1
|
Hamey JJ, Shah M, Wade JD, Bartolec TK, Wettenhall REH, Quinlan KGR, Williamson NA, Wilkins MR. SMYD5 is a ribosomal methyltransferase that trimethylates RPL40 lysine 22 through recognition of a KXY motif. Cell Rep 2025; 44:115518. [PMID: 40184250 DOI: 10.1016/j.celrep.2025.115518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 04/06/2025] Open
Abstract
The eukaryotic ribosome is highly modified by protein methylation, yet many of the responsible methyltransferases remain unknown. Here, we identify SET and MYND domain-containing protein 5 (SMYD5) as a ribosomal protein methyltransferase that catalyzes trimethylation of RPL40/eL40 at lysine 22. Through a systematic mass spectrometry-based approach, we identify 12 primary sites of protein methylation in ribosomes from K562 cells, including at RPL40 K22. Through in vitro methylation of synthetic RPL40 using fractionated lysate, we then identify SMYD5 as a candidate RPL40 K22 methyltransferase. We show that recombinant SMYD5 has robust activity toward RPL40 K22 in vitro and that active site mutations ablate this activity. Knockouts of SMYD5 in K562 cells show a complete loss of RPL40 K22 methylation and decreased polysome levels. We show that SMYD5 does not methylate histones in vitro, and by systematic analysis of its recognition motif, we find that SMYD5 requires a KXY motif for methylation, explaining its lack of activity toward histones.
Collapse
Affiliation(s)
- Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Manan Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - John D Wade
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Tara K Bartolec
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard E H Wettenhall
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicholas A Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Xiao C, Su Z, Zhao J, Tan S, He M, Li Y, Liu J, Xu J, Hu Y, Li Z, Fan C, Liu X. Novel regulation mechanism of histone methyltransferase SMYD5 in rheumatoid arthritis. Cell Mol Biol Lett 2025; 30:38. [PMID: 40165083 PMCID: PMC11959843 DOI: 10.1186/s11658-025-00707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Fibroblast-like synoviocytes (FLS) are crucial for maintaining synovial homeostasis. SMYD5, a member of the histone lysine methyltransferase subfamily SMYDs, is involved in many pathological processes. This study aimed to investigate the role of SMYD5 in regulating synovial fibroblast homeostasis and the pathogenesis of rheumatoid arthritis (RA). METHODS Proteomic screening was conducted to assess SMYD5 expression in the synovium of patients with osteoarthritis (OA) and RA. In vitro, interleukin-1 beta (IL-1β) was used to induce proliferation and inflammation in FLS. Further, we performed loss-of-function and gain-of-function experiments to investigate the biological function of SMYD5. In vivo, adeno-associated virus (AAV) vectors carrying SMYD5 short-hairpin RNA (AAV-shSMYD5) were injected into the knee joints to knock down SMYD5 in a collagen-induced arthritis (CIA) mouse model to evaluate its role in joint damage. RESULTS We observed a significant elevation of SMYD5 expression in the synovial tissues of patients with RA and IL-1β-induced FLS. SMYD5 facilitated posttranslational modifications and activated downstream signaling pathways, thereby promoting proliferation and inflammation in FLS. Mechanistically, SMYD5 mediated the methylation of Forkhead box protein O1 (FoxO1), which accelerated its degradation through ubiquitination, resulting in substantial FLS proliferation. Additionally, SMYD5 promoted lactate release to activate NF-κB signaling pathways by upregulating hexokinases-2 (HK2) expression, a key glycolytic enzyme, thereby intensifying the inflammatory response in FLS. Supporting these findings, intraarticular delivery of AAV-mediated SMYD5 knockdown in the CIA mice model effectively alleviated joint swelling, bone erosion, and overall arthritis severity. CONCLUSIONS Together, these findings suggest that SMYD5 is a dual target for regulating synovial fibroblast homeostasis and the pathogenesis of RA. Targeting SMYD5 through local treatment strategies may provide a novel therapeutic approach for RA, particularly when combined with immunotherapy.
Collapse
Affiliation(s)
- Chenxi Xiao
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Zhenghua Su
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Jialin Zhao
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Subei Tan
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Mengting He
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Yuhui Li
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Jiayao Liu
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Jie Xu
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Yajie Hu
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Zhongzheng Li
- The 9th Hospital of Ningbo, 68, Xiangbei Road, Jiangbei District, Ningbo, 315020, Zhejiang, China.
| | - Chunxiang Fan
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China.
| | - Xinhua Liu
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China.
| |
Collapse
|
3
|
Zhang L, Zhang A, Wang Y, Liu Y, Liu F. Lysine Methyltransferase 5C (KMT5C) Suppresses Oral Squamous Cell Carcinoma Progression by Epigenetic Regulation of Uridine Phosphorylase 1 Expression. J Transl Med 2025; 105:104106. [PMID: 39954852 DOI: 10.1016/j.labinv.2025.104106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 02/17/2025] Open
Abstract
Histone modifications regulate several biological processes that are critical to cancer development, from cell cycle, DNA damage repair, and chromatin compression to transcriptional regulation. Lysine methyltransferase 5C (KMT5C) is a trimethyltransferase of histone H4 and lysine 20 (H4K20me3) and has been reported to vary in function in different types of cancer. However, the role of KMT5C in oral squamous cell carcinoma (OSCC) is unknown. By analyzing the expression of KMT5C in 32 paired OSCC and normal specimens, we first found that KMT5C expression was decreased in OSCC samples. For TNM and T stages, patients from stages I and II showed high expression of KMT5C, whereas patients from stages III and IV tended to have low expression of KMT5C. KMT5C overexpression significantly retarded the growth and metastasis of OSCC cells in vitro and in vivo, whereas KMT5C knockdown had opposite effects. Notably, in OSCC cells, KMT5C overexpression significantly decreased uridine phosphorylase 1 (UPP1) expression, which was overexpressed in OSCC cells and associated with lymph node metastasis and poor overall survival of OSCC patients. We further demonstrated that overexpression of KMT5C increased H4K20me3 modification of the UPP1 promoter, leading to transcriptional inhibition. Additionally, transcription factor nuclear receptor subfamily 2 group C member 2 (NR2C2) was responsible for recruiting KMT5C to the UPP1 promoter to achieve H4K20me3 modification of UPP1. Alterations induced by KMT5C knockdown were partly reversed by UPP1 inhibition. Overall, we demonstrate that KMT5C, recruited by NR2C2, suppresses OSCC progression by inhibiting UPP1 transcription in an H4K20me3-dependent way.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China; Nosocomial Infection Management Office, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Aihua Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yuheng Wang
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yihao Liu
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Fayu Liu
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| |
Collapse
|
4
|
Kuang L, Pang Y, Fang Q. TMEM101 expression and its impact on immune cell infiltration and prognosis in hepatocellular carcinoma. Sci Rep 2024; 14:31847. [PMID: 39738479 PMCID: PMC11686260 DOI: 10.1038/s41598-024-83174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a cancer caused by inflammation, which affects the immune response and treatment outcomes. Finding new immune-related targets could improve HCC immunotherapy. New research suggests that TMEM family proteins can act as either tumor suppressors or oncogenes, but the role of TMEM101 in HCC development is unclear. This study conducted an analysis of TMEM101 mRNA expression and its correlation with clinical outcomes in HCC patients using RNA sequencing data from various open databases. Additionally, differences in TMEM101 expression in HCC cell lines and HCC tissue microarrays were examined using RT-qPCR, western blotting, and in situ hybridization staining. The findings presented herein offer initial evidence indicating a significant upregulation of TMEM101 mRNA expression in HCC, which is linked to a poorer prognosis. Furthermore, TMEM101 expression was found to be positively associated with the histological grade and clinical stage of HCC patients. Moreover, a notable reduction in promoter methylation of TMEM101 was observed in HCC patients. Cox regression analysis indicated that TMEM101 was an independent prognostic factor for overall survival (OS) in HCC patients. A nomogram incorporating TMEM101 and tumor stage was constructed and assessed. Comparative analysis with four established HCC diagnostic biomarkers (AFP, EFNA3, MDK, and SMYD5) using ROC curve and time-dependent ROC curves demonstrated the diagnostic potential of TMEM101 in HCC. Gene set enrichment analysis (GSEA) revealed a correlation between TMEM101 and the cell cycle, DNA replication, and repair signaling pathways, which were differentially enriched in the TMEM101 high expression phenotype. The findings from CIBERSORT analysis suggest that TMEM101's pro-tumor effect may be due to decreasing the number of anti-tumor immune cells (M1 macrophages and resting memory CD4+ T cells) and promoting M0 macrophage infiltration in the tumor microenvironment (TME). Overall, our study indicates that TMEM101 could serve as a promising diagnostic and prognostic biomarker for HCC.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/immunology
- Liver Neoplasms/mortality
- Liver Neoplasms/metabolism
- Prognosis
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Male
- Female
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Gene Expression Regulation, Neoplastic
- Middle Aged
- Cell Line, Tumor
- DNA Methylation
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Promoter Regions, Genetic/genetics
Collapse
Affiliation(s)
- Lingyun Kuang
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China
| | - Yilin Pang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Quangang Fang
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
5
|
Han TS, Kim DS, Son MY, Cho HS. SMYD family in cancer: epigenetic regulation and molecular mechanisms of cancer proliferation, metastasis, and drug resistance. Exp Mol Med 2024; 56:2325-2336. [PMID: 39482529 PMCID: PMC11611910 DOI: 10.1038/s12276-024-01326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 11/03/2024] Open
Abstract
Epigenetic modifiers (miRNAs, histone methyltransferases (HMTs)/demethylases, and DNA methyltransferases/demethylases) are associated with cancer proliferation, metastasis, angiogenesis, and drug resistance. Among these modifiers, HMTs are frequently overexpressed in various cancers, and recent studies have increasingly identified these proteins as potential therapeutic targets. In this review, we discuss members of the SET and MYND domain-containing protein (SMYD) family that are topics of extensive research on the histone methylation and nonhistone methylation of cancer-related genes. Various members of the SMYD family play significant roles in cancer proliferation, metastasis, and drug resistance by regulating cancer-specific histone methylation and nonhistone methylation. Thus, the development of specific inhibitors that target SMYD family members may lead to the development of cancer treatments, and combination therapy with various anticancer therapeutic agents may increase treatment efficacy.
Collapse
Affiliation(s)
- Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea.
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea.
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea.
