1
|
Yang Z, Tang Y, Wu X, Wang J, Yao W. MicroRNA-130b Suppresses Malignant Behaviours and Inhibits the Activation of the PI3K/Akt Signaling Pathway by Targeting MET in Pancreatic Cancer. Biochem Genet 2025; 63:1660-1685. [PMID: 38607540 PMCID: PMC11929638 DOI: 10.1007/s10528-024-10696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/10/2024] [Indexed: 04/13/2024]
Abstract
There has been interested in the microRNAs' roles in pancreatic cancer (PC) cell biology, particularly in regulating pathways related to tumorigenesis. The study aimed to explore the hub miRNAs in PC and underlying mechanisms by bioinformatics and fundamental experiments. RNA datasets collected from the Gene Expression Omnibus were analysed to find out differentially expressed RNAs (DERNAs). The miRNA-mRNA and protein-protein interaction (PPI) networks were built. The clinicopathological features and expressions of hub miRNAs and hub mRNAs were explored. Dual-luciferase reporter gene assay was performed to assess the interaction between microRNA and target gene. RT-qPCR and western blot were employed to explore RNA expression. The roles of RNA were detected by CCK-8 test, wound healing, transwell, and flow cytometry experiment. We verified 40 DEmiRNAs and 1613 DEmRNAs, then detected a total of 69 final functional mRNAs (FmRNAs) and 23 DEmiRNAs. In the miRNA-mRNA networks, microRNA-130b (miR-130b) was the hub RNA with highest degrees. Clinical analysis revealed that miR-130b was considerably lower expressed in cancerous tissues than in healthy ones, and patients with higher-expressed miR-130b had a better prognosis. Mechanically, miR-130b directly targeted MET in PC cells. Cell functional experiments verified that miR-130b suppressed cell proliferation, migration, promoted apoptosis, and inhibited the PI3K/Akt pathway by targeting MET in PC cells. Our findings illustrated the specific molecular mechanism of miR-130b regulating PC progress. The miR-130b/MET axis may be an alternative target in the therapeutic intervention of PC and provide an opportunity to deepen our understanding of the pathogenesis of PC.
Collapse
Affiliation(s)
- Zilin Yang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuming Tang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xuejiao Wu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiancheng Wang
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiyan Yao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Kashkin K, Kondratyeva L, Kopantzev E, Abramov I, Zhukova L, Chernov I. Deciphering of SOX9 Functions in Pancreatic Cancer Cells. Int J Mol Sci 2025; 26:2652. [PMID: 40141294 PMCID: PMC11941869 DOI: 10.3390/ijms26062652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
SOX9 is widely regarded as a key master regulator of gene transcription, responsible for the development and differentiation programs within tissue and organogenesis, particularly in the pancreas. SOX9 overexpression has been observed in multiple tumor types, including pancreatic cancer, and is discussed as a prognostic marker. In order to gain a more profound understanding of the role of SOX9 in pancreatic cancer, we have performed SOX9 knockdown in the COLO357 and PANC-1 cells using RNA interference, followed by full-transcriptome analysis of the siRNA-transfected cells. The molecular pathway enrichment analysis between SOX9-specific siRNA-transfected cells and control cells reveals the activation of processes associated with cellular signaling, cell differentiation, transcription, and methylation, alongside the suppression of genes involved in various stages of the cell cycle and apoptosis, upon the SOX9 knockdown. Alterations of the expression of transcription factors, epithelial-mesenchymal transition markers, oncogenes, tumor suppressor genes, and drug resistance-related genes upon SOX9 knockdown in comparison of primary and metastatic pancreatic cancer cells are discovered. The expression levels of genes comprising prognostic signatures for pancreatic cancer were also evaluated following SOX9 knockdown. Additional studies are needed to assess the properties and prognostic significance of SOX9 in pancreatic cancer using other biological models.
Collapse
Affiliation(s)
- Kirill Kashkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (E.K.); (I.C.)
| | - Liya Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (E.K.); (I.C.)
| | - Eugene Kopantzev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (E.K.); (I.C.)
| | - Ivan Abramov
- GBUZ Moscow Clinical Scientific and Practical Center Named After A.S. Loginov MHD (MCSC), 111123 Moscow, Russia; (I.A.); (L.Z.)
| | - Lyudmila Zhukova
- GBUZ Moscow Clinical Scientific and Practical Center Named After A.S. Loginov MHD (MCSC), 111123 Moscow, Russia; (I.A.); (L.Z.)
| | - Igor Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (E.K.); (I.C.)
| |
Collapse
|
3
|
Xiao J, Mukherji R, Sidarous G, Suguru S, Noel M, Weinberg BA, He A, Agarwal S. Longitudinal Circulating Tumor Cell Collection, Culture, and Characterization in Pancreatic Adenocarcinomas. Cancers (Basel) 2025; 17:355. [PMID: 39941724 PMCID: PMC11815863 DOI: 10.3390/cancers17030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Pancreatic adenocarcinoma (PDAC) remains one of the most lethal cancers, with limited advancements in treatment efficacy due to high rates of chemoresistance. Circulating tumor cells (CTCs) derived from liquid biopsies offer a non-invasive approach to monitoring tumor evolution and identifying molecular mechanisms of resistance. This study aims to longitudinally collect, culture, and characterize CTCs from PDAC patients to elucidate resistance mechanisms and tumor-specific gene expression profiles. METHODS Blood samples from 10 PDAC patients were collected across different treatment stages, yielding 16 CTC cultures. Differential gene expression, pathway dysregulation, and protein-protein interaction studies were utilized, highlighting patient-specific and disease progression-associated changes. Longitudinal comparisons within five patients provided further insights into dynamic molecular changes associated with therapeutic resistance. RESULTS CTC cultures exhibited the activation of key pathways implicated in PDAC progression and resistance, including TNFα/NF-kB, hedgehog signaling, and the epithelial-to-mesenchymal transition. Longitudinal samples revealed dynamic changes in signaling pathways, highlighting upregulated mechanisms of chemoresistance, including PI3K/Akt/mTOR and TGF-β pathways. Additionally, protein-protein interaction analysis emphasized the role of the immune system in PDAC progression and therapy response. Patient-specific gene expression patterns therefore suggest potential applications for precision medicine. CONCLUSIONS This proof-of-concept study demonstrates the feasibility of longitudinally capturing and analyzing CTCs from PDAC patients. The findings provide critical insights into molecular drivers of chemoresistance and highlight the potential of CTC profiling to inform personalized therapeutic strategies. Future large-scale studies are warranted to validate these findings and further explore CTC-based approaches in PDAC management.
