interactome reveals its scale free behavior and high modularity. Our study of histone binding interfaces uncovers a remarkably high number of residues involved in interactions between histones and non-histone proteins, 80-90% of residues in histones H3 and H4 have at least one binding partner. Two types of histone binding modes are detected: interfaces conserved in most histone variants and variant specific interfaces. Finally, different types of chromatin factors recognize histones in nucleosomes via distinct binding modes, and many of these interfaces utilize acidic patches among other sites. Interaction networks are available at https://github.com/Panchenko-Lab/Human-histone-interactome.
Collapse
Affiliation(s)
- Yunhui Peng
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yaroslav Markov
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA; Computational Biology and Bioinformatics, Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT 06520, USA
| | - Alexander Goncearenco
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA; VantAI, New York, NY 10003, USA
| | - David Landsman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON K7L 3N6, Canada.
| |
Collapse
|
17
|
Zovkic IB. Epigenetics and memory: an expanded role for chromatin dynamics. Curr Opin Neurobiol 2020; 67:58-65. [PMID: 32905876 DOI: 10.1016/j.conb.2020.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
Abstract
Nearly two decades of research on epigenetic mechanisms in the brain have demonstrated that epigenetic marks that were once thought to be relatively static are dynamically and reversibly regulated in the brain during memory formation. Here, we focus on new research that has further expanded the dynamic nature of chromatin in memory formation through three key mechanisms. First, we discuss the emerging role of histone variants, which undergo learning-induced turnover or exchange, a process in which one histone type replaces another in chromatin. Next, we focus on chromatin remodeling complexes, which are tightly intertwined with all aspects of chromatin regulation and as such, can reposition or evict nucleosomes to promote transcriptional induction, and mediate histone variant exchange. Finally, we discuss how differential distribution of histone marks to localized narrow genomic regions and/or broadly distributed chromatin domains impact transcriptional outcomes and memory formation. Together, these studies mark a shift toward unraveling the complexity of chromatin function in memory and offer new strategies for fine tuning transcriptional outcomes to modify longevity, specificity and strength of memories.
Collapse
Affiliation(s)
- Iva B Zovkic
- Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
18
|
Crespo M, Damont A, Blanco M, Lastrucci E, Kennani SE, Ialy-Radio C, Khattabi LE, Terrier S, Louwagie M, Kieffer-Jaquinod S, Hesse AM, Bruley C, Chantalat S, Govin J, Fenaille F, Battail C, Cocquet J, Pflieger D. Multi-omic analysis of gametogenesis reveals a novel signature at the promoters and distal enhancers of active genes. Nucleic Acids Res 2020; 48:4115-4138. [PMID: 32182340 PMCID: PMC7192594 DOI: 10.1093/nar/gkaa163] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/30/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022] Open
Abstract
Epigenetic regulation of gene expression is tightly controlled by the dynamic modification of histones by chemical groups, the diversity of which has largely expanded over the past decade with the discovery of lysine acylations, catalyzed from acyl-coenzymes A. We investigated the dynamics of lysine acetylation and crotonylation on histones H3 and H4 during mouse spermatogenesis. Lysine crotonylation appeared to be of significant abundance compared to acetylation, particularly on Lys27 of histone H3 (H3K27cr) that accumulates in sperm in a cleaved form of H3. We identified the genomic localization of H3K27cr and studied its effects on transcription compared to the classical active mark H3K27ac at promoters and distal enhancers. The presence of both marks was strongly associated with highest gene expression. Assessment of their co-localization with transcription regulators (SLY, SOX30) and chromatin-binding proteins (BRD4, BRDT, BORIS and CTCF) indicated systematic highest binding when both active marks were present and different selective binding when present alone at chromatin. H3K27cr and H3K27ac finally mark the building of some sperm super-enhancers. This integrated analysis of omics data provides an unprecedented level of understanding of gene expression regulation by H3K27cr in comparison to H3K27ac, and reveals both synergistic and specific actions of each histone modification.