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
6
|
Miao B, Ge L, He C, Wang X, Wu J, Li X, Chen K, Wan J, Xing S, Ren L, Shi Z, Liu S, Hu Y, Chen J, Yu Y, Feng L, Flores NM, Liang Z, Xu X, Wang R, Zhou J, Fan J, Xiang B, Li E, Mao Y, Cheng J, Zhao K, Mazur PK, Cai J, Lan F. SMYD5 is a ribosomal methyltransferase that catalyzes RPL40 lysine methylation to enhance translation output and promote hepatocellular carcinoma. Cell Res 2024; 34:648-660. [PMID: 39103523 PMCID: PMC11369092 DOI: 10.1038/s41422-024-01013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
While lysine methylation is well-known for regulating gene expression transcriptionally, its implications in translation have been largely uncharted. Trimethylation at lysine 22 (K22me3) on RPL40, a core ribosomal protein located in the GTPase activation center, was first reported 27 years ago. Yet, its methyltransferase and role in translation remain unexplored. Here, we report that SMYD5 has robust in vitro activity toward RPL40 K22 and primarily catalyzes RPL40 K22me3 in cells. The loss of SMYD5 and RPL40 K22me3 leads to reduced translation output and disturbed elongation as evidenced by increased ribosome collisions. SMYD5 and RPL40 K22me3 are upregulated in hepatocellular carcinoma (HCC) and negatively correlated with patient prognosis. Depleting SMYD5 renders HCC cells hypersensitive to mTOR inhibition in both 2D and 3D cultures. Additionally, the loss of SMYD5 markedly inhibits HCC development and growth in both genetically engineered mouse and patient-derived xenograft (PDX) models, with the inhibitory effect in the PDX model further enhanced by concurrent mTOR suppression. Our findings reveal a novel role of the SMYD5 and RPL40 K22me3 axis in translation elongation and highlight the therapeutic potential of targeting SMYD5 in HCC, particularly with concurrent mTOR inhibition. This work also conceptually broadens the understanding of lysine methylation, extending its significance from transcriptional regulation to translational control.
Collapse
Affiliation(s)
- Bisi Miao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Ge
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenxi He
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinghao Wang
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Jibo Wu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiang Li
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Kun Chen
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinkai Wan
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shenghui Xing
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingnan Ren
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhennan Shi
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengnan Liu
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Yajun Hu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiajia Chen
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanyan Yu
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Lijian Feng
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Natasha M Flores
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhihui Liang
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyi Xu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruoxin Wang
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Fan
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Xiang
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - En Li
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Yuanhui Mao
- Department of Neurology of The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Kehao Zhao
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jiabin Cai
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Ma S, Long G, Jiang Z, Zhang Y, Sun L, Pan Y, You Q, Guo X. Recent advances in targeting histone H3 lysine 36 methyltransferases for cancer therapy. Eur J Med Chem 2024; 274:116532. [PMID: 38805937 DOI: 10.1016/j.ejmech.2024.116532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Histone H3 lysine 36 (H3K36) methylation is a typical epigenetic histone modification that is involved in various biological processes such as DNA transcription, repair and recombination in vivo. Mutations, translocations, and aberrant gene expression associated with H3K36 methyltransferases have been implicated in different malignancies such as acute myeloid leukemia, lung cancer, multiple myeloma, and others. Herein, we provided a comprehensive overview of the latest advances in small molecule inhibitors targeting H3K36 methyltransferases. We analyzed the structures and biological functions of the H3K36 methyltransferases family members. Additionally, we discussed the potential directions for future development of inhibitors targeting H3K36 methyltransferases.
Collapse
Affiliation(s)
- Sai Ma
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Guanlu Long
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Liangkui Sun
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yun Pan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Ito T, Kubiura-Ichimaru M, Miura F, Tajima S, Surani MA, Ito T, Yamaguchi S, Tada M. DNMT1 can induce primary germ layer differentiation through de novo DNA methylation. Genes Cells 2024; 29:549-566. [PMID: 38811355 PMCID: PMC11447926 DOI: 10.1111/gtc.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
DNA methyltransferases and Ten-Eleven Translocation (TET) proteins regulate the DNA methylation and demethylation cycles during mouse embryonic development. Although DNMT1 mainly plays a role in the maintenance of DNA methylation after DNA replication, it is also reported to possess de novo methyltransferase capacity. However, its physiological significance remains unclear. Here, we demonstrate that full-length DNMT1 (FL) and a mutant lacking the N-terminus necessary for its maintenance activity (602) confer the differentiation potential of mouse Dnmt1, Dnmt3a, and Dnmt3b (Dnmts-TKO) embryonic stem cells (ESCs). Both FL and 602 inhibit the spontaneous differentiation of Dnmts-TKO ESCs in the undifferentiated state. Dnmts-TKO ESCs showed loss of DNA methylation and de-repression of primitive endoderm-related genes, but these defects were partially restored in Dnmts-TKO + FL and Dnmts-TKO + 602 ESCs. Upon differentiation, Dnmts-TKO + FL ESCs show increased 5mC and 5hmC levels across chromosomes, including pericentromeric regions. In contrast, Dnmts-TKO + 602 ESCs didn't accumulate 5mC, and sister chromatids showed 5hmC asynchronously. Furthermore, in comparison with DNMT1_602, DNMT1_FL effectively promoted commitment to the epiblast-like cells and beyond, driving cell-autonomous mesendodermal and germline differentiation through embryoid body-based methods. With precise target selectivity achieved by its N-terminal region, DNMT1 may play a role in gene regulation leading to germline development.
Collapse
Affiliation(s)
- Takamasa Ito
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Musashi Kubiura-Ichimaru
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shoji Tajima
- Laboratory of Epigenetics Institute for Protein Research, Osaka University, Suita, Japan
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, UK
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shinpei Yamaguchi
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Masako Tada
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| |
Collapse
|
9
|
Jing N, Du X, Liang Y, Tao Z, Bao S, Xiao H, Dong B, Gao WQ, Fang YX. PAX6 promotes neuroendocrine phenotypes of prostate cancer via enhancing MET/STAT5A-mediated chromatin accessibility. J Exp Clin Cancer Res 2024; 43:144. [PMID: 38745318 PMCID: PMC11094950 DOI: 10.1186/s13046-024-03064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Neuroendocrine prostate cancer (NEPC) is a lethal subset of prostate cancer which is characterized by neuroendocrine differentiation and loss of androgen receptor (AR) signaling. Growing evidence reveals that cell lineage plasticity is crucial in the failure of NEPC therapies. Although studies suggest the involvement of the neural transcription factor PAX6 in drug resistance, its specific role in NEPC remains unclear. METHODS The expression of PAX6 in NEPC was identified via bioinformatics and immunohistochemistry. CCK8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay were used to illustrate the key role of PAX6 in the progression of in vitro. ChIP and Dual-luciferase reporter assays were conducted to confirm the binding sequences of AR in the promoter region of PAX6, as well as the binding sequences of PAX6 in the promoter regions of STAT5A and MET. For in vivo validation, the xenograft model representing NEPC subtype underwent pathological analysis to verify the significant role of PAX6 in disease progression. Complementary diagnoses were established through public clinical datasets and transcriptome sequencing of specific cell lines. ATAC-seq was used to detect the chromatin accessibility of specific cell lines. RESULTS PAX6 expression was significantly elevated in NEPC and negatively regulated by AR signaling. Activation of PAX6 in non-NEPC cells led to NE trans-differentiation, while knock-down of PAX6 in NEPC cells inhibited the development and progression of NEPC. Importantly, loss of AR resulted in an enhanced expression of PAX6, which reprogramed the lineage plasticity of prostate cancer cells to develop NE phenotypes through the MET/STAT5A signaling pathway. Through ATAC-seq, we found that a high expression level of PAX6 elicited enhanced chromatin accessibility, mainly through attenuation of H4K20me3, which typically causes chromatin silence in cancer cells. CONCLUSION This study reveals a novel neural transcription factor PAX6 could drive NEPC progression and suggest that it might serve as a potential therapeutic target for the management of NEPC.
Collapse
Affiliation(s)
- Nan Jing
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
- Med-X Research Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xinxing Du
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - ZhenKeke Tao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shijia Bao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huixiang Xiao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Med-X Research Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yu-Xiang Fang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
10
|
Tae IH, Ryu TY, Kang Y, Lee J, Kim K, Lee JM, Kim HW, Ko JH, Kim DS, Son MY, Cho HS. Negative regulation of SH2B3 by SMYD5 controls epithelial-mesenchymal transition in lung cancer. Mol Cells 2024; 47:100067. [PMID: 38723947 PMCID: PMC11143772 DOI: 10.1016/j.mocell.2024.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
The main cause of death in lung cancer patients is metastasis. Thus, efforts to suppress micrometastasis or distant metastasis in lung cancer, identify therapeutic targets and develop related drugs are ongoing. In this study, we identified SET and MYND domain-containing protein 5 (SMYD5) as a novel metastasis regulator in lung cancer and found that SMYD5 was overexpressed in lung cancer based on both RNA-sequencing analysis results derived from the TCGA portal and immunohistochemical analysis results; knockdown of SMYD5 inhibited cell migration and invasion by changing epithelial-mesenchymal transition markers and MMP9 expression in NCI-H1299 and H1703 cell lines. Additionally, SMYD5 knockdown increased Src homology 2-b3 expression by decreasing the level of H4K20 trimethylation. Furthermore, in an in vitro epithelial-mesenchymal transition system using TGF-β treatment, SMYD5 knockdown resulted in reduced cell migration and invasion in the highly invasive NCI-H1299 and H1703 cell lines. Based on these findings, we propose that SMYD5 could serve as a potential therapeutic target for lung cancer treatment and that cotreatment with an SMYD5 inhibitor and chemotherapy may enhance the therapeutic effect of lung cancer treatment.
Collapse
Affiliation(s)
- In Hwan Tae
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Tae Young Ryu
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Yunsang Kang
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jinkwon Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kwanho Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jeong Min Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hee-Won Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jung Heon Ko
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dae-Soo Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
11
|
Nakao M, Sato Y, Aizawa A, Kimura H. Mode of SUV420H2 heterochromatin localization through multiple HP1 binding motifs in the heterochromatic targeting module. Genes Cells 2024; 29:361-379. [PMID: 38403935 PMCID: PMC11163940 DOI: 10.1111/gtc.13109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Constitutive heterochromatin is transcriptionally repressed and densely packed chromatin, typically harboring histone H3 Lys9 trimethylation (H3K9me3) and heterochromatin protein 1 (HP1). SUV420H2, a histone H4 Lys20 methyltransferase, is recruited to heterochromatin by binding to HP1 through its Heterochromatic Targeting Module (HTM). Here, we have identified three HP1 binding motifs within the HTM. Both the full-length HTM and its N-terminal region (HTM-N), which contains the first and second motifs, stabilized HP1 on heterochromatin. The intervening region between the first and second HP1 binding motifs in HTM-N was also crucial for HP1 binding. In contrast, the C-terminal region of HTM (HTM-C), containing the third motif, destabilized HP1 on chromatin. An HTM V374D mutant, featuring a Val374 to Asp substitution in the second HP1 binding motif, localizes to heterochromatin without affecting HP1 stability. These data suggest that the second HP1 binding motif in the SUV420H2 HTM is critical for locking HP1 on H3K9me3-enriched heterochromatin. HTM V374D, tagged with a fluorescent protein, can serve as a live-cell probe to visualize HP1-bound heterochromatin.