Collapse
Affiliation(s)
- Jerry Xiao
- Department of Tumor Biology, Georgetown University, Washington, DC 20057, USA
- Department of Internal Medicine, University of California San Francisco, San Francisco, CA 94115, USA
| | - Reetu Mukherji
- Department of Hematology/Oncology, Medstar Georgetown University Hospital, Washington, DC 20007, USA
| | - George Sidarous
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC 20007, USA
| | - Shravanthy Suguru
- Department of Pathology, Georgetown University, Washington, DC 20057, USA
| | - Marcus Noel
- Department of Hematology/Oncology, Medstar Georgetown University Hospital, Washington, DC 20007, USA
| | - Benjamin A. Weinberg
- Department of Hematology/Oncology, Medstar Georgetown University Hospital, Washington, DC 20007, USA
| | - Aiwu He
- Department of Hematology/Oncology, Medstar Georgetown University Hospital, Washington, DC 20007, USA
| | - Seema Agarwal
- Department of Pathology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
4
|
Askari N, Hadizadeh M, Sina M, Parvizpour S, Mousavi SZ, Shamsir MS. Investigating the function and targeting of MET protein as an oncogene kinase in pancreatic ductal adenocarcinoma: A microarray data integration. BIOIMPACTS : BI 2024; 15:30187. [PMID: 40161938 PMCID: PMC11954745 DOI: 10.34172/bi.30187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/06/2024] [Accepted: 08/03/2024] [Indexed: 04/02/2025]
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with a poor prognosis. Kinase proteins are essential regulators of cellular processes and potential targets for drug development. Methods Integration of multiple microarray datasets was screened to find differentially expressed kinases (DE-Kinases) across adjacent normal and tumor tissue samples in PDAC. The most effective kinase for drug design and docking in this study was selected by investigating biological mechanisms and survival analyses. Forty phytochemicals were extracted from the yellow sweet clover, Melilotus officinalis (Linn.) Pall, and were then subjected to in silico screening and molecular docking studies against a specific potent kinase. Results MET, PAK3, and PDK4 were identified as the DE-Kinases. After examining the pathways and biological processes, up-regulated MET had the most significant survival analysis and became our primary kinase for drug design and docking in this study. Four of the extracted phytocompounds of Melilotus officinalis (Linn.) Pall that exhibited high binding affinities with MET and were selected for toxicity analysis. Finally, the stability and mobility of the two nontoxic compounds that passed the toxicity test (dicumarol PubChem CID: 54676038 and melilotigenin PubChem CID: 14059499) were studied by molecular dynamics simulation. Conclusion This study's results identified two phytochemicals in yellow sweet clover that could be used to develop an anticancer drug, but experimental evaluation is necessary to confirm their efficacy.
Collapse
Affiliation(s)
- Nahid Askari
- Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Sina
- A. Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedeh Zahra Mousavi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
5
|
de Back TR, van Hooff SR, Sommeijer DW, Vermeulen L. Transcriptomic subtyping of gastrointestinal malignancies. Trends Cancer 2024; 10:842-856. [PMID: 39019673 DOI: 10.1016/j.trecan.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Gastrointestinal (GI) cancers are highly heterogeneous at multiple levels. Tumor heterogeneity can be captured by molecular profiling, such as genetic, epigenetic, proteomic, and transcriptomic classification. Transcriptomic subtyping has the advantage of combining genetic and epigenetic information, cancer cell-intrinsic properties, and the tumor microenvironment (TME). Unsupervised transcriptomic subtyping systems of different GI malignancies have gained interest because they reveal shared biological features across cancers and bear prognostic and predictive value. Importantly, transcriptomic subtypes accurately reflect complex phenotypic states varying not only per tumor region, but also throughout disease progression, with consequences for clinical management. Here, we discuss methodologies of transcriptomic subtyping, proposed taxonomies for GI malignancies, and the challenges posed to clinical implementation, highlighting opportunities for future transcriptomic profiling efforts to optimize clinical impact.
Collapse
Affiliation(s)
- Tim R de Back
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sander R van Hooff
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Dirkje W Sommeijer
- Flevohospital, Department of Internal Medicine, Hospitaalweg 1, 1315 RA, Almere, The Netherlands
| | - Louis Vermeulen
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Matsuoka I, Kasai T, Onaga C, Ozaki A, Motomura H, Maemura Y, Tada Y, Mori H, Hara Y, Xiong Y, Sato K, Tamori S, Sasaki K, Ohno S, Akimoto K. Co‑expression of SLC20A1 and ALDH1A3 is associated with poor prognosis, and SLC20A1 is required for the survival of ALDH1‑positive pancreatic cancer stem cells. Oncol Lett 2024; 28:426. [PMID: 39021737 PMCID: PMC11253103 DOI: 10.3892/ol.2024.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 02/23/2024] [Indexed: 07/20/2024] Open
Abstract
Solute carrier family 20 member 1 (SLC20A1) is a sodium/inorganic phosphate symporter, which has been identified as a prognostic marker in several types of cancer, including pancreatic cancer. However, to the best of our knowledge, the association between SLC20A1 expression and cancer stem cell (CSC) markers, such as aldehyde dehydrogenase 1 (ALDH1), in pancreatic ductal adenocarcinoma (PDAC), and the role of SLC20A1 in PDAC CSCs remains unclear. In the present study, a genomic dataset of primary pancreatic cancer (The Cancer Genome Atlas, Pan-Cancer Atlas) was downloaded and analyzed. Kaplan-Meier analysis and multivariate Cox regression analysis were performed to evaluate the overall survival, disease-specific survival (DSS), disease-free interval (DFI) and progression-free interval (PFI). Subsequently, SLC20A1 small interfering RNA (siRNA) knockdown (KD) was induced in the PANC-1 and MIA-PaCa-2 PDAC cell lines, and in sorted high ALDH1 activity (ALDH1high) cells, after which, cell viability, in vitro tumor sphere formation, cell death and caspase-3 activity were examined. The results revealed that patients with high expression of SLC20A1 (SLC20A1 high) at tumor stage I had a poor prognosis compared with patients with low expression of SLC20A1 (SLC20A1 low) in terms of DSS, DFI and PFI. In addition, patients with high expression of SLC20A1 and ALDH1A3 (SLC20A1 high ALDH1A3 high) exhibited poorer clinical outcomes than patients with high expression of SLC20A1 and low expression of ALDH1A3 (SLC20A1 high ALDH1A3 low), low expression of SLC20A1 and high expression of ALDH1A3 (SLC20A1 low ALDH1A3 high) and SLC20A1 low ALDH1A3 low. SLC20A1 siRNA KD in ALDH1high cells isolated from PANC-1 and MIA-PaCa-2 cell lines resulted in suppression of in vitro tumorsphere formation, and enhancement of cell death and caspase-3 activity. These results suggested that SLC20A1 was involved in cell survival via the suppression of caspase-3-dependent apoptosis, and contributed to cancer progression and poor clinical outcomes in PDAC. In conclusion, SLC20A1 may be used as a prognostic marker and novel therapeutic target of ALDH1-positive pancreatic CSCs.