Collapse
Affiliation(s)
- Marion Crespo
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France
| | - Annelaure Damont
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, 91191 Gif-sur-Yvette, France
| | - Melina Blanco
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | | | - Sara El Kennani
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France.,CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Côme Ialy-Radio
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | - Laila El Khattabi
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | - Samuel Terrier
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, 91191 Gif-sur-Yvette, France
| | | | | | - Anne-Marie Hesse
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France
| | | | - Sophie Chantalat
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 2 rue Gaston Crémieux, CP 5706, 91057 Evry Cedex, France
| | - Jérôme Govin
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France.,CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - François Fenaille
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, 91191 Gif-sur-Yvette, France
| | - Christophe Battail
- Univ. Grenoble Alpes, CEA, INSERM, Biosciences and Biotechnology Institute of Grenoble, Biology of Cancer and Infection UMR_S 1036, 38000 Grenoble, France
| | - Julie Cocquet
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | - Delphine Pflieger
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France.,CNRS, IRIG-BGE, 38000 Grenoble, France
| |
Collapse
|
19
|
Mass Spectrometry to Study Chromatin Compaction. BIOLOGY 2020; 9:biology9060140. [PMID: 32604817 PMCID: PMC7345930 DOI: 10.3390/biology9060140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022]
Abstract
Chromatin accessibility is a major regulator of gene expression. Histone writers/erasers have a critical role in chromatin compaction, as they “flag” chromatin regions by catalyzing/removing covalent post-translational modifications on histone proteins. Anomalous chromatin decondensation is a common phenomenon in cells experiencing aging and viral infection. Moreover, about 50% of cancers have mutations in enzymes regulating chromatin state. Numerous genomics methods have evolved to characterize chromatin state, but the analysis of (in)accessible chromatin from the protein perspective is not yet in the spotlight. We present an overview of the most used approaches to generate data on chromatin accessibility and then focus on emerging methods that utilize mass spectrometry to quantify the accessibility of histones and the rest of the chromatin bound proteome. Mass spectrometry is currently the method of choice to quantify entire proteomes in an unbiased large-scale manner; accessibility on chromatin of proteins and protein modifications adds an extra quantitative layer to proteomics dataset that assist more informed data-driven hypotheses in chromatin biology. We speculate that this emerging new set of methods will enhance predictive strength on which proteins and histone modifications are critical in gene regulation, and which proteins occupy different chromatin states in health and disease.
Collapse
|
20
|
Shliaha PV, Gorshkov V, Kovalchuk SI, Schwämmle V, Baird MA, Shvartsburg AA, Jensen ON. Middle-Down Proteomic Analyses with Ion Mobility Separations of Endogenous Isomeric Proteoforms. Anal Chem 2020; 92:2364-2368. [DOI: 10.1021/acs.analchem.9b05011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Pavel V. Shliaha
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Vladimir Gorshkov
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Sergey I. Kovalchuk
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Veit Schwämmle
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Matthew A. Baird
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Alexandre A. Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Ole N. Jensen
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
21
|
Abstract
All proteins end with a carboxyl terminus that has unique biophysical properties and is often disordered. Although there are examples of important C-termini functions, a more global role for the C-terminus is not yet established. In this review, we summarize research on C-termini, a unique region in proteins that cells exploit. Alternative splicing and proteolysis increase the diversity of proteins and peptides in cells with unique C-termini. The C-termini of proteins contain minimotifs, short peptides with an encoded function generally characterized as binding, posttranslational modifications, and trafficking. Many of these activities are specific to minimotifs on the C-terminus. Approximately 13% of C-termini in the human proteome have a known minimotif, and the majority, if not all of the remaining termini have conserved motifs inferring a function that remains to be discovered. C-termini, their predictions, and their functions are collated in the C-terminome, Proteus, and Terminus Oriented Protein Function INferred Database (TopFIND) database/web systems. Many C-termini are well conserved, and some have a known role in health and disease. We envision that this summary of C-termini will guide future investigation of their biochemical and physiological significance.