Collapse
Affiliation(s)
- Masaru Nakao
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Yuko Sato
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- Cell Biology Center, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Arisa Aizawa
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Hiroshi Kimura
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- Cell Biology Center, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
12
|
Tam PLF, Cheung MF, Chan LY, Leung D. Cell-type differential targeting of SETDB1 prevents aberrant CTCF binding, chromatin looping, and cis-regulatory interactions. Nat Commun 2024; 15:15. [PMID: 38167730 PMCID: PMC10762014 DOI: 10.1038/s41467-023-44578-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
SETDB1 is an essential histone methyltransferase that deposits histone H3 lysine 9 trimethylation (H3K9me3) to transcriptionally repress genes and repetitive elements. The function of differential H3K9me3 enrichment between cell-types remains unclear. Here, we demonstrate mutual exclusivity of H3K9me3 and CTCF across mouse tissues from different developmental timepoints. We analyze SETDB1 depleted cells and discover that H3K9me3 prevents aberrant CTCF binding independently of DNA methylation and H3K9me2. Such sites are enriched with SINE B2 retrotransposons. Moreover, analysis of higher-order genome architecture reveals that large chromatin structures including topologically associated domains and subnuclear compartments, remain intact in SETDB1 depleted cells. However, chromatin loops and local 3D interactions are disrupted, leading to transcriptional changes by modifying pre-existing chromatin landscapes. Specific genes with altered expression show differential interactions with dysregulated cis-regulatory elements. Collectively, we find that cell-type specific targets of SETDB1 maintain cellular identities by modulating CTCF binding, which shape nuclear architecture and transcriptomic networks.
Collapse
Affiliation(s)
- Phoebe Lut Fei Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Ming Fung Cheung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Lu Yan Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Danny Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China.
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China.
| |
Collapse
|
13
|
Agredo A, Kasinski AL. Histone 4 lysine 20 tri-methylation: a key epigenetic regulator in chromatin structure and disease. Front Genet 2023; 14:1243395. [PMID: 37671044 PMCID: PMC10475950 DOI: 10.3389/fgene.2023.1243395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Chromatin is a vital and dynamic structure that is carefully regulated to maintain proper cell homeostasis. A great deal of this regulation is dependent on histone proteins which have the ability to be dynamically modified on their tails via various post-translational modifications (PTMs). While multiple histone PTMs are studied and often work in concert to facilitate gene expression, here we focus on the tri-methylation of histone H4 on lysine 20 (H4K20me3) and its function in chromatin structure, cell cycle, DNA repair, and development. The recent studies evaluated in this review have shed light on how H4K20me3 is established and regulated by various interacting partners and how H4K20me3 and the proteins that interact with this PTM are involved in various diseases. Through analyzing the current literature on H4K20me3 function and regulation, we aim to summarize this knowledge and highlights gaps that remain in the field.
Collapse
Affiliation(s)
- Alejandra Agredo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Life Sciences Interdisciplinary Program (PULSe), Purdue University, West Lafayette, IN, United States
| | - Andrea L. Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
14
|
Padilla A, Manganaro JF, Huesgen L, Roess DA, Brown MA, Crans DC. Targeting Epigenetic Changes Mediated by Members of the SMYD Family of Lysine Methyltransferases. Molecules 2023; 28:molecules28042000. [PMID: 36838987 PMCID: PMC9967872 DOI: 10.3390/molecules28042000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
A comprehensive understanding of the mechanisms involved in epigenetic changes in gene expression is essential to the clinical management of diseases linked to the SMYD family of lysine methyltransferases. The five known SMYD enzymes catalyze the transfer of donor methyl groups from S-adenosylmethionine (SAM) to specific lysines on histones and non-histone substrates. SMYDs family members have distinct tissue distributions and tissue-specific functions, including regulation of development, cell differentiation, and embryogenesis. Diseases associated with SMYDs include the repressed transcription of SMYD1 genes needed for the formation of ion channels in the heart leading to heart failure, SMYD2 overexpression in esophageal squamous cell carcinoma (ESCC) or p53-related cancers, and poor prognosis associated with SMYD3 overexpression in more than 14 types of cancer including breast cancer, colon cancer, prostate cancer, lung cancer, and pancreatic cancer. Given the importance of epigenetics in various pathologies, the development of epigenetic inhibitors has attracted considerable attention from the pharmaceutical industry. The pharmacologic development of the inhibitors involves the identification of molecules regulating both functional SMYD SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domains, a process facilitated by available X-ray structures for SMYD1, SMYD2, and SMYD3. Important leads for potential pharmaceutical agents have been reported for SMYD2 and SMYD3 enzymes, and six epigenetic inhibitors have been developed for drugs used to treat myelodysplastic syndrome (Vidaza, Dacogen), cutaneous T-cell lymphoma (Zoinza, Isrodax), and peripheral T-cell lymphoma (Beleodag, Epidaza). The recently demonstrated reversal of SMYD histone methylation suggests that reversing the epigenetic effects of SMYDs in cancerous tissues may be a desirable target for pharmacological development.
Collapse
Affiliation(s)
- Alyssa Padilla
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - John F. Manganaro
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Lydia Huesgen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - Mark A. Brown
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523-1678, USA
- Graduate Degree Program in Ecology, Department of Ethnic Studies, Global Health and Health Disparities, Colorado School of Public Health, Colorado State University, Fort Collins, CO 80523-1612, USA
- Correspondence: (M.A.B.); (D.C.C.)
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA
- Correspondence: (M.A.B.); (D.C.C.)
| |
Collapse
|
15
|
Zare A, Salehpour A, Khoradmehr A, Bakhshalizadeh S, Najafzadeh V, Almasi-Turk S, Mahdipour M, Shirazi R, Tamadon A. Epigenetic Modification Factors and microRNAs Network Associated with Differentiation of Embryonic Stem Cells and Induced Pluripotent Stem Cells toward Cardiomyocytes: A Review. Life (Basel) 2023; 13:life13020569. [PMID: 36836926 PMCID: PMC9965891 DOI: 10.3390/life13020569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 02/22/2023] Open
Abstract
More research is being conducted on myocardial cell treatments utilizing stem cell lines that can develop into cardiomyocytes. All of the forms of cardiac illnesses have shown to be quite amenable to treatments using embryonic (ESCs) and induced pluripotent stem cells (iPSCs). In the present study, we reviewed the differentiation of these cell types into cardiomyocytes from an epigenetic standpoint. We also provided a miRNA network that is devoted to the epigenetic commitment of stem cells toward cardiomyocyte cells and related diseases, such as congenital heart defects, comprehensively. Histone acetylation, methylation, DNA alterations, N6-methyladenosine (m6a) RNA methylation, and cardiac mitochondrial mutations are explored as potential tools for precise stem cell differentiation.
Collapse
Affiliation(s)
- Afshin Zare
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Aria Salehpour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vahid Najafzadeh
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Sahar Almasi-Turk
- Department of Basic Sciences, School of Medicine, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
- Correspondence: (M.M.); (R.S.); (A.T.)
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Correspondence: (M.M.); (R.S.); (A.T.)
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz 7135644144, Iran
- Correspondence: (M.M.); (R.S.); (A.T.)
| |
Collapse
|
16
|
Wu L, Huang J, Trivedi P, Sun X, Yu H, He Z, Zhang X. Zinc finger myeloid Nervy DEAF-1 type (ZMYND) domain containing proteins exert molecular interactions to implicate in carcinogenesis. Discov Oncol 2022; 13:139. [PMID: 36520265 PMCID: PMC9755447 DOI: 10.1007/s12672-022-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Morphogenesis and organogenesis in the low organisms have been found to be modulated by a number of proteins, and one of such factor, deformed epidermal auto-regulatory factor-1 (DEAF-1) has been initially identified in Drosophila. The mammalian homologue of DEAF-1 and structurally related proteins have been identified, and they formed a family with over 20 members. The factors regulate gene expression through association with co-repressors, recognition of genomic marker, to exert histone modification by catalyze addition of some chemical groups to certain amino acid residues on histone and non-histone proteins, and degradation host proteins, so as to regulate cell cycle progression and execution of cell death. The formation of fused genes during chromosomal translocation, exemplified with myeloid transforming gene on chromosome 8 (MTG8)/eight-to-twenty one translocation (ETO) /ZMYND2, MTG receptor 1 (MTGR1)/ZMYND3, MTG on chromosome 16/MTGR2/ZMYND4 and BS69/ZMYND11 contributes to malignant transformation. Other anomaly like copy number variation (CNV) of BS69/ZMYND11 and promoter hyper methylation of BLU/ZMYND10 has been noted in malignancies. It has been reported that when fusing with Runt-related transcription factor 1 (RUNX1), the binding of MTG8/ZMYND2 with co-repressors is disturbed, and silencing of BLU/ZMYND10 abrogates its ability to inhibition of cell cycle and promotion of apoptotic death. Further characterization of the implication of ZMYND proteins in carcinogenesis would enhance understanding of the mechanisms of occurrence and early diagnosis of tumors, and effective antitumor efficacy.
Collapse
Affiliation(s)
- Longji Wu
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
- Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Huang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | - Xuerong Sun
- Institute of Aging, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hongbing Yu
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| | - Zhiwei He
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Xiangning Zhang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China.
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| |
Collapse
|
17
|
Razmi M, Yazdanpanah A, Etemad-Moghadam S, Alaeddini M, Angelini S, Eini L. Clinical prognostic value of the SMYD2/3 as new epigenetic biomarkers in solid cancer patients: a systematic review and meta-analysis. Expert Rev Mol Diagn 2022; 22:1-15. [PMID: 36346387 DOI: 10.1080/14737159.2022.2144235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND SET and MYND domain-containing protein (SMYD) family with methyltransferase activity is involved in cancer progression. This novel meta-analysis aimed to evaluate the association of SMYD family with the clinical and survival outcomes in solid cancer patients. METHODS We systematically searched Embase, PubMed, Scopus and Web of Science to select relevant articles. Hazard ratios (HRs), odds ratios (ORs), and 95% confidence intervals were extracted. Heterogeneity was evaluated by chi-square-based Q and I2 tests, while publication bias by funnel plots and Egger's test. RESULTS Thirty-two articles (4,826 patients) met inclusion criteria. SMYD2/3 overexpression was statistically associated with poor overall survival (HR = 1.794, P < 0.001), disease/relapse/progression-free survival (HR = 2.114, P < 0.001), disease/cancer-specific survival (HR = 3.220, P = 0.003), larger tumor size (OR = 1.963, P < 0.001), advanced TNM stage (OR = 2.066, P < 0.001), lymph node metastasis (OR = 2.054, P < 0.001), and distant metastasis (OR = 1.978, P = 0.004). Subgroup analysis showed more significant association between SMYD2 overexpression and reduced survival outcomes than that in SMYD3. Conversely, the relationship between SMYD3 and various clinicopathologic factors was stronger compared to SMYD2. CONCLUSION Enhanced SMYD2/3 expression may be an unfavorable clinical prognostic factor in different solid cancer types.