Collapse
Affiliation(s)
- Izumi Matsuoka
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takahiro Kasai
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Chotaro Onaga
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Ayaka Ozaki
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Hitomi Motomura
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuki Maemura
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuna Tada
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Haruka Mori
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yasushi Hara
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuyun Xiong
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Keiko Sato
- Research Division of Medical Data Science, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
- Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Shoma Tamori
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
- Research Division of Medical Data Science, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kazunori Sasaki
- Laboratory of Cancer Biology, Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Shigeo Ohno
- Laboratory of Cancer Biology, Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Kazunori Akimoto
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
- Research Division of Medical Data Science, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
7
|
Matsumoto K, Fujimori N, Ichihara K, Takeno A, Murakami M, Ohno A, Kakehashi S, Teramatsu K, Ueda K, Nakata K, Sugahara O, Yamamoto T, Matsumoto A, Nakayama KI, Oda Y, Nakamura M, Ogawa Y. Patient-derived organoids of pancreatic ductal adenocarcinoma for subtype determination and clinical outcome prediction. J Gastroenterol 2024; 59:629-640. [PMID: 38684511 PMCID: PMC11217054 DOI: 10.1007/s00535-024-02103-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/31/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Recently, two molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) have been proposed: the "Classical" and "Basal-like" subtypes, with the former showing better clinical outcomes than the latter. However, the "molecular" classification has not been applied in real-world clinical practice. This study aimed to establish patient-derived organoids (PDOs) for PDAC and evaluate their application in subtype classification and clinical outcome prediction. METHODS We utilized tumor samples acquired through endoscopic ultrasound-guided fine-needle biopsy and established a PDO library for subsequent use in morphological assessments, RNA-seq analyses, and in vitro drug response assays. We also conducted a prospective clinical study to evaluate whether analysis using PDOs can predict treatment response and prognosis. RESULTS PDOs of PDAC were established at a high efficiency (> 70%) with at least 100,000 live cells. Morphologically, PDOs were classified as gland-like structures (GL type) and densely proliferating inside (DP type) less than 2 weeks after tissue sampling. RNA-seq analysis revealed that the "morphological" subtype (GL vs. DP) corresponded to the "molecular" subtype ("Classical" vs. "Basal-like"). The "morphological" classification predicted the clinical treatment response and prognosis; the median overall survival of patients with GL type was significantly longer than that with DP type (P < 0.005). The GL type showed a better response to gemcitabine than the DP type in vitro, whereas the drug response of the DP type was improved by the combination of ERK inhibitor and chloroquine. CONCLUSIONS PDAC PDOs help in subtype determination and clinical outcome prediction, thereby facilitating the bench-to-bedside precision medicine for PDAC.
Collapse
Affiliation(s)
- Kazuhide Matsumoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nao Fujimori
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kazuya Ichihara
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Ayumu Takeno
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masatoshi Murakami
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akihisa Ohno
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shotaro Kakehashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Katsuhito Teramatsu
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keijiro Ueda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Sugahara
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeo Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akinobu Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
8
|
Alexander J, Schipper K, Nash S, Brough R, Kemp H, Iacovacci J, Isacke C, Natrajan R, Sawyer E, Lord CJ, Haider S. Pathway-based signatures predict patient outcome, chemotherapy benefit and synthetic lethal dependencies in invasive lobular breast cancer. Br J Cancer 2024; 130:1828-1840. [PMID: 38600325 PMCID: PMC11130209 DOI: 10.1038/s41416-024-02679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Invasive Lobular Carcinoma (ILC) is a morphologically distinct breast cancer subtype that represents up to 15% of all breast cancers. Compared to Invasive Breast Carcinoma of No Special Type (IBC-NST), ILCs exhibit poorer long-term outcome and a unique pattern of metastasis. Despite these differences, the systematic discovery of robust prognostic biomarkers and therapeutically actionable molecular pathways in ILC remains limited. METHODS Pathway-centric multivariable models using statistical machine learning were developed and tested in seven retrospective clinico-genomic cohorts (n = 996). Further external validation was performed using a new RNA-Seq clinical cohort of aggressive ILCs (n = 48). RESULTS AND CONCLUSIONS mRNA dysregulation scores of 25 pathways were strongly prognostic in ILC (FDR-adjusted P < 0.05). Of these, three pathways including Cell-cell communication, Innate immune system and Smooth muscle contraction were also independent predictors of chemotherapy response. To aggregate these findings, a multivariable machine learning predictor called PSILC was developed and successfully validated for predicting overall and metastasis-free survival in ILC. Integration of PSILC with CRISPR-Cas9 screening data from breast cancer cell lines revealed 16 candidate therapeutic targets that were synthetic lethal with high-risk ILCs. This study provides interpretable prognostic and predictive biomarkers of ILC which could serve as the starting points for targeted drug discovery for this disease.