Collapse
Affiliation(s)
- Surbhi Sharma
- a Nevada Institute of Personalized Medicine and School of Life Sciences , University of Nevada , Las Vegas , NV , USA
| | - Martin R Schiller
- a Nevada Institute of Personalized Medicine and School of Life Sciences , University of Nevada , Las Vegas , NV , USA
| |
Collapse
|
22
|
Characterization of Post-Meiotic Male Germ Cell Genome Organizational States. Methods Mol Biol 2019. [PMID: 30073534 DOI: 10.1007/978-1-4939-8663-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Dramatic and unique genome reorganizations accompany the differentiation of haploid male germ cells, characterized by a gradual loss of the vast majority of histones leading to a final tight compaction of the genome by protamines. Despite being essential for procreation and the life cycle, the mechanisms driving the transformation of nucleosomes into nucleoprotamines remain poorly understood. To address this issue, our laboratory has developed a number of specific approaches, ranging from the purification of spermatogenic cells at specific stages, the analysis of chromatin transitional states, the functional characterization of histone variants, histone-replacing proteins and their chaperones. This chapter will detail all related relevant techniques with a particular emphasis on methods allowing the functional studies of histone variants and the genome organizational states associated with the studied histones in spermatogenic cells undergoing histone-to-protamine exchange.
Collapse
|
23
|
Ernst C, Eling N, Martinez-Jimenez CP, Marioni JC, Odom DT. Staged developmental mapping and X chromosome transcriptional dynamics during mouse spermatogenesis. Nat Commun 2019; 10:1251. [PMID: 30890697 PMCID: PMC6424977 DOI: 10.1038/s41467-019-09182-1] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Male gametes are generated through a specialised differentiation pathway involving a series of developmental transitions that are poorly characterised at the molecular level. Here, we use droplet-based single-cell RNA-Sequencing to profile spermatogenesis in adult animals and at multiple stages during juvenile development. By exploiting the first wave of spermatogenesis, we both precisely stage germ cell development and enrich for rare somatic cell-types and spermatogonia. To capture the full complexity of spermatogenesis including cells that have low transcriptional activity, we apply a statistical tool that identifies previously uncharacterised populations of leptotene and zygotene spermatocytes. Focusing on post-meiotic events, we characterise the temporal dynamics of X chromosome re-activation and profile the associated chromatin state using CUT&RUN. This identifies a set of genes strongly repressed by H3K9me3 in spermatocytes, which then undergo extensive chromatin remodelling post-meiosis, thus acquiring an active chromatin state and spermatid-specific expression.
Collapse
Affiliation(s)
- Christina Ernst
- European Molecular Biology Laboratory, European Bioinformatics Institute, (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Nils Eling
- European Molecular Biology Laboratory, European Bioinformatics Institute, (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Celia P Martinez-Jimenez
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
- Wellcome Sanger Institute, Welcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
- Wellcome Sanger Institute, Welcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, 69120, Heidelberg, Germany.
| |
Collapse
|
24
|
Proteomic Analysis of Histone Variants and Their PTMs: Strategies and Pitfalls. Proteomes 2018; 6:proteomes6030029. [PMID: 29933573 PMCID: PMC6161106 DOI: 10.3390/proteomes6030029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modifications contribute to the determination of cell fate and differentiation. The molecular mechanisms underlying histone variants and post-translational modifications (PTMs) have been studied in the contexts of development, differentiation, and disease. Antibody-based assays have classically been used to target PTMs, but these approaches fail to reveal combinatorial patterns of modifications. In addition, some histone variants are so similar to canonical histones that antibodies have difficulty distinguishing between these isoforms. Mass spectrometry (MS) has progressively developed as a powerful technology for the study of histone variants and their PTMs. Indeed, MS analyses highlighted exquisitely complex combinations of PTMs, suggesting “crosstalk” between them, and also revealed that PTM patterns are often variant-specific. Even though the sensitivity and acquisition speed of MS instruments have considerably increased alongside the development of computational tools for the study of multiple PTMs, it remains challenging to correctly describe the landscape of histone PTMs, and in particular to confidently assign modifications to specific amino acids. Here, we provide an inventory of MS-based strategies and of the pitfalls inherent to histone PTM and variant characterization, while stressing the complex interplay between PTMs and histone sequence variations. We will particularly illustrate the roles played by MS-based analyses in identifying and quantifying histone variants and modifications.