Collapse
Affiliation(s)
- Mahdieh Razmi
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ayna Yazdanpanah
- Department of Tissue Engineering and Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology (Fabit), University of Bologna, Bologna, Italy
| | - Leila Eini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Division of Histology, Department of Basic Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
18
|
Chomiak AA, Guo Y, Kopsidas CA, McDaniel DP, Lowe CC, Pan H, Zhou X, Zhou Q, Doughty ML, Feng Y. Nde1 is required for heterochromatin compaction and stability in neocortical neurons. iScience 2022; 25:104354. [PMID: 35601919 PMCID: PMC9121328 DOI: 10.1016/j.isci.2022.104354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
The NDE1 gene encodes a scaffold protein essential for brain development. Although biallelic NDE1 loss of function (LOF) causes microcephaly with profound mental retardation, NDE1 missense mutations and copy number variations are associated with multiple neuropsychiatric disorders. However, the etiology of the diverse phenotypes resulting from NDE1 aberrations remains elusive. Here we demonstrate Nde1 controls neurogenesis through facilitating H4K20 trimethylation-mediated heterochromatin compaction. This mechanism patterns diverse chromatin landscapes and stabilizes constitutive heterochromatin of neocortical neurons. We demonstrate that NDE1 can undergo dynamic liquid-liquid phase separation, partitioning to the nucleus and interacting with pericentromeric and centromeric satellite repeats. Nde1 LOF results in nuclear architecture aberrations and DNA double-strand breaks, as well as instability and derepression of pericentromeric satellite repeats in neocortical neurons. These findings uncover a pivotal role of NDE1/Nde1 in establishing and protecting neuronal heterochromatin. They suggest that heterochromatin instability predisposes a wide range of brain dysfunction.
Collapse
Affiliation(s)
- Alison A. Chomiak
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Yan Guo
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Caroline A. Kopsidas
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Dennis P. McDaniel
- Biomedical Instrumentation Center, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Clara C. Lowe
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Hongna Pan
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Qiong Zhou
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Martin L. Doughty
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Yuanyi Feng
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
19
|
SMYD5 catalyzes histone H3 lysine 36 trimethylation at promoters. Nat Commun 2022; 13:3190. [PMID: 35680905 PMCID: PMC9184575 DOI: 10.1038/s41467-022-30940-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
Histone marks, carriers of epigenetic information, regulate gene expression. In mammalian cells, H3K36me3 is mainly catalyzed by SETD2 at gene body regions. Here, we find that in addition to gene body regions, H3K36me3 is enriched at promoters in primary cells. Through screening, we identify SMYD5, which is recruited to chromatin by RNA polymerase II, as a methyltransferase catalyzing H3K36me3 at promoters. The enzymatic activity of SMYD5 is dependent on its C-terminal glutamic acid-rich domain. Overexpression of full-length Smyd5, but not the C-terminal domain-truncated Smyd5, restores H3K36me3 at promoters in Smyd5 knockout cells. Furthermore, elevated Smyd5 expression contributes to tumorigenesis in liver hepatocellular carcinoma. Together, our findings identify SMYD5 as the H3K36me3 methyltransferase at promoters that regulates gene expression, providing insights into the localization and function of H3K36me3.
Collapse
|
20
|
Zhang Y, Alshammari E, Sobota J, Yang A, Li C, Yang Z. Unique SMYD5 Structure Revealed by AlphaFold Correlates with Its Functional Divergence. Biomolecules 2022; 12:783. [PMID: 35740908 PMCID: PMC9221539 DOI: 10.3390/biom12060783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
SMYD5 belongs to a special class of protein lysine methyltransferases with an MYND (Myeloid-Nervy-DEAF1) domain inserted into a SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) domain. Despite recent advances in its functional characterization, the lack of the crystal structure has hindered our understanding of the structure-and-function relationships of this most unique member of the SMYD protein family. Here, we demonstrate the reliability of using AlphaFold structures for understanding the structure and function of SMYD5 by comparing the AlphaFold structures to the known crystal structures of SMYD proteins, using an inter-residue distance maps-based metric. We found that the AlphaFold confidence scores are inversely associated with the refined B-factors and can serve as a structural indicator of conformational flexibility. We also found that the N-terminal sequence of SMYD5, predicted to be a mitochondrial targeting signal, contains a novel non-classical nuclear localization signal. This sequence is structurally flexible and does not have a well-defined conformation, which might facilitate its recognition for SMYD5's cytonuclear transport. The structure of SMYD5 is unique in many aspects. The "crab"-like structure with a large negatively charged cleft provides a potential binding site for basic molecules such as protamines. The less positively charged MYND domain is associated with the undetectable DNA-binding ability. The most surprising feature is an incomplete target lysine access channel that lacks the evolutionarily conserved tri-aromatic arrangement, being associated with the low H3/H4 catalytic activity. This study expands our understanding of the SMYD protein family from a classical two-lobed structure to a structure of its own kind, being as a fundamental determinant of its functional divergence.
Collapse
Affiliation(s)
- Yingxue Zhang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA; (Y.Z.); (E.A.); (J.S.); (A.Y.)
| | - Eid Alshammari
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA; (Y.Z.); (E.A.); (J.S.); (A.Y.)
| | - Jacob Sobota
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA; (Y.Z.); (E.A.); (J.S.); (A.Y.)
| | - Alexander Yang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA; (Y.Z.); (E.A.); (J.S.); (A.Y.)
| | - Chunying Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA;
| | - Zhe Yang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA; (Y.Z.); (E.A.); (J.S.); (A.Y.)
| |
Collapse
|
21
|
Hou Y, Sun X, Gheinani PT, Guan X, Sharma S, Zhou Y, Jin C, Yang Z, Naren AP, Yin J, Denning TL, Gewirtz AT, Liu Y, Xie Z, Li C. Epithelial SMYD5 Exaggerates IBD by Down-regulating Mitochondrial Functions via Post-Translational Control of PGC-1α Stability. Cell Mol Gastroenterol Hepatol 2022; 14:375-403. [PMID: 35643234 PMCID: PMC9249919 DOI: 10.1016/j.jcmgh.2022.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS The expression and role of methyltransferase SET and MYND domain-containing protein 5 (SMYD5) in inflammatory bowel disease (IBD) is completely unknown. Here, we investigated the role and underlying mechanism of epithelial SMYD5 in IBD pathogenesis and progression. METHODS The expression levels of SMYD5 and the mitochondrial transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) were examined by Western blot, immunofluorescence staining, and immunohistochemistry in intestinal epithelial cells (IECs) and in colon tissues from human IBD patients and colitic mice. Mice with Smyd5 conditional knockout in IECs and littermate controls were subjected to dextran sulfate sodium-induced colitis and the disease severity was assessed. SMYD5-regulated mitochondrial biogenesis was examined by quantitative reverse-transcription polymerase chain reaction and transmission electron microscopy, and the mitochondrial oxygen consumption rate was measured in a Seahorse Analyzer system (Agilent, Santa Clara, CA). SMYD5 and PGC-1α interaction was determined by co-immunoprecipitation assay. PGC-1α degradation and turnover (half-life) were analyzed by cycloheximide chase assay. SMYD5-mediated PGC-1α methylation was assessed via in vitro methylation assay followed by mass spectrometry for identification of methylated lysine residues. RESULTS Up-regulated SMYD5 and down-regulated PGC-1α were observed in intestinal epithelia from IBD patients and colitic mice. Smyd5 depletion in IECs protected mice from dextran sulfate sodium-induced colitis. SMYD5 was critically involved in regulating mitochondrial biology such as mitochondrial biogenesis, respiration, and apoptosis. Mechanistically, SMYD5 regulates mitochondrial functions in a PGC-1α-dependent manner. Furthermore, SMYD5 mediates lysine methylation of PGC-1α and subsequently facilitates its ubiquitination and degradation. CONCLUSIONS SMYD5 attenuates mitochondrial functions in IECs and promotes IBD progression by enhancing PGC-1α degradation in a methylation-dependent manner. Strategies to decrease SMYD5 expression and/or increase PGC-1α expression in IECs might be a promising therapeutic approach to treat IBD patients.
Collapse
Affiliation(s)
- Yuning Hou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Xiaonan Sun
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | | | - Xiaoqing Guan
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Shaligram Sharma
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Yu Zhou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia; Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chengliu Jin
- Transgenic and Gene Targeting Core, Georgia State University, Atlanta, Georgia
| | - Zhe Yang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jun Yin
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Timothy L Denning
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Yuan Liu
- Program of Immunology and Cellular Biology, Department of Biology, Georgia State University, Atlanta, Georgia
| | - Zhonglin Xie
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Chunying Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
22
|
H3K4 demethylase KDM5B regulates cancer cell identity and epigenetic plasticity. Oncogene 2022; 41:2958-2972. [PMID: 35440714 DOI: 10.1038/s41388-022-02311-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/08/2022]
Abstract
The H3K4 demethylase KDM5B is overexpressed in multiple cancer types, and elevated expression levels of KDM5B is associated with decreased survival. However, the underlying mechanistic contribution of dysregulated expression of KDM5B and H3K4 demethylation in cancer is poorly understood. Our results show that loss of KDM5B in multiple types of cancer cells leads to increased proliferation and elevated expression of cancer stem cell markers. In addition, we observed enhanced tumor formation following KDM5B depletion in a subset of representative cancer cell lines. Our findings also support a role for KDM5B in regulating epigenetic plasticity, where loss of KDM5B in cancer cells with elevated KDM5B expression leads to alterations in activity of chromatin states, which facilitate activation or repression of alternative transcriptional programs. In addition, we define KDM5B-centric epigenetic and transcriptional patterns that support cancer cell plasticity, where KDM5B depleted cancer cells exhibit altered epigenetic and transcriptional profiles resembling a more primitive cellular state. This study also provides a resource for evaluating associations between alterations in epigenetic patterning upon depletion of KDM5B and gene expression in a diverse set of cancer cells.
Collapse
|
23
|
Aljazi MB, Gao Y, Wu Y, He J. SMYD5 is a histone H3-specific methyltransferase mediating mono-methylation of histone H3 lysine 36 and 37. Biochem Biophys Res Commun 2022; 599:142-147. [PMID: 35182940 PMCID: PMC8896656 DOI: 10.1016/j.bbrc.2022.02.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
Abstract
Although post-translational modifications (-PTMs) of some histone H3 lysine residues are well studied, the PTMs of histone H3 lysine 37 in mammalian cells remain largely unknown. In this study, we provide evidence to show that SMYD family member 5 (SMYD5) is a histone H3-specfic methyltransferase that catalyzes mono-methylation of H3 lysine 36 and 37 (H3K36/K37me1) in vitro. The site-mutagenesis analysis shows that a species-conserved histidine in its catalytic SET domain is required for its histone methyltransferase activity. Genetic deletion of Smyd5 in murine embryonic stem cells (mESCs) partially reduces the global histone H3K37me1 level in cells, suggesting SMYD5 is one of histone methyltransferases catalyzing histone H3K37me1 in vivo. Hence, our study reveals that SMYD5 is a histone H3-specific methyltransferase that mediates histone H3K36/K37me1, which provides a biochemical basis for further studying its functions in mammalian cells.