Collapse
Affiliation(s)
- John Alexander
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Koen Schipper
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Sarah Nash
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Breast Cancer Genetics, King's College London, London, SE1 9RT, UK
| | - Rachel Brough
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Harriet Kemp
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Jacopo Iacovacci
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Clare Isacke
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Elinor Sawyer
- Breast Cancer Genetics, King's College London, London, SE1 9RT, UK
| | - Christopher J Lord
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
9
|
Zhang X, Zeng B, Zhu H, Ma R, Yuan P, Chen Z, Su C, Liu Z, Yao X, Lawrence A, Liu Z, Zou J. Role of glycosphingolipid biosynthesis coregulators in malignant progression of thymoma. Int J Biol Sci 2023; 19:4442-4456. [PMID: 37781041 PMCID: PMC10535712 DOI: 10.7150/ijbs.83468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
As the most common malignancy from mediastinum, the metabolic reprogramming of thymoma is important in its development. Nevertheless, the connection between the metabolic map and thymoma development is yet to be discovered. Thymoma was categorized into three subcategories by unsupervised clustering of molecular markers for metabolic pathway presentation in the TCGA dataset. Different genes and functions enriched were demonstrated through the utilization of metabolic Gene Ontology (GO) analysis. To identify the main contributors in the development of thymic malignancy, we utilized Gene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The prognosis of thymoma was evaluated by screening the essential pathways and genes using GSVA scores and machine learning classifiers. Furthermore, we integrated the transcriptomics findings with spectrum metabolomics investigation, detected through LC-MS/MS, in order to establish the essential controller network of metabolic reprogramming during thymoma progression. The thymoma prognosis is related to glycosphingolipid biosynthesis-lacto and neolacto series pathway, of what high B3GNT5 indicate poor survival. The investigation revealed that glycosphingolipid charts have a significant impact on metabolic dysfunction and could potentially serve as crucial targets in the clinical advancement of metabolic therapy.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bo Zeng
- Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Haoshuai Zhu
- Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Rui Ma
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Ping Yuan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Zhenguang Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chunhua Su
- Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhihao Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaojing Yao
- Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Aurora Lawrence
- School of Medicine, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Zhenguo Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jianyong Zou
- Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
10
|
Hung YH, Hou YC, Hsu SH, Wang LY, Tsai YL, Shan YS, Su YY, Hung WC, Chen LT. Pancreatic cancer cell-derived semaphorin 3A promotes neuron recruitment to accelerate tumor growth and dissemination. Am J Cancer Res 2023; 13:3417-3432. [PMID: 37693128 PMCID: PMC10492129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/20/2023] [Indexed: 09/12/2023] Open
Abstract
Perineural invasion and neurogenesis are frequently observed in pancreatic ductal adenocarcinoma (PDAC), and they are associated with a poor prognosis. Axon guidance factor semaphorin 3A (SEMA3A) is upregulated in PDAC. However, it remains unclear whether cancer-derived SEMA3A influences nerve innervation and pancreatic tumorigenesis. In silico analyses were performed using PROGgene and NetworkAnalyst to clarify the importance of SEMA3A and its receptors, plexin A1 (PLXNA1) and neuropilin 2 (NRP2), in pancreatic cancer. In vitro assays, including migration, neurite outgrowth, and 3D recruitment, were performed to study the effects of SEMA3A on neuronal behaviors. Additionally, an orthotopic animal study using C57BL/6 mice was performed to validate the in vitro findings. Expression of SEMA3A and its receptors predicted worse prognosis for PDAC. Cancer-derived SEMA3A promoted neural migration, neurite outgrowth, and neural recruitment. Furthermore, SEMA3A-induced effects depended on PLXNA1, NRP2, and MAPK activation. Trametinib, an approved MAPK kinase (MEK) inhibitor, counteracted SEMA3A-enhanced neuronal activity in vitro. Inhibition of SEMA3A by shRNA in pancreatic cancer cells resulted in decreased neural recruitment, tumor growth, and dissemination in vivo. Our results suggested that cancer-secreted SEMA3A plays an important role in promoting neo-neurogenesis and progression of PDAC.
Collapse
Affiliation(s)
- Yu-Hsuan Hung
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan 704, Taiwan
| | - Shih-Han Hsu
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
| | - Li-Yun Wang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung UniversityTainan 704, Taiwan
| | - Ya-Li Tsai
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan 704, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University HospitalTainan 704, Taiwan
| | - Yung-Yeh Su
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan 704, Taiwan
- Department of Oncology, National Cheng Kung University HospitalTainan 704, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung UniversityTainan 704, Taiwan
- Department of Oncology, National Cheng Kung University HospitalTainan 704, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University HospitalKaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| |
Collapse
|
11
|
Wang J, Wong CH, Zhu Y, Yao X, Ng KKC, Zhou C, To KF, Chen Y. Identification of GRIN2D as a novel therapeutic target in pancreatic ductal adenocarcinoma. Biomark Res 2023; 11:74. [PMID: 37553583 PMCID: PMC10410818 DOI: 10.1186/s40364-023-00514-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a dismal prognosis, and despite significant advances in our understanding of its genetic drivers, like KRAS, TP53, CDKN2A, and SMAD4, effective therapies remain limited. Here, we identified a new therapeutic target GRIN2D and then explored its functions and mechanisms in PDAC progression. METHODS We performed a genome-wide RNAi screen in a PDAC xenograft model and identified GRIN2D, which encodes the GluN2D subunit of N-methyl-D-aspartate receptors (NMDARs), as a potential oncogene. Western blot, immunohistochemistry, and analysis on Gene Expression Omnibus were used for detecting the expression of GRIN2D in PDAC. Cellular experiments were conducted for exploring the functions of GRIN2D in vitro while subcutaneous and orthotopic injections were used in in vivo study. To clarify the mechanism, we used RNA sequencing and cellular experiments to identify the related signaling pathway. Cellular assays, RT-qPCR, and western blot helped identify the impacts of the NMDAR antagonist memantine. RESULTS We demonstrated that GRIN2D was highly expressed in PDAC cells, and further promoted oncogenic functions. Mechanistically, transcriptome profiling identified GRIN2D-regulated genes in PDAC cells. We found that GRIN2D promoted PDAC progression by activating the p38 MAPK signaling pathway and transcription factor CREB, which in turn promoted the expression of HMGA2 and IL20RB. The upregulated GRIN2D could effectively promote tumor growth and liver metastasis in PDAC. We also investigated the therapeutic potential of NMDAR antagonism in PDAC and found that memantine reduced the expression of GRIN2D and inhibited PDAC progression. CONCLUSION Our results suggested that NMDA receptor GRIN2D plays important oncogenic roles in PDAC and represents a novel therapeutic target.