Collapse
|
25
|
Molaro A, Young JM, Malik HS. Evolutionary origins and diversification of testis-specific short histone H2A variants in mammals. Genome Res 2018; 28:460-473. [PMID: 29549088 PMCID: PMC5880237 DOI: 10.1101/gr.229799.117] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
Eukaryotic genomes must accomplish both compact packaging for genome stability and inheritance, as well as accessibility for gene expression. They do so using post-translational modifications of four ancient canonical histone proteins (H2A, H2B, H3, and H4) and by deploying histone variants with specialized chromatin functions. Some histone variants are conserved across all eukaryotes, whereas others are lineage-specific. Here, we performed detailed phylogenomic analyses of “short H2A histone” variants found in mammalian genomes. We discovered a previously undescribed typically-sized H2A variant in monotremes and marsupials, H2A.R, which may represent the common ancestor of the short H2As. We also discovered a novel class of short H2A histone variants in eutherian mammals, H2A.Q. We show that short H2A variants arose on the X Chromosome in the common ancestor of all eutherian mammals and diverged into four evolutionarily distinct clades: H2A.B, H2A.L, H2A.P, and H2A.Q. However, the repertoires of short histone H2A variants vary extensively among eutherian mammals due to lineage-specific gains and losses. Finally, we show that all four short H2As are subject to accelerated rates of protein evolution relative to both canonical and other variant H2A proteins including H2A.R. Our analyses reveal that short H2As are a unique class of testis-restricted histone variants displaying an unprecedented evolutionary dynamism. Based on their X-Chromosomal localization, genetic turnover, and testis-specific expression, we hypothesize that short H2A variants may participate in genetic conflicts involving sex chromosomes during reproduction.
Collapse
Affiliation(s)
- Antoine Molaro
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
26
|
Affiliation(s)
- Kosuke Funato
- Center for Stem Cell Biology and Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;,
| | - Viviane Tabar
- Center for Stem Cell Biology and Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;,
| |
Collapse
|
27
|
Post-Translational Modifications of H2A Histone Variants and Their Role in Cancer. Cancers (Basel) 2018; 10:cancers10030059. [PMID: 29495465 PMCID: PMC5876634 DOI: 10.3390/cancers10030059] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/19/2018] [Accepted: 02/25/2018] [Indexed: 12/12/2022] Open
Abstract
Histone variants are chromatin components that replace replication-coupled histones in a fraction of nucleosomes and confer particular characteristics to chromatin. H2A variants represent the most numerous and diverse group among histone protein families. In the nucleosomal structure, H2A-H2B dimers can be removed and exchanged more easily than the stable H3-H4 core. The unstructured N-terminal histone tails of all histones, but also the C-terminal tails of H2A histones protrude out of the compact structure of the nucleosome core. These accessible tails are the preferential target sites for a large number of post-translational modifications (PTMs). While some PTMs are shared between replication-coupled H2A and H2A variants, many modifications are limited to a specific histone variant. The present review focuses on the H2A variants H2A.Z, H2A.X, and macroH2A, and summarizes their functions in chromatin and how these are linked to cancer development and progression. H2A.Z primarily acts as an oncogene and macroH2A and H2A.X as tumour suppressors. We further focus on the regulation by PTMs, which helps to understand a degree of context dependency.
Collapse
|
28
|
Hoghoughi N, Barral S, Vargas A, Rousseaux S, Khochbin S. Histone variants: essential actors in male genome programming. J Biochem 2018; 163:97-103. [PMID: 29165574 DOI: 10.1093/jb/mvx079] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/13/2017] [Indexed: 02/03/2023] Open
Abstract
Prior to its transmission to the offspring, the male genome has to be tightly compacted. A genome-scale histone eviction and the subsequent repackaging of DNA by protamines (Prms) direct this essential genome condensation step. The requirement for male germ cells to undergo such a dramatic and unique genome reorganization explains why these cells express the largest number of histone variants, including many testis-specific ones. Indeed, an open chromatin, nucleosome instability and a facilitated process of histone disassembly are direct consequences of the presence of these histone variants in the chromatin of male germ cells. These histone-induced changes in chromatin first control a stage-specific gene expression program and then directly mediate the histone-to-Prm transition process. This review aims at summarizing and discussing a series of recent functional studies of male germ cell histone variants with a focus on their impact on the process of histone eviction and male genome compaction.