Collapse
Affiliation(s)
- Mohammad B Aljazi
- Department of Biochemistry & Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Yuen Gao
- Department of Biochemistry & Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Yan Wu
- Department of Biochemistry & Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Jin He
- Department of Biochemistry & Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
24
|
SMYD5 acts as a potential biomarker for hepatocellular carcinoma. Exp Cell Res 2022; 414:113076. [PMID: 35218722 DOI: 10.1016/j.yexcr.2022.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/24/2022]
Abstract
Determining the prognosis of patients remains a challenge due to the phenotypic and molecular diversities of hepatocellular carcinomas (HCC). We aimed to evaluate the role of SMYD5 in HCC. Wilcoxon signed-rank test and logistic regression analyzed the relationship between clinical pathologic features and SMYD5. We found that increased expression of SMYD5 in HCC was closely associated with high histologic grade, stage, T stage and nodal stage. Kaplan-Meier method, Cox regression, univariate analysis and multivariate analysis detected overall survival of TCGA-HCC patients. It turned out that high expression of SMYD5 predicted a worse prognosis in HCC. Gene Set Enrichment Analysis (GSEA) was applied via TCGA data set, which indicated that complement and coagulation cascades, fatty acid metabolism, primary bile acid biosynthesis, drug metabolism cytochrome P450, PPAR signaling pathway and retinol metabolism were differentially enriched in SMYD5 high expression phenotype. Interestingly, we proved that SMYD5 upregulation in HCC cells was induced by promoter hypo-methylation. Moreover, functional experiments demonstrated that SMYD5 silencing abrogated cell proliferation, migration and invasion and enhanced paclitaxel sensitivity in HCC. All findings implied that SMYD5 might be an underlying biomarker for prognosis and treatment of HCC.
Collapse
|
25
|
Rueda-Robles A, Audano M, Álvarez-Mercado AI, Rubio-Tomás T. Functions of SMYD proteins in biological processes: What do we know? An updated review. Arch Biochem Biophys 2021; 712:109040. [PMID: 34555372 DOI: 10.1016/j.abb.2021.109040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Epigenetic modifiers, such as methyltransferases, play crucial roles in the regulation of many biological processes, including development, cancer and multiple physiopathological conditions. SUMMARY The Su(Var)3-9, Enhancer-of-zeste and Trithorax (SET) and Myeloid, Nervy, and DEAF-1 (MYND) domain-containing (SMYD) protein family consists of five members in humans and mice (i.e. SMYD1, SMYD2, SMYD3, SMYD4 and SMYD5), which are known or predicted to have methyltransferase activity on histone and non-histone substrates. The abundance of information concerning SMYD2 and SMYD3 is of note, whereas the other members of the SMYD family have not been so thoroughly studied CONCLUSION: Here we review the literature regarding SMYD proteins published in the last five years, including basic molecular biology mechanistic studies using in vitro systems and animal models, as well as human studies with a more translational or clinical approach.
Collapse
Affiliation(s)
- Ascensión Rueda-Robles
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ana I Álvarez-Mercado
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, 18014, Spain.
| | - Teresa Rubio-Tomás
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; School of Medicine, University of Crete, 70013, Herakleion, Crete, Greece.
| |
Collapse
|
26
|
Liu X, Jiang S, Ma L, Qu J, Zhao L, Zhu X, Ding J. Time-dependent effect of 1,6-hexanediol on biomolecular condensates and 3D chromatin organization. Genome Biol 2021; 22:230. [PMID: 34404453 PMCID: PMC8369800 DOI: 10.1186/s13059-021-02455-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Biomolecular condensates have been implicated in multiple cellular processes. However, the global role played by condensates in 3D chromatin organization remains unclear. At present, 1,6-hexanediol (1,6-HD) is the only available tool to globally disrupt condensates, yet the conditions of 1,6-HD vary considerably between studies and may even trigger apoptosis. RESULTS In this study, we first analyzed the effects of different concentrations and treatment durations of 1,6-HD and found that short-term exposure to 1.5% 1,6-HD dissolved biomolecular condensates whereas long-term exposure caused aberrant aggregation without affecting cell viability. Based on this condition, we drew a time-resolved map of 3D chromatin organization and found that short-term treatment with 1.5% 1,6-HD resulted in reduced long-range interactions, strengthened compartmentalization, homogenized A-A interactions, B-to-A compartment switch and TAD reorganization, whereas longer exposure had the opposite effects. Furthermore, the long-range interactions between condensate-component-enriched regions were markedly weakened following 1,6-HD treatment. CONCLUSIONS In conclusion, our study finds a proper 1,6-HD condition and provides a resource for exploring the role of biomolecular condensates in 3D chromatin organization.
Collapse
Affiliation(s)
- Xinyi Liu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shaoshuai Jiang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lin Ma
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiale Qu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Longying Zhao
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xing Zhu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Junjun Ding
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
27
|
Jin X, Liu W, Miao J, Tai Z, Li L, Guan P, Liu JX. Copper ions impair zebrafish skeletal myofibrillogenesis via epigenetic regulation. FASEB J 2021; 35:e21686. [PMID: 34101239 DOI: 10.1096/fj.202100183r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022]
Abstract
Unbalanced copper (Cu2+ ) homeostasis is associated with the developmental defects of vertebrate myogenesis, but the underlying molecular mechanisms remain elusive. In this study, it was found that Cu2+ stressed zebrafish embryos and larvae showed reduced locomotor speed as well as loose and decreased myofibrils in skeletal muscle, coupled with the downregulated expression of muscle fiber markers mylpfa and smyhc1l and the irregular arrangement of myofibril and sarcomere. Meanwhile, the Cu2+ stressed zebrafish embryos and larvae also showed significant reduction in the expression of H3K4 methyltransferase smyd1b transcripts and H3K4me3 protein as well as in the binding enrichment of H3K4me3 on gene mylpfa promoter in skeletal muscle cells, suggesting that smyd1b-H3K4me3 axis mediates the Cu2+ -induced myofibrils specification defects. Additionally, whole genome DNA methylation sequencing unveiled that the gene smyd5 exhibited significant promoter hyper-methylation and increased expression in Cu2+ stressed embryos, and the ectopic expression of smyd5 in zebrafish embryos also induced the myofibrils specification defects as those observed in Cu2+ stressed embryos. Moreover, Cu2+ was shown to suppress myofibrils specification and smyd1b promoter transcriptional activity directly independent of the integral function of copper transporter cox17 and atp7b. All these data may shed light on the linkage of unbalanced copper homeostasis with specific gene promoter methylation and epigenetic histone protein modification as well as the resultant signaling transduction and the myofibrillogenesis defects.
Collapse
Affiliation(s)
- XiaoDong Jin
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jing Miao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - ZhiPeng Tai
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - LingYa Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - PengPeng Guan
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
Kohli S, Gulati P, Narang A, Maini J, Shamsudheen KV, Pandey R, Scaria V, Sivasubbu S, Brahmachari V. Genome and transcriptome analysis of the mealybug Maconellicoccus hirsutus: Correlation with its unique phenotypes. Genomics 2021; 113:2483-2494. [PMID: 34022346 DOI: 10.1016/j.ygeno.2021.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/02/2021] [Accepted: 05/17/2021] [Indexed: 11/27/2022]
Abstract
Mealybugs are aggressive pests with world-wide distribution and are suitable for the study of different phenomena like genomic imprinting and epigenetics. Genomic approaches facilitate these studies in absence of robust genetics in this system. We sequenced, de novo assembled, annotated Maconellicoccus hirsutus genome. We carried out comparative genomics it with four mealybug and eight other insect species, to identify expanded, specific and contracted gene classes that relate to pesticide and desiccation resistance. We identified horizontally transferred genes adding to the mutualism between the mealybug and its endosymbionts. Male and female transcriptome analysis indicates differential expression of metabolic pathway genes correlating with their physiology and the genes for sexual dimorphism. The significantly lower expression of endosymbiont genes in males relates to the depletion of endosymbionts in males during development.
Collapse
Affiliation(s)
- Surbhi Kohli
- Dr.B.R.Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Parul Gulati
- Dr.B.R.Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Ankita Narang
- Dr.B.R.Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| | - Jayant Maini
- Dr.B.R.Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - K V Shamsudheen
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Rajesh Pandey
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | | | - Vani Brahmachari
- Dr.B.R.Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| |
Collapse
|
29
|
Histone lysine methyltransferase SET8 is a novel therapeutic target for cancer treatment. Drug Discov Today 2021; 26:2423-2430. [PMID: 34022460 DOI: 10.1016/j.drudis.2021.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
SET8 is the only lysine methyltransferase that can specifically monomethylate the histone H4K20. SET8-mediated protein modifications are largely involved in the regulation of cell cycle, DNA repair, gene transcription, cell apoptosis, and other vital physiological processes. The aberrant expression of SET8 is closely linked to the proliferation, invasion, metastasis, and prognosis of a variety of cancers. As a consequence, targeting SET8 could be an appealing strategy for cancer therapy. In this article, we introduce the molecular structure of SET8, followed by summarizing its roles in various biological pathways. Crucially, we highlight the potential functions of SET8 in tumors, as well as progress in the development of SET inhibitors for cancer treatment.
Collapse
|
30
|
DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation. Nat Commun 2021; 12:2490. [PMID: 33941775 PMCID: PMC8093215 DOI: 10.1038/s41467-021-22665-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
DNA methylation and trimethylated histone H4 Lysine 20 (H4K20me3) constitute two important heterochromatin-enriched marks that frequently cooperate in silencing repetitive elements of the mammalian genome. However, it remains elusive how these two chromatin modifications crosstalk. Here, we report that DNA methyltransferase 1 (DNMT1) specifically ‘recognizes’ H4K20me3 via its first bromo-adjacent-homology domain (DNMT1BAH1). Engagement of DNMT1BAH1-H4K20me3 ensures heterochromatin targeting of DNMT1 and DNA methylation at LINE-1 retrotransposons, and cooperates with the previously reported readout of histone H3 tail modifications (i.e., H3K9me3 and H3 ubiquitylation) by the RFTS domain to allosterically regulate DNMT1’s activity. Interplay between RFTS and BAH1 domains of DNMT1 profoundly impacts DNA methylation at both global and focal levels and genomic resistance to radiation-induced damage. Together, our study establishes a direct link between H4K20me3 and DNA methylation, providing a mechanism in which multivalent recognition of repressive histone modifications by DNMT1 ensures appropriate DNA methylation patterning and genomic stability. How histone modifications crosstalk with DNA methylation to regulate epigenomic patterning and genome stability in mammals remains elusive. Here, the authors show that DNA methyltransferase DNMT1 is a reader for histone H4K20 trimethylation via its BAH1 domain, which leads to optimal maintenance of DNA methylation at repetitive LINE-1 elements.