Collapse
Affiliation(s)
- Jiatong Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Chi Hin Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Yinxin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Xiaoqiang Yao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Kelvin K C Ng
- Department of Surgery, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
12
|
Huang L, Yuan X, Zhao L, Han Q, Yan H, Yuan J, Guan S, Xu X, Dai G, Wang J, Shi Y. Gene signature developed for predicting early relapse and survival in early-stage pancreatic cancer. BJS Open 2023; 7:7169392. [PMID: 37196196 DOI: 10.1093/bjsopen/zrad031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/23/2023] [Accepted: 02/23/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND The aim of this study was to construct a predictive signature integrating tumour-mutation- and copy-number-variation-associated features using machine learning to precisely predict early relapse and survival in patients with resected stage I-II pancreatic ductal adenocarcinoma. METHODS Patients with microscopically confirmed stage I-II pancreatic ductal adenocarcinoma undergoing R0 resection at the Chinese PLA General Hospital between March 2015 and December 2016 were enrolled. Whole exosome sequencing was performed, and genes with different mutation or copy number variation statuses between patients with and without relapse within 1 year were identified using bioinformatics analysis. A support vector machine was used to evaluate the importance of the differential gene features and to develop a signature. Signature validation was performed in an independent cohort. The associations of the support vector machine signature and single gene features with disease-free survival and overall survival were assessed. Biological functions of integrated genes were further analysed. RESULTS Overall, 30 and 40 patients were included in the training and validation cohorts, respectively. Some 11 genes with differential patterns were first identified; using a support vector machine, four features (mutations of DNAH9, TP53, and TUBGCP6, and copy number variation of TMEM132E) were further selected and integrated to construct a predictive signature (the support vector machine classifier). In the training cohort, the 1-year disease-free survival rates were 88 per cent (95 per cent c.i. 73 to 100) and 7 per cent (95 per cent c.i. 1 to 47) in the low-support vector machine subgroup and the high-support vector machine subgroup respectively (P < 0.001). Multivariable analyses showed that high support vector machine was significantly and independently associated with both worse overall survival (HR 29.20 (95 per cent c.i. 4.48 to 190.21); P < 0.001) and disease-free survival (HR 72.04 (95 per cent c.i. 6.74 to 769.96); P < 0.001). The area under the curve of the support vector machine signature for 1-year disease-free survival (0.900) was significantly larger than the area under the curve values of the mutations of DNAH9 (0.733; P = 0.039), TP53 (0.767; P = 0.024), and TUBGCP6 (0.733; P = 0.023), the copy number variation of TMEM132E (0.700; P = 0.014), TNM stage (0.567; P = 0.002), and differentiation grade (0.633; P = 0.005), suggesting higher predictive accuracy for prognosis. The value of the signature was further validated in the validation cohort. The four genes included in the support vector machine signature (DNAH9, TUBGCP6, and TMEM132E were novel in pancreatic ductal adenocarcinoma) were significantly associated with the tumour immune microenvironment, G protein-coupled receptor binding and signalling, cell-cell adhesion, etc. CONCLUSION The newly constructed support vector machine signature precisely and powerfully predicted relapse and survival in patients with stage I-II pancreatic ductal adenocarcinoma after R0 resection.
Collapse
Affiliation(s)
- Lei Huang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Centre on Ageing of Ruijin Hospital, MCARJH, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaodong Yuan
- Organ Transplant Center, Department of Hepatobiliary and Transplantation Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liangchao Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quanli Han
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Huan Yan
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Jing Yuan
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Shasha Guan
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Xiaofeng Xu
- Shanghai Chief Technician Studio (Information & Technology), Shanghai, China
| | - Guanghai Dai
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Shi
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Huang Y, Guo DM, Bu S, Xu W, Cai QC, Xu J, Jiang YQ, Teng F. Systematic Analysis of the Prognostic Significance and Roles of the Integrin Alpha Family in Non-Small Cell Lung Cancers. Adv Ther 2023; 40:2186-2204. [PMID: 36892810 DOI: 10.1007/s12325-023-02469-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
INTRODUCTION Lung cancer is one of the most common cancer malignancies and the principal cause of cancer-associated deaths worldwide. Non-small cell lung cancers (NSCLCs) account for more than 80% of all lung cancer cases. Recent studies showed that the genes of the integrin alpha (α) (ITGA) subfamily play a fundamental role in various cancers. However, little is known about the expression and roles of distinct ITGA proteins in NSCLCs. METHODS Gene Expression Profiling Interactive Analysis and UALCAN (University of ALabama at Birmingham CANcer) web resources and The Cancer Genome Atlas (TCGA), ONCOMINE, cBioPortal, GeneMANIA, and Tumor Immune Estimation Resource databases were used to evaluate differential expression, correlations between the expression levels of individual genes, the prognostic value of overall survival (OS) and stage, genetic alterations, protein-protein interactions, and the immune cell infiltration of ITGAs in NSCLCs. We used R (v. 4.0.3) software to conduct gene correlation, gene enrichment, and clinical correlation of RNA sequencing data of 1016 NSCLCs from TCGA. To evaluate the expression of ITGA5/8/9/L at the expression and protein levels, qRT-PCR, immunohistochemistry (IHC), and hematoxylin and eosin (H&E) were performed, respectively. RESULTS Upregulated levels of ITGA11 messenger RNA and downregulated levels of ITGA1/3/5/7/8/9/L/M/X were observed in the NSCLC tissues. Lower expression of ITGA5/6/8/9/10/D/L was discovered to be expressively associated with advanced tumor stage or poor patient prognosis in patients with NSCLC. A high mutation rate (44%) of the ITGA family was observed in the NSCLCs. Gene Ontology functional enrichment analyses results revealed that the differentially expressed ITGAs could be involved in roles related to extracellular matrix (ECM) organization, collagen-containing ECM cellular components, and ECM structural constituent molecular functions. The results of the Kyoto Encyclopedia of Genes and Genomes analysis revealed that ITGAs may be involved in focal adhesion, ECM-receptor interaction, and amoebiasis; the expression of ITGAs was significantly correlated with the infiltration of diverse immune cells in NSCLCs. ITGA5/8/9/L was also highly correlated with PD-L1 expression. The validation results for marker gene expression in NSCLC tissues by qRT-PCR, IHC, and H&E staining indicated that the expression of ITGA5/8/9/L decreased compared with that in normal tissues. CONCLUSION As potential prognostic biomarkers in NSCLCs, ITGA5/8/9/L may fulfill important roles in regulating tumor progression and immune cell infiltration.
Collapse
Affiliation(s)
- Yu Huang
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, No. 181 of Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Dong-Ming Guo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, No. 181 of Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Shi Bu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, No. 181 of Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Wei Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, No. 181 of Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Qing-Chun Cai
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, No. 181 of Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Jian Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, No. 181 of Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Yue-Quan Jiang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, No. 181 of Hanyu Road, Shapingba District, Chongqing, 400030, China.
| | - Fei Teng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, No. 181 of Hanyu Road, Shapingba District, Chongqing, 400030, China.