Collapse
Affiliation(s)
- Naghmeh Hoghoughi
- CNRS UMR 5309, Inserm, U1209, Université Grenoble Alpes, Institut Albert Bonniot, Grenoble F-38700, France
| | - Sophie Barral
- CNRS UMR 5309, Inserm, U1209, Université Grenoble Alpes, Institut Albert Bonniot, Grenoble F-38700, France
| | - Alexandra Vargas
- CNRS UMR 5309, Inserm, U1209, Université Grenoble Alpes, Institut Albert Bonniot, Grenoble F-38700, France
| | - Sophie Rousseaux
- CNRS UMR 5309, Inserm, U1209, Université Grenoble Alpes, Institut Albert Bonniot, Grenoble F-38700, France
| | - Saadi Khochbin
- CNRS UMR 5309, Inserm, U1209, Université Grenoble Alpes, Institut Albert Bonniot, Grenoble F-38700, France
| |
Collapse
|
29
|
El Kennani S, Adrait A, Permiakova O, Hesse AM, Ialy-Radio C, Ferro M, Brun V, Cocquet J, Govin J, Pflieger D. Systematic quantitative analysis of H2A and H2B variants by targeted proteomics. Epigenetics Chromatin 2018; 11:2. [PMID: 29329550 PMCID: PMC5767011 DOI: 10.1186/s13072-017-0172-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/20/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Histones organize DNA into chromatin through a variety of processes. Among them, a vast diversity of histone variants can be incorporated into chromatin and finely modulate its organization and functionality. Classically, the study of histone variants has largely relied on antibody-based assays. However, antibodies have a limited efficiency to discriminate between highly similar histone variants. RESULTS In this study, we established a mass spectrometry-based analysis to address this challenge. We developed a targeted proteomics method, using selected reaction monitoring or parallel reaction monitoring, to quantify a maximum number of histone variants in a single multiplexed assay, even when histones are present in a crude extract. This strategy was developed on H2A and H2B variants, using 55 peptides corresponding to 25 different histone sequences, among which a few differ by a single amino acid. The methodology was then applied to mouse testis extracts in which almost all histone variants are expressed. It confirmed the abundance profiles of several testis-specific histones during successive stages of spermatogenesis and the existence of predicted H2A.L.1 isoforms. This methodology was also used to explore the over-expression pattern of H2A.L.1 isoforms in a mouse model of male infertility. CONCLUSIONS Our results demonstrate that targeted proteomics is a powerful method to quantify highly similar histone variants and isoforms. The developed method can be easily transposed to the study of human histone variants, whose abundance can be deregulated in various diseases.
Collapse
Affiliation(s)
- Sara El Kennani
- INSERM U1038, CEA, BIG-BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Annie Adrait
- INSERM U1038, CEA, BIG-BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Olga Permiakova
- INSERM U1038, CEA, BIG-BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Anne-Marie Hesse
- INSERM U1038, CEA, BIG-BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Côme Ialy-Radio
- INSERM U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Myriam Ferro
- INSERM U1038, CEA, BIG-BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Virginie Brun
- INSERM U1038, CEA, BIG-BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Julie Cocquet
- INSERM U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jérôme Govin
- INSERM U1038, CEA, BIG-BGE, Univ. Grenoble Alpes, Grenoble, France.
| | - Delphine Pflieger
- INSERM U1038, CEA, BIG-BGE, Univ. Grenoble Alpes, Grenoble, France. .,CNRS, FR CNRS 3425, Biosciences and Biotechnology Institute of Grenoble, Grenoble, France.
| |
Collapse
|