Collapse
|
31
|
Zhang Y, Hayden S, Spellmon N, Xue W, Martin K, Muzzarelli K, Kovari L, Yang Z. Sperm chromatin-condensing protamine enhances SMYD5 thermal stability. Biochem Biophys Res Commun 2021; 550:1-7. [PMID: 33676231 DOI: 10.1016/j.bbrc.2021.02.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022]
Abstract
Studying thermal stability of proteins not only provides insight into protein structure but also is instrumental in identifying previously unknown interaction partners. We develop a machine learning strategy that combines orthogonal partial least squares regression and stability screening of Silver Bullets Bio library to identify biologically active molecules that enhance protein stability. This strategy proves effective in extracting the stability-enhancing molecules for SMYD5, a histone lysine methyltransferase that regulates chromosome integrity. Protamine, a histone substitute in chromatin condensation during spermatogenesis, is identified as the most influential molecule to enhance SMYD5 thermal stability. We find that the C-terminal poly-glutamic acid tract (poly-E) and a 30-residue insertion in MYND domain (M-insertion), which are unique to SMYD5, regulate the structural stability. However, protamine plays a dominant role in SMYD5 stability, and in the presence of protamine, the poly-E tract or M-insertion loses its ability to affect the stability. The stability-enhancing effect of protamine is SMYD5 specific, and for SMYD2, a closely related homolog, protamine exhibits opposite, destabilizing effects. We find that both SMYD5 and SMYD2 interact with protamine, where SMYD5 interaction is independent of the poly-E tract and M-insertion. Protamine not only helps provide insight into the structure-stability relationships of SMYD5, but also suggests a potential functional link of SMYD5 to spermatogenesis. SMYD5 is a ubiquitously expressed gene with the highest expression in testis, especially in the seminiferous ducts that contain germ cells. Thus, our study opens up avenues that could help delineate major mechanisms underlying chromatin dynamics during spermatogenesis.
Collapse
Affiliation(s)
- Yingxue Zhang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stephanie Hayden
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nicholas Spellmon
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wen Xue
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kaitlyn Martin
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kendall Muzzarelli
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ladislau Kovari
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhe Yang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
32
|
Integrative pan cancer analysis reveals epigenomic variation in cancer type and cell specific chromatin domains. Nat Commun 2021; 12:1419. [PMID: 33658503 PMCID: PMC7930052 DOI: 10.1038/s41467-021-21707-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetic mechanisms contribute to the initiation and development of cancer, and epigenetic variation promotes dynamic gene expression patterns that facilitate tumor evolution and adaptation. While the NCI-60 panel represents a diverse set of human cancer cell lines that has been used to screen chemical compounds, a comprehensive epigenomic atlas of these cells has been lacking. Here, we report an integrative analysis of 60 human cancer epigenomes, representing a catalog of activating and repressive histone modifications. We identify genome-wide maps of canonical sharp and broad H3K4me3 domains at promoter regions of tumor suppressors, H3K27ac-marked conventional enhancers and super enhancers, and widespread inter-cancer and intra-cancer specific variability in H3K9me3 and H4K20me3-marked heterochromatin domains. Furthermore, we identify features of chromatin states, including chromatin state switching along chromosomes, correlation of histone modification density with genetic mutations, DNA methylation, enrichment of DNA binding motifs in regulatory regions, and gene activity and inactivity. These findings underscore the importance of integrating epigenomic maps with gene expression and genetic variation data to understand the molecular basis of human cancer. Our findings provide a resource for mining epigenomic maps of human cancer cells and for identifying epigenetic therapeutic targets.
Collapse
|
33
|
Stachecka J, Kolodziejski PA, Noak M, Szczerbal I. Alteration of active and repressive histone marks during adipogenic differentiation of porcine mesenchymal stem cells. Sci Rep 2021; 11:1325. [PMID: 33446668 PMCID: PMC7809488 DOI: 10.1038/s41598-020-79384-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/07/2020] [Indexed: 01/01/2023] Open
Abstract
A characteristic spatial distribution of the main chromatin fractions is observed in most mammalian cell nuclei, with euchromatin localized in the interior and heterochromatin at the nuclear periphery. It has been shown that interactions of heterochromatin with the nuclear lamina are necessary to establish this conventional architecture. Adipocytes are specific cells in which a reduction in lamin A/C expression is observed. We hypothesize that the loss of lamin A/C during adipogenic differentiation of mesenchymal stem cells (MSCs) may be associated with the reorganization of the main classes of chromatin in the nucleus. Thus, in this study, we examine the abundance and nuclear distribution of selected heterochromatin (H3K9me3, H3K27me3 and H4K20me3) and euchromatin (H4K8ac, H3K4me3 and H3K9ac) histone marks during in vitro adipogenesis, using the pig as a model organism. We found that not only did the expression of lamin A/C decrease in our differentiation system, but so did the expression of lamin B receptor (LBR). The level of two heterochromatin marks, H3K27me3 and H4K20me3, increased during differentiation, while no changes were observed for H3K9me3. The levels of two euchromatin histone marks, H4K8ac and H3K9ac, were significantly higher in adipocytes than in undifferentiated cells, while the level of H3K4me3 did not change significantly. The spatial distribution of all the examined histone marks altered during in vitro adipogenesis. H3K27me3 and H4K20me3 moved towards the nuclear periphery and H3K9me3 localized preferentially in the intermediate part of adipocyte nuclei. The euchromatin marks H3K9ac and H3K4me3 preferentially occupied the peripheral part of the adipocyte nuclei, while H4K8ac was more evenly distributed in the nuclei of undifferentiated and differentiated cells. Analysis of the nuclear distribution of repetitive sequences has shown their clustering and relocalization toward nuclear periphery during differentiation. Our study shows that dynamic changes in the abundance and nuclear distribution of active and repressive histone marks take place during adipocyte differentiation. Nuclear reorganization of heterochromatin histone marks may allow the maintenance of the nuclear morphology of the adipocytes, in which reduced expression of lamin A/C and LBR is observed.
Collapse
Affiliation(s)
- Joanna Stachecka
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Pawel A Kolodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
| | - Magdalena Noak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| |
Collapse
|
34
|
Kurup JT, Han Z, Jin W, Kidder BL. H4K20me3 methyltransferase SUV420H2 shapes the chromatin landscape of pluripotent embryonic stem cells. Development 2020; 147:dev.188516. [PMID: 33144397 DOI: 10.1242/dev.188516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022]
Abstract
Heterochromatin, a densely packed chromatin state that is transcriptionally silent, is a critical regulator of gene expression. However, it is unclear how the repressive histone modification H4K20me3 or the histone methyltransferase SUV420H2 regulates embryonic stem (ES) cell fate by patterning the epigenetic landscape. Here, we report that depletion of SUV420H2 leads to a near-complete loss of H4K20me3 genome wide, dysregulated gene expression and delayed ES cell differentiation. SUV420H2-bound regions are enriched with repetitive DNA elements, which are de-repressed in SUV420H2 knockout ES cells. Moreover, SUV420H2 regulation of H4K20me3-marked heterochromatin controls chromatin architecture, including fine-scale chromatin interactions in pluripotent ES cells. Our results indicate that SUV420H2 plays a crucial role in stabilizing the three-dimensional chromatin landscape of ES cells, as loss of SUV420H2 resulted in A/B compartment switching, perturbed chromatin insulation, and altered chromatin interactions of pericentric heterochromatin and surrounding regions, indicative of localized decondensation. In addition, depletion of SUV420H2 resulted in compromised interactions between H4K20me3 and gene-regulatory regions. Together, these findings describe a new role for SUV420H2 in regulating the chromatin landscape of ES cells.
Collapse
Affiliation(s)
- Jiji T Kurup
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhijun Han
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenfei Jin
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Benjamin L Kidder
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA .,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
35
|
Corvalan AZ, Coller HA. Methylation of histone 4's lysine 20: a critical analysis of the state of the field. Physiol Genomics 2020; 53:22-32. [PMID: 33197229 DOI: 10.1152/physiolgenomics.00128.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromatin is a highly dynamic structure whose plasticity is achieved through multiple processes including the posttranslational modification of histone tails. Histone modifications function through the recruitment of nonhistone proteins to chromatin and thus have the potential to influence many fundamental biological processes. Here, we focus on the function and regulation of lysine 20 of histone H4 (H4K20) methylation in multiple biological processes including DNA repair, cell cycle regulation, and DNA replication. The purpose of this review is to highlight recent studies that elucidate the functions associated with each of the methylation states of H4K20, their modifying enzymes, and their protein readers. Based on our current knowledge of H4K20 methylation, we critically analyze the data supporting these functions and outline questions for future research.
Collapse
Affiliation(s)
- Adriana Z Corvalan
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, California.,Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California.,Department of Biological Chemistry, University of California, Los Angeles, California
| | - Hilary A Coller
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, California.,Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California.,Department of Biological Chemistry, University of California, Los Angeles, California
| |
Collapse
|
36
|
Sawaengdee W, Cui K, Zhao K, Hongeng S, Fucharoen S, Wongtrakoongate P. Genome-Wide Transcriptional Regulation of the Long Non-coding RNA Steroid Receptor RNA Activator in Human Erythroblasts. Front Genet 2020; 11:850. [PMID: 32849830 PMCID: PMC7431964 DOI: 10.3389/fgene.2020.00850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/13/2020] [Indexed: 01/21/2023] Open
Abstract
Erythropoiesis of human hematopoietic stem cells (HSCs) maintains generation of red blood cells throughout life. However, little is known how human erythropoiesis is regulated by long non-coding RNAs (lncRNAs). By using ChIRP-seq, we report here that the lncRNA steroid receptor RNA activator (SRA) occupies chromatin, and co-localizes with CTCF, H3K4me3, and H3K27me3 genome-wide in human erythroblast cell line K562. CTCF binding sites that are also occupied by SRA are enriched for either H3K4me3 or H3K27me3. Transcriptome-wide analyses reveal that SRA facilitates expression of erythroid-associated genes, while repressing leukocyte-associated genes in both K562 and CD36-positive primary human proerythroblasts derived from HSCs. We find that SRA-regulated genes are enriched by both CTCF and SRA bindings. Further, silencing of SRA decreases expression of the erythroid-specific markers TFRC and GYPA, and down-regulates expression of globin genes in both K562 and human proerythroblast cells. Taken together, our findings establish that the lncRNA SRA occupies chromatin, and promotes transcription of erythroid genes, therefore facilitating human erythroid transcriptional program.
Collapse
Affiliation(s)
- Waritta Sawaengdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
37
|
Shue YT, Lee KT, Walters BW, Ong HB, Silvaraju S, Lam WJ, Lim CY. Dynamic shifts in chromatin states differentially mark the proliferative basal cells and terminally differentiated cells of the developing epidermis. Epigenetics 2020; 15:932-948. [PMID: 32175801 DOI: 10.1080/15592294.2020.1738028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Post-translational modifications on nucleosomal histones represent a key epigenetic regulatory mechanism to mediate the complex gene expression, DNA replication, and cell cycle changes that occur in embryonic cells undergoing lineage specification, maturation, and differentiation during development. Here, we investigated the dynamics of 13 key histone marks in epidermal cells at three distinct stages of embryonic skin development and identified significant changes that corresponded with the maturation of the proliferative basal epidermal cells and terminally differentiated cells in the stratified layers. In particular, H3K4me3 and H3K27ac were accumulated and became more prominent in the basal cells at later stages of epidermal development, while H3K27me3 was found to be low in the basal cells but highly enriched in the differentiated suprabasal cell types. Constitutive heterochromatin marked by H4K20me3 was also significantly elevated in differentiated epidermal cells at late gestation stages, which exhibited a concomitant loss of H4K16 acetylation. These differential chromatin profiles were established in the embryonic skin by gestation day 15 and further amplified at E18 and in postnatal skin. Our results reveal the dynamic chromatin states that occur as epidermal progenitor cells commit to the lineage and differentiate into the different cells of the stratified epidermis and provide insight to the underlying epigenetic pathways that support normal epidermal development and homoeostasis.