| |
Collapse
|
14
|
Lin X, Cui C, Cui Q. Combating pancreatic cancer with ovarian cancer cells. Aging (Albany NY) 2023; 15:2189-2207. [PMID: 36961421 PMCID: PMC10085619 DOI: 10.18632/aging.204608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/06/2023] [Indexed: 03/25/2023]
Abstract
With overall five-year survival rate less than 10%, pancreatic cancer (PC) represents the most lethal one in all human cancers. Given that the incidence of PC is still increasing and current cancer treatment strategies are often inefficacious, its therapy is still a huge challenge. Here, we first revealed ovarian serous carcinoma is mostly anti-correlated with pancreatic cancer in gene expression signatures. Based on this observation, we proposed that ovarian cancer cells could defend PC. To confirm this strategy, we first showed that ovarian cancer cell SKOV3 can significantly inhibit the proliferation of pancreatic cancer cell SW1990 when they were co-cultured. We further validated this strategy by an animal model of pancreatic cancer xenografts. The result showed that the injection of SKOV3 significantly inhibits pancreatic cancer xenografts. Moreover, we found that SKOV3 with transgenic African elephant TP53 gene further enhances the therapeutic effect. RNA-sequencing analysis revealed that the ovarian cancer cell treatment strikingly induced changes of genes being involved in pancreas function and phenotype (e.g. enhancing pancreas function, pancreas regeneration, and cell adhesion) but not immune and inflammation-related functions, suggesting that the proposed strategy is different from immunotherapy and could be a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Xiao Lin
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chunmei Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
15
|
Quereda C, Pastor À, Martín-Nieto J. Involvement of abnormal dystroglycan expression and matriglycan levels in cancer pathogenesis. Cancer Cell Int 2022; 22:395. [PMID: 36494657 PMCID: PMC9733019 DOI: 10.1186/s12935-022-02812-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Dystroglycan (DG) is a glycoprotein composed of two subunits that remain non-covalently bound at the plasma membrane: α-DG, which is extracellular and heavily O-mannosyl glycosylated, and β-DG, an integral transmembrane polypeptide. α-DG is involved in the maintenance of tissue integrity and function in the adult, providing an O-glycosylation-dependent link for cells to their extracellular matrix. β-DG in turn contacts the cytoskeleton via dystrophin and participates in a variety of pathways transmitting extracellular signals to the nucleus. Increasing evidence exists of a pivotal role of DG in the modulation of normal cellular proliferation. In this context, deficiencies in DG glycosylation levels, in particular those affecting the so-called matriglycan structure, have been found in an ample variety of human tumors and cancer-derived cell lines. This occurs together with an underexpression of the DAG1 mRNA and/or its α-DG (core) polypeptide product or, more frequently, with a downregulation of β-DG protein levels. These changes are in general accompanied in tumor cells by a low expression of genes involved in the last steps of the α-DG O-mannosyl glycosylation pathway, namely POMT1/2, POMGNT2, CRPPA, B4GAT1 and LARGE1/2. On the other hand, a series of other genes acting earlier in this pathway are overexpressed in tumor cells, namely DOLK, DPM1/2/3, POMGNT1, B3GALNT2, POMK and FKTN, hence exerting instead a pro-oncogenic role. Finally, downregulation of β-DG, altered β-DG processing and/or impaired β-DG nuclear levels are increasingly found in human tumors and cell lines. It follows that DG itself, particular genes/proteins involved in its glycosylation and/or their interactors in the cell could be useful as biomarkers of certain types of human cancer, and/or as molecular targets of new therapies addressing these neoplasms.
Collapse
Affiliation(s)
- Cristina Quereda
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain
| | - Àngels Pastor
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain
| | - José Martín-Nieto
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain ,grid.5268.90000 0001 2168 1800Instituto Multidisciplinar para el Estudio del Medio ‘Ramón Margalef’, Universidad de Alicante, 03080 Alicante, Spain
| |
Collapse
|
16
|
Fu Y, Li F, Sun X, Zhu C, Fan B, Zhong K. KIF4 enforces the progression of colorectal cancer by inhibiting the autophagy via activating the Hedgehog signaling pathway. Arch Biochem Biophys 2022; 731:109423. [DOI: 10.1016/j.abb.2022.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022]
|
17
|
Bhardwaj A, Josse C, Van Daele D, Poulet C, Chavez M, Struman I, Van Steen K. Deeper insights into long-term survival heterogeneity of pancreatic ductal adenocarcinoma (PDAC) patients using integrative individual- and group-level transcriptome network analyses. Sci Rep 2022; 12:11027. [PMID: 35773268 PMCID: PMC9247075 DOI: 10.1038/s41598-022-14592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is categorized as the leading cause of cancer mortality worldwide. However, its predictive markers for long-term survival are not well known. It is interesting to delineate individual-specific perturbed genes when comparing long-term (LT) and short-term (ST) PDAC survivors and integrate individual- and group-based transcriptome profiling. Using a discovery cohort of 19 PDAC patients from CHU-Liège (Belgium), we first performed differential gene expression analysis comparing LT to ST survivor. Second, we adopted systems biology approaches to obtain clinically relevant gene modules. Third, we created individual-specific perturbation profiles. Furthermore, we used Degree-Aware disease gene prioritizing (DADA) method to develop PDAC disease modules; Network-based Integration of Multi-omics Data (NetICS) to integrate group-based and individual-specific perturbed genes in relation to PDAC LT survival. We identified 173 differentially expressed genes (DEGs) in ST and LT survivors and five modules (including 38 DEGs) showing associations to clinical traits. Validation of DEGs in the molecular lab suggested a role of REG4 and TSPAN8 in PDAC survival. Via NetICS and DADA, we identified various known oncogenes such as CUL1 and TGFB1. Our proposed analytic workflow shows the advantages of combining clinical and omics data as well as individual- and group-level transcriptome profiling.
Collapse
Affiliation(s)
- Archana Bhardwaj
- GIGA-R Centre, BIO3 - Medical Genomics, University of Liège, Avenue de L'Hôpital, 11, 4000, Liège, Belgium.
| | - Claire Josse
- Laboratory of Human Genetics, GIGA Research, University Hospital (CHU), Liège, Belgium
- Medical Oncology Department, CHU Liège, Liège, Belgium
| | - Daniel Van Daele
- Department of Gastro-Enterology, University Hospital (CHU), Liège, Belgium
| | - Christophe Poulet
- Laboratory of Human Genetics, GIGA Research, University Hospital (CHU), Liège, Belgium
- Laboratory of Rheumatology, GIGA-R, University Hospital (CHULiege), Liège, Belgium
| | - Marcela Chavez
- Department of Medicine, Division of Hematology, University Hospital (CHU), Liège, Belgium
| | - Ingrid Struman
- GIGA-R Centre, Laboratory of Molecular Angiogenesis, University of Liège, Liège, Belgium
| | - Kristel Van Steen
- GIGA-R Centre, BIO3 - Medical Genomics, University of Liège, Avenue de L'Hôpital, 11, 4000, Liège, Belgium
| |
Collapse
|
18
|
Paul M, Gope TK, Das P, Ain R. Nitric-Oxide Synthase trafficking inducer (NOSTRIN) is an emerging negative regulator of colon cancer progression. BMC Cancer 2022; 22:594. [PMID: 35642021 PMCID: PMC9158178 DOI: 10.1186/s12885-022-09670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background NOSTRIN, abundantly expressed in colon, was reported to be anti-angiogenic, anti-invasive and anti-inflammatory. NOSTRIN expression was inversely related to survival of pancreatic ductal adeno-carcinoma patients. Yet its function and regulatory mechanism in CRC remains elusive. Methods NOSTRIN’s influence on EMT of CRC cells were analysed using realtime PCR array containing the functional EMT-transcriptome followed by western blotting. Regulation of oncogenic potential of CRC cells by NOSTRIN was elucidated using soft agar colony formation, trans-well invasion, wound healing and colonosphere formation assays. Biochemical assays were used to reveal mechanism of NOSTRIN function. Human CRC tissue array was used to test NOSTRIN mark in control and CRC disease stages. Results We showed here that CRC cell lines with less NOSTRIN expression has more invasive and migratory potential. NOSTRIN affected EMT-associated transcriptome of CRC cells by down regulating 33 genes that were functionally annotated to transcription factors, genes important for cell growth, proliferation, migration, cell adhesion and cytoskeleton regulators in CRC cells. NOSTRIN over-expression significantly reduced soft agar colony formation, wound healing and cell invasion. In line with this, RNA interference of Nostrin enhanced metastatic potential of CRC cells. Furthermore, stable overexpression of NOSTRIN in CRC cell line not only curtailed its ability to form colonosphere but also decreased expression of stemness markers CD133, CD44 and EpCAM. NOSTRIN’s role in inhibiting self-renewal was further confirmed using BrdU incorporation assay. Interestingly, NOSTRIN formed immune-complex with Cdk1 in CRC cells and aided in increase of inhibitory Y15 and T14 phosphorylation of Cdk1 that halts cytokinesis. These ex vivo findings were substantiated using human colon cancer tissue array containing cDNAs from patients’ samples with various stages of disease progression. Significant decrease in NOSTRIN expression was found with initiation and progression of advanced colon cancer disease stages. Conclusion We illustrate function of a novel molecule, NOSTRIN in curtailing EMT and maintenance of CRC cell stemness. Our data validates importance of NOSTRIN mark during onset and disease progression of CRC indicating its diagnostic potential. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09670-6.
Collapse
Affiliation(s)
- Madhurima Paul
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Tamal Kanti Gope
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Priyanka Das
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
19
|
Onaga C, Tamori S, Matsuoka I, Ozaki A, Motomura H, Nagashima Y, Sato T, Sato K, Xiong Y, Sasaki K, Ohno S, Akimoto K. High expression of SLC20A1 is less effective for endocrine therapy and predicts late recurrence in ER-positive breast cancer. PLoS One 2022; 17:e0268799. [PMID: 35605014 PMCID: PMC9126382 DOI: 10.1371/journal.pone.0268799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/08/2022] [Indexed: 12/02/2022] Open
Abstract
Estrogen receptor-positive (ER+) breast cancer intrinsically confers satisfactory clinical outcomes in response to endocrine therapy. However, a significant proportion of patients with ER+ breast cancer do not respond well to this treatment. Therefore, to evaluate the effects of endocrine therapy, there is a need for identification of novel markers that can be used at the time of diagnosis for predicting clinical outcomes, especially for early-stage and late recurrence. Solute carrier family 20 member 1 (SLC20A1) is a sodium/inorganic phosphate symporter that has been proposed to be a viable prognostic marker for the luminal A and luminal B types of ER+ breast cancer. In the present study, we examined the possible association of SLC20A1 expression with tumor staging, endocrine therapy and chemotherapy in the luminal A and luminal B subtypes of breast cancer. In addition, we analyzed the relationship between SLC20A1 expression and late recurrence in patients with luminal A and luminal B breast cancer following endocrine therapy. We showed that patients with higher levels of SLC20A1 expression (SLC20A1high) exhibited poorer clinical outcomes in those with tumor stage I luminal A breast cancer. In addition, this SLC20A1high subgroup of patients exhibited less responses to endocrine therapy, specifically in those with the luminal A and luminal B subtypes of breast cancer. However, patients with SLC20A1high showed good clinical outcomes following chemotherapy. Patients tested to be in the SLC20A1high group at the time of diagnosis also showed a higher incidence of recurrence compared with those with lower expression levels of SLC20A1, at >15 years for luminal A breast cancer and at 10–15 years for luminal B breast cancer. Therefore, we conclude that SLC20A1high can be used as a prognostic biomarker for predicting the efficacy of endocrine therapy and late recurrence for ER+ breast cancer.
Collapse
Affiliation(s)
- Chotaro Onaga
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shoma Tamori
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Izumi Matsuoka
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Ayaka Ozaki
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Hitomi Motomura
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yuka Nagashima
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Tsugumichi Sato
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Keiko Sato
- Department of Information Sciences, Faculty of Sciences and Technology, Tokyo University of Science, Chiba, Japan
| | - Yuyun Xiong
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kazunori Sasaki
- Laboratory of Cancer Biology, Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeo Ohno
- Laboratory of Cancer Biology, Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazunori Akimoto
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- * E-mail:
| |
Collapse
|
20
|
Zhang S, Liu J, Li F, Yang M, Wang J. EZH2 suppresses insulinoma development by epigenetically reducing KIF4A expression via H3K27me3 modification. Gene 2022; 822:146317. [PMID: 35182680 DOI: 10.1016/j.gene.2022.146317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 01/17/2023]
Abstract
Kinesin family member 4A (KIF4A), located in the human chromosome band Xq13.1, is aberrantly overexpressed in various cancers. Our study intended to assess the expression of KIF4A in insulinoma and to gain new insights into the molecular mechanisms of this rare disease. First, KIF4A was significantly recruited in pancreatic endocrine cells relative to other cell types. A significant correlation existed between the overexpression of KIF4A and the poor survival of pancreatic adenocarcinoma patients. As revealed by CCK-8, TUNEL assay, flow cytometry, wound healing, Matrigel-transwell, senescence-associated β-galactosidase staining, ELISA, and subcutaneous tumor formation analysis in nude mice, knocking down KIF4A significantly inhibited the growth and metastasis of insulinoma cells in vivo and in vitro. Mechanistically, we observed that KIF4A promoter sequences had reduced H3K27me3 modifications, and decline in enhancer of zeste homolog-2 (EZH2) expression promoted KIF4A expression by reducing the modification, thus leading to insulinoma. Moreover, EZH2 knockdown-induced insulinoma cell proliferation was dependent on KIF4A overexpression since KIF4A knockdown eradicated shEZH2-induced proliferation of insulinoma cells. In summary, KIF4A was identified as a possible therapeutic target for insulinoma.