Collapse
Affiliation(s)
- Yan Ting Shue
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore
| | - Kang Ting Lee
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore
| | - Benjamin William Walters
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore.,Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester , Manchester, UK
| | - Hui Binn Ong
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore
| | - Shaktheeshwari Silvaraju
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore
| | - Wei Jun Lam
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Chin Yan Lim
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
38
|
Lu JY, Shao W, Chang L, Yin Y, Li T, Zhang H, Hong Y, Percharde M, Guo L, Wu Z, Liu L, Liu W, Yan P, Ramalho-Santos M, Sun Y, Shen X. Genomic Repeats Categorize Genes with Distinct Functions for Orchestrated Regulation. Cell Rep 2020; 30:3296-3311.e5. [PMID: 32160538 PMCID: PMC7195444 DOI: 10.1016/j.celrep.2020.02.048] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 11/11/2019] [Accepted: 02/10/2020] [Indexed: 11/06/2022] Open
Abstract
Repetitive elements are abundantly distributed in mammalian genomes. Here, we reveal a striking association between repeat subtypes and gene function. SINE, L1, and low-complexity repeats demarcate distinct functional categories of genes and may dictate the time and level of gene expression by providing binding sites for different regulatory proteins. Importantly, imaging and sequencing analysis show that L1 repeats sequester a large set of genes with specialized functions in nucleolus- and lamina-associated inactive domains that are depleted of SINE repeats. In addition, L1 transcripts bind extensively to its DNA in embryonic stem cells (ESCs). Depletion of L1 RNA in ESCs leads to relocation of L1-enriched chromosomal segments from inactive domains to the nuclear interior and de-repression of L1-associated genes. These results demonstrate a role of L1 DNA and RNA in gene silencing and suggest a general theme of genomic repeats in orchestrating the function, regulation, and expression of their host genes.
Collapse
Affiliation(s)
- J Yuyang Lu
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wen Shao
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Chang
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Yafei Yin
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Li
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hui Zhang
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yantao Hong
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Michelle Percharde
- MRC London Institute of Medical Sciences (LMS), London W120NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W120NN, UK
| | - Lerui Guo
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhongyang Wu
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lichao Liu
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Liu
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Pixi Yan
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Xiaohua Shen
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
39
|
Hansel, Gretel, and the Consequences of Failing to Remove Histone Methylation Breadcrumbs. Trends Genet 2020; 36:160-176. [PMID: 32007289 PMCID: PMC10047806 DOI: 10.1016/j.tig.2019.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
Abstract
Like breadcrumbs in the forest, cotranscriptionally acquired histone methylation acts as a memory of prior transcription. Because it can be retained through cell divisions, transcriptional memory allows cells to coordinate complex transcriptional programs during development. However, if not reprogrammed properly during cell fate transitions, it can also disrupt cellular identity. In this review, we discuss the consequences of failure to reprogram histone methylation during three crucial epigenetic reprogramming windows: maternal reprogramming at fertilization, embryonic stem cell (ESC) differentiation, and the continuous maintenance of cell identity in differentiated cells. In addition, we discuss how following the wrong breadcrumb trail of transcriptional memory provides a framework for understanding how heterozygous loss-of-function mutations in histone-modifying enzymes may cause severe neurodevelopmental disorders.
Collapse
|
40
|
Zhang Q, Thakur C, Shi J, Sun J, Fu Y, Stemmer P, Chen F. New discoveries of mdig in the epigenetic regulation of cancers. Semin Cancer Biol 2019; 57:27-35. [PMID: 31276784 PMCID: PMC6844078 DOI: 10.1016/j.semcancer.2019.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Mineral dust-induced gene (mdig) encodes a member of the evolutionarily conserved JmjC family proteins that play fundamental roles in regulating chromatin-based processes as well as transcription of the genes in eukaryotic cells. This gene is also named as myc-induced nuclear antigen 53 (MINA), nucleolar protein 52 (NO52) and ribosomal oxygenase 2 (RIOX2). Increased expression of mdig had been noted in a number of human cancers, esp. lung cancer. Emerging evidence suggests that the oncogenic activity of mdig is most likely achieved through its regulation on the demethylation of histone proteins, despite it lacks the structural identities of the demethylases. Here, we discuss the latest discoveries on the characteristics of the mdig protein and its roles in a wide variety of normal and carcinogenic processes. We will also provide perspectives on how mdig is involved in the maintenance and differentiation of the embryonic stem cells, somatic stem cells and cancer stem cells.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Junwei Shi
- Nantong Pulmonary Hospital, 500 Yonghe Road, Gangzha Qu, Nantong, 226011, Jiangsu Province, China
| | - Jiaying Sun
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Yao Fu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Paul Stemmer
- Institute of Environmental Health Sciences, School of Medicine, Wayne State University, 6135 Woodward Avenue, Detroit, MI, 48202, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
41
|
Ru B, Sun J, Kang Q, Tong Y, Zhang J. A framework for identifying dysregulated chromatin regulators as master regulators in human cancer. Bioinformatics 2019; 35:1805-1812. [PMID: 30358822 DOI: 10.1093/bioinformatics/bty836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/22/2018] [Accepted: 10/24/2018] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Chromatin regulators (CRs) are frequently dysregulated to reprogram the epigenetic landscape of the cancer genome. However, the underpinnings of the dysregulation of CRs and their downstream effectors remain to be elucidated. RESULTS Here, we designed an integrated framework based on multi-omics data to identify candidate master regulatory CRs affected by genomic alterations across eight cancer types in The Cancer Genome Atlas. Most of them showed consistent activated or repressed (i.e. oncogenic or tumor-suppressive) roles in cancer initiation and progression. In order to further explore the insight mechanism of the dysregulated CRs, we developed an R package ModReg based on differential connectivity to identify CRs as modulators of transcription factors (TFs) involved in tumorigenesis. Our analysis revealed that the connectivity between TFs and their target genes (TGs) tended to be disrupted in the patients who had a high expression of oncogenic CRs or low-expression of tumor-suppressive CRs. As a proof-of-principle study, 14 (82.4%) of the top-ranked 17 driver CRs in liver cancer were able to be validated by literature mining or experiments including shRNA knockdown and dCas9-based epigenetic editing. Moreover, we confirmed that CR SIRT7 physically interacted with TF NFE2L2, and positively modulated the transcriptional program of NFE2L2 by affecting ∼64% of its TGs. AVAILABILITY AND IMPLEMENTATION ModReg is freely accessible at http://cis.hku.hk/software/ModReg.tar.gz. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
42
|
Bhanu NV, Sidoli S, Yuan ZF, Molden RC, Garcia BA. Regulation of proline-directed kinases and the trans-histone code H3K9me3/H4K20me3 during human myogenesis. J Biol Chem 2019; 294:8296-8308. [PMID: 30872405 DOI: 10.1074/jbc.ra118.004977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/22/2019] [Indexed: 01/14/2023] Open
Abstract
We present a system-level analysis of proteome, phosphoproteome, and chromatin state of precursors of muscle cells (myoblasts) differentiating into specialized myotubes. Using stable isotope labeling of amino acids in cell culture and nano-liqud chromatography-mass spectrometry/mass spectrometry, we found that phosphorylation motifs targeted by the kinases protein kinase C, cyclin-dependent kinase, and mitogen-activated protein kinase showed increased phosphorylation during myodifferentiation of LHCN-M2 human skeletal myoblast cell line. Drugs known to inhibit these kinases either promoted (PD0325901 and GW8510) or stalled (CHIR99021 and roscovitine) differentiation, resulting in myotube and myoblast phenotypes, respectively. The proteomes, especially the myogenic and chromatin-related proteins including histone methyltransferases, correlated with their phenotypes, leading us to quantify histone post-translational modifications and identify two gene-silencing marks, H3K9me3 and H4K20me3, with relative abundances changing in correlation with these phenotypes. ChIP-quantitative PCR demonstrated that H3K9me3 is erased from the gene loci of myogenic regulatory factors namely MYOD1, MYOG, and MYF5 in differentiating myotubes. Together, our work integrating histone post-translational modification, phosphoproteomics, and full proteome analysis gives a comprehensive understanding of the close connection between signaling pathways and epigenetics during myodifferentiation in vitro.
Collapse
Affiliation(s)
- Natarajan V Bhanu
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zuo-Fei Yuan
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Rosalynn C Molden
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
43
|
Song J, Liu Y, Chen Q, Yang J, Jiang Z, Zhang H, Liu Z, Jin B. Expression patterns and the prognostic value of the SMYD family members in human breast carcinoma using integrative bioinformatics analysis. Oncol Lett 2019; 17:3851-3861. [PMID: 30930987 PMCID: PMC6425337 DOI: 10.3892/ol.2019.10054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
Suppressor of variegation, Enhancer of Zeste, Trithorax and Myeloid-Nervy-DEAF1 domain-containing (SMYD) proteins are a set of lysine methyltransferases involved in a range of diverse biological functions, including gene expression, and regulation of skeletal and cardiac-muscle development. These proteins may additionally serve roles in a number of different types of cancer. However, the roles of the five SMYD proteins, SMYD 1/2/3/4/5, their expression patterns and prognostic value remain unclear. In the present study, the transcriptional expression levels of the five SMYD proteins were compared with the survival data of patients with breast carcinoma (BC) from the ONCOMINE dataset, Breast Cancer Gene-Expression Miner v4.0, Kaplan-Meier Plotter, The Cancer Genome Atlas and cBioPortal. An increase in the SMYD2/3/5 mRNA expression levels and a decrease in SMYD1/4 mRNA expression levels in BC tissues compared with normal tissues were identified. Increased SMYD3 mRNA and decreased SMYD5 mRNA expression levels were associated with decreased levels of histological differentiation, according to the Scarff-Bloom-Richardson grading system. Kaplan-Meier curves demonstrated that the increased SMYD1/4 and decreased SMYD2/3 mRNA expression levels were associated with good relapse-free survival (RFS) in patients with BC. Furthermore, SMYD2 mRNA expression levels were associated with the RFS of patients with BC with metastatic relapse, and SMYD4 may serve as a tumor suppressor in patients with BC, as patients with increased SMYD4 mRNA expression levels had significantly better RFS compared with decreased SMYD4 mRNA expression levels. The present data suggested that SMYD2 and SMYD3 may be potential biomarkers for diagnosis of BC. Additionally, SMYD2 and SMYD4 may be potential prognostic indicators of patients with BC.
Collapse
Affiliation(s)
- Jianping Song
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250112, P.R. China
| | - Yanfeng Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250112, P.R. China
| | - Qian Chen
- Department of Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250112, P.R. China
| | - Jinhuan Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250112, P.R. China
| | - Zhengchen Jiang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250112, P.R. China
| | - Hao Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250112, P.R. China
| | - Zhaojian Liu
- Institute of Cell Biology, Shandong University School of Basic Medicine, Jinan, Shandong 250012, P.R. China
| | - Bin Jin
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250112, P.R. China
| |
Collapse
|
44
|
Kurup JT, Kidder BL. Identification of H4K20me3- and H3K4me3-associated RNAs using CARIP-Seq expands the transcriptional and epigenetic networks of embryonic stem cells. J Biol Chem 2018; 293:15120-15135. [PMID: 30115682 DOI: 10.1074/jbc.ra118.004974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 11/06/2022] Open
Abstract
RNA has been shown to interact with various proteins to regulate chromatin dynamics and gene expression. However, it is unknown whether RNAs associate with epigenetic marks such as post-translational modifications of histones, including histone 4 lysine 20 trimethylation (H4K20me3) or trimethylated histone 3 lysine 4 (H3K4me3), to regulate chromatin and gene expression. Here, we used chromatin-associated RNA immunoprecipitation (CARIP) followed by next-generation sequencing (CARIP-Seq) to survey RNAs associated with H4K20me3- and H3K4me3-marked chromatin on a global scale in embryonic stem (ES) cells. We identified thousands of mRNAs and noncoding RNAs that associate with H4K20me3- and H3K4me3-marked chromatin. H4K20me3- and H3K4me3-interacting RNAs are involved in chromatin organization and modification and RNA processing, whereas H4K20me3-only RNAs are involved in cell motility and differentiation, and H3K4me3-only RNAs are involved in metabolic processes and RNA processing. Expression of H3K4me3-associated RNAs is enriched in ES cells, whereas expression of H4K20me3-associated RNAs is enriched in ES cells and differentiated cells. H4K20me3- and H3K4me3-interacting RNAs originate from genes that co-localize with features of active chromatin, including transcriptional machinery and active promoter regions, and the histone modification H3K36me3 in gene body regions. We also found that H4K20me3 and H3K4me3 are associated with distinct gene features including transcripts of greater length and exon number relative to unoccupied transcripts. H4K20me3- and H3K4me3-marked chromatin is also associated with processed RNAs (exon transcripts) relative to unspliced pre-mRNA and ncRNA transcripts. In summary, our results provide evidence that H4K20me3- and H3K4me3-associated RNAs represent a distinct subnetwork of the ES cell transcriptional repertoire.
Collapse
Affiliation(s)
- Jiji T Kurup
- From the Department of Oncology and.,the Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Benjamin L Kidder
- From the Department of Oncology and .,the Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
45
|
He R, Kidder BL. Culture of haploid blastocysts in FGF4 favors the derivation of epiblast stem cells with a primed epigenetic and transcriptional landscape. Sci Rep 2018; 8:10775. [PMID: 30018329 PMCID: PMC6050317 DOI: 10.1038/s41598-018-29074-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/05/2018] [Indexed: 01/07/2023] Open
Abstract
Pluripotent stem cells within the inner cell mass and epiblast of mammalian embryos have the capacity to form all lineages in the adult organism, while multipotent trophoblast stem (TS) cells derived from the trophectoderm are capable of differentiating into fetal lineages of the placenta. While mouse embryonic stem (ES) cells and epiblast stem cells (EpiSCs) exhibit distinct expression patterns and utilize distinct external signaling pathways for self-renewal, because mouse EpiSCs resemble human ES cells they are a useful model to investigate mechanisms of human ES cell self-renewal and differentiation. Recent studies have shown that haploid embryos and ES cells can be generated from chemically-activated unfertilized mouse oocytes. However, it is unclear whether EpiSCs or TS cells can be derived from haploid embryos. Here, we describe the derivation of EpiSCs from haploid blastocyst-stage embryos using culture conditions that promote TS cell self-renewal. Maternal (parthenogenetic/gynogenetic) EpiSCs (maEpiSCs) functionally and morphologically resemble conventional EpiSCs. Established maEpiSCs and conventional EpiSCs are diploid and exhibit a normal number of chromosomes. Moreover, global expression analyses and epigenomic profiling revealed that maEpiSCs and conventional EpiSCs exhibit similarly primed transcriptional programs and epigenetic profiles, respectively. Altogether, our results describe a useful experimental model to generate EpiSCs from haploid embryos, provide insight into self-renewal mechanisms of EpiSCs, and suggest that FGF4 is not sufficient to derive TS cells from haploid blastocyst-stage embryos.
Collapse
Affiliation(s)
- Runsheng He
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Benjamin L Kidder
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
46
|
Xu J, Kidder BL. H4K20me3 co-localizes with activating histone modifications at transcriptionally dynamic regions in embryonic stem cells. BMC Genomics 2018; 19:514. [PMID: 29969988 PMCID: PMC6029396 DOI: 10.1186/s12864-018-4886-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/19/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Bivalent chromatin domains consisting of the activating histone 3 lysine 4 trimethylation (H3K4me3) and repressive histone 3 lysine 27 trimethylation (H3K27me3) histone modifications are enriched at developmental genes that are repressed in embryonic stem cells but active during differentiation. However, it is unknown whether another repressive histone modification, histone 4 lysine 20 trimethylation (H4K20me3), co-localizes with activating histone marks in ES cells. RESULTS Here, we describe the previously uncharacterized coupling of the repressive H4K20me3 heterochromatin mark with the activating histone modifications H3K4me3 and histone 3 lysine 36 trimethylation (H3K36me3), and transcriptional machinery (RNA polymerase II; RNAPII), in ES cells. These newly described bivalent domains consisting of H3K4me3/H4K20me3 are predominantly located in intergenic regions and near transcriptional start sites of active genes, while H3K36me3/H4K20me3 are located in intergenic regions and within gene body regions of active genes. Global sequential ChIP, also termed reChIP-Seq, confirmed the simultaneous presence of H3K4me3 and H4K20me3 at the same genomic regions in ES cells. Genes containing H3K4me3/H4K20me3 exhibit decreased RNAPII pausing and are poised for deactivation of RNAPII binding during differentiation relative to H3K4me3 marked genes. An evaluation of transcription factor (TF) binding motif enrichment revealed that DNA sequence may play a role in shaping the landscape of these novel bivalent domains. Moreover, H3K4me3/H4K20me3 and H3K36me3/H4K20me3 bound regions are enriched with repetitive LINE and LTR elements. CONCLUSIONS Overall, these findings highlight a previously undescribed subnetwork of ES cell transcriptional circuitry that utilizes dual marking of the repressive H4K20me3 mark with activating histone modifications.
Collapse
Affiliation(s)
- Jian Xu
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI USA
| | - Benjamin L. Kidder
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI USA
| |
Collapse
|
47
|
Vo BT, Kwon JA, Li C, Finkelstein D, Xu B, Orr BA, Sherr CJ, Roussel MF. Mouse medulloblastoma driven by CRISPR activation of cellular Myc. Sci Rep 2018; 8:8733. [PMID: 29880921 PMCID: PMC5992137 DOI: 10.1038/s41598-018-24956-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
MYC-driven Group 3 (G3) medulloblastoma (MB) is the most aggressive of four molecular subgroups classified by transcriptome, genomic landscape and clinical outcomes. Mouse models that recapitulate human G3 MB all rely on retroviral vector-induced Myc expression driven by viral regulatory elements (Retro-Myc tumors). We used nuclease-deficient CRISPR/dCas9-based gene activation with combinatorial single guide RNAs (sgRNAs) to enforce transcription of endogenous Myc in Trp53-null neurospheres that were orthotopically transplanted into the brains of naïve animals. Three combined sgRNAs linked to dCas9-VP160 induced cellular Myc expression and large cell anaplastic MBs (CRISPR-Myc tumors) which recapitulated the molecular characteristics of mouse and human G3 MBs. The BET inhibitor JQ1 suppressed MYC expression in a human G3 MB cell line (HD-MB03) and CRISPR-Myc, but not in Retro-Myc MBs. This G3 MB mouse model in which Myc expression is regulated by its own promoter will facilitate pre-clinical studies with drugs that regulate Myc transcription.
Collapse
Affiliation(s)
- BaoHan T Vo
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jin Ah Kwon
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.,Howard Hughes Medical Institute, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Charles J Sherr
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.,Howard Hughes Medical Institute, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
48
|
Cardelli M. The epigenetic alterations of endogenous retroelements in aging. Mech Ageing Dev 2018; 174:30-46. [PMID: 29458070 DOI: 10.1016/j.mad.2018.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
Endogenous retroelements, transposons that mobilize through RNA intermediates, include some of the most abundant repetitive sequences of the human genome, such as Alu and LINE-1 sequences, and human endogenous retroviruses. Recent discoveries demonstrate that these mobile genetic elements not only act as intragenomic parasites, but also exert regulatory roles in living cells. The risk of genomic instability represented by endogenous retroelements is normally counteracted by a series of epigenetic control mechanisms which include, among the most important, CpG DNA methylation. Indeed, most of the genomic CpG sites subjected to DNA methylation in the nuclear DNA are carried by these repetitive elements. As other parts of the genome, endogenous retroelements and other transposable elements are subjected to deep epigenetic alterations during aging, repeatedly observed in the context of organismal and cellular senescence, in human and other species. This review summarizes the current status of knowledge about the epigenetic alterations occurring in this large, non-genic portion of the genome in aging and age-related conditions, with a focus on the causes and the possible functional consequences of these alterations.
Collapse
Affiliation(s)
- Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, Italian National Research Center on Aging (INRCA), via Birarelli 8, 60121 Ancona, Italy.
| |
Collapse
|
49
|
Kidder BL, He R, Wangsa D, Padilla-Nash HM, Bernardo MM, Sheng S, Ried T, Zhao K. SMYD5 Controls Heterochromatin and Chromosome Integrity during Embryonic Stem Cell Differentiation. Cancer Res 2017; 77:6729-6745. [PMID: 28951459 DOI: 10.1158/0008-5472.can-17-0828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/10/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
Epigenetic regulation of chromatin states is thought to control gene expression programs during lineage specification. However, the roles of repressive histone modifications, such as trimethylated histone lysine 20 (H4K20me3), in development and genome stability are largely unknown. Here, we show that depletion of SET and MYND domain-containing protein 5 (SMYD5), which mediates H4K20me3, leads to genome-wide decreases in H4K20me3 and H3K9me3 levels and derepression of endogenous LTR- and LINE-repetitive DNA elements during differentiation of mouse embryonic stem cells. SMYD5 depletion resulted in chromosomal aberrations and the formation of transformed cells that exhibited decreased H4K20me3 and H3K9me3 levels and an expression signature consistent with multiple human cancers. Moreover, dysregulated gene expression in SMYD5 cancer cells was associated with LTR and endogenous retrovirus elements and decreased H4K20me3. In addition, depletion of SMYD5 in human colon and lung cancer cells results in increased tumor growth and upregulation of genes overexpressed in colon and lung cancers, respectively. These findings implicate an important role for SMYD5 in maintaining chromosome integrity by regulating heterochromatin and repressing endogenous repetitive DNA elements during differentiation. Cancer Res; 77(23); 6729-45. ©2017 AACR.
Collapse
Affiliation(s)
- Benjamin L Kidder
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. .,Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Runsheng He
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Darawalee Wangsa
- Cancer Genomics Section, National Cancer Institute, NIH, Bethesda, Maryland
| | | | - M Margarida Bernardo
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan.,Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| | - Shijie Sheng
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan.,Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| | - Thomas Ried
- Cancer Genomics Section, National Cancer Institute, NIH, Bethesda, Maryland
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland.
| |
Collapse
|