Collapse
Affiliation(s)
- Suzhen Zhang
- Graduate School of Shanxi Medical University, Taiyuan 030013, Shanxi, PR China; The Second Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, PR China
| | - Jun Liu
- Department of Infection, People's Hospital Affiliated to Shanxi Medical University, Taiyuan 030012, Shanxi, PR China
| | - Feng Li
- Department of Cell Biology, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, PR China
| | - Mudan Yang
- The Second Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, PR China.
| | - Junping Wang
- Graduate School of Shanxi Medical University, Taiyuan 030013, Shanxi, PR China; Department of Gastroenterology, People's Hospital Affiliated to Shanxi Medical University, Taiyuan 030012, Shanxi, PR China.
| |
Collapse
|
21
|
Delvecchio FR, Goulart MR, Fincham REA, Bombadieri M, Kocher HM. B cells in pancreatic cancer stroma. World J Gastroenterol 2022; 28:1088-1101. [PMID: 35431504 PMCID: PMC8985484 DOI: 10.3748/wjg.v28.i11.1088] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a disease with high unmet clinical need. Pancreatic cancer is also characterised by an intense fibrotic stroma, which harbours many immune cells. Studies in both human and animal models have demonstrated that the immune system plays a crucial role in modulating tumour onset and progression. In human pancreatic ductal adenocarcinoma, high B-cell infiltration correlates with better patient survival. Hence, B cells have received recent interest in pancreatic cancer as potential therapeutic targets. However, the data on the role of B cells in murine models is unclear as it is dependent on the pancreatic cancer model used to study. Nevertheless, it appears that B cells do organise along with other immune cells such as a network of follicular dendritic cells (DCs), surrounded by T cells and DCs to form tertiary lymphoid structures (TLS). TLS are increasingly recognised as sites for antigen presentation, T-cell activation, B-cell maturation and differentiation in plasma cells. In this review we dissect the role of B cells and provide directions for future studies to harness the role of B cells in treatment of human pancreatic cancer.
Collapse
Affiliation(s)
- Francesca Romana Delvecchio
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Michelle R Goulart
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | | | - Michele Bombadieri
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Hemant M Kocher
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Barts and the London HPB Centre, Barts Health NHS Trust, London E1 1BB, United Kingdom
| |
Collapse
|
22
|
Yang J, Wei X, Hu F, Dong W, Sun L. Development and validation of a novel 3-gene prognostic model for pancreatic adenocarcinoma based on ferroptosis-related genes. Cancer Cell Int 2022; 22:21. [PMID: 35033072 PMCID: PMC8760727 DOI: 10.1186/s12935-021-02431-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background Molecular markers play an important role in predicting clinical outcomes in pancreatic adenocarcinoma (PAAD) patients. Analysis of the ferroptosis-related genes may provide novel potential targets for the prognosis and treatment of PAAD. Methods RNA-sequence and clinical data of PAAD was downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) public databases. The PAAD samples were clustered by a non-negative matrix factorization (NMF) algorithm. The differentially expressed genes (DEGs) between different subtypes were used by “limma_3.42.2” package. The R software package clusterProfiler was used for functional enrichment analysis. Then, a multivariate Cox proportional and LASSO regression were used to develop a ferroptosis-related gene signature for pancreatic adenocarcinoma. A nomogram and corrected curves were constructed. Finally, the expression and function of these signature genes were explored by qRT-PCR, immunohistochemistry (IHC) and proliferation, migration and invasion assays. Results The 173 samples were divided into 3 categories (C1, C2, and C3) and a 3-gene signature model (ALOX5, ALOX12, and CISD1) was constructed. The prognostic model showed good independent prognostic ability in PAAD. In the GSE62452 external validation set, the molecular model also showed good risk prediction. KM-curve analysis showed that there were significant differences between the high and low-risk groups, samples with a high-risk score had a worse prognosis. The predictive efficiency of the 3-gene signature-based nomogram was significantly better than that of traditional clinical features. For comparison with other models, that our model, with a reasonable number of genes, yields a more effective result. The results obtained with qPCR and IHC assays showed that ALOX5 was highly expressed, whether ALOX12 and CISD1 were expressed at low levels in tissue samples. Finally, function assays results suggested that ALOX5 may be an oncogene and ALOX12 and CISD1 may be tumor suppressor genes. Conclusions We present a novel prognostic molecular model for PAAD based on ferroptosis-related genes, which serves as a potentially effective tool for prognostic differentiation in pancreatic cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02431-8.
Collapse
Affiliation(s)
- Jihua Yang
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - XiaoHong Wei
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Fang Hu
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Wei Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China.
| | - Liao Sun
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
23
|
Goulart MR, Stasinos K, Fincham REA, Delvecchio FR, Kocher HM. T cells in pancreatic cancer stroma. World J Gastroenterol 2021; 27:7956-7968. [PMID: 35046623 PMCID: PMC8678814 DOI: 10.3748/wjg.v27.i46.7956] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with a dismal 5-year survival rate. PDAC has a complex tumour microenvironment; characterised by a robust desmoplastic stroma, extensive infiltration of immunesuppressive cells such as immature myeloid cells, tumour-associated macrophages, neutrophils and regulatory T cells, and the presence of exhausted and senescent T cells. The cross-talk between cells in this fibrotic tumour establishes an immune-privileged microenvironment that supports tumour cell escape from immune-surveillance, disease progression and spread to distant organs. PDAC tumours, considered to be non-immunogenic or cold, express low mutation burden, low infiltration of CD8+ cytotoxic lymphocytes that are localised along the invasive margin of the tumour border in the surrounding fibrotic tissue, and often display an exhausted phenotype. Here, we review the role of T cells in pancreatic cancer, examine the complex interactions of these crucial effector units within pancreatic cancer stroma and shed light on the increasingly attractive use of T cells as therapy.
Collapse
Affiliation(s)
- Michelle R Goulart
- Centre for Tumour Biology Barts Cancer Institute-A CRUK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Konstantinos Stasinos
- Centre for Tumour Biology Barts Cancer Institute-A CRUK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London E1 1BB, United Kingdom
| | - Rachel Elizabeth Ann Fincham
- Centre for Tumour Biology Barts Cancer Institute-A CRUK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Francesca R Delvecchio
- Centre for Tumour Biology Barts Cancer Institute-A CRUK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Hemant M Kocher
- Centre for Tumour Biology Barts Cancer Institute-A CRUK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London E1 1BB, United Kingdom
| |
Collapse
|
24
|
The enhanced cell cycle related to the response to adjuvant therapy in pancreatic ductal adenocarcinoma. Genomics 2021; 114:95-106. [PMID: 34863899 DOI: 10.1016/j.ygeno.2021.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
A major clinical challenge for treating patients with pancreatic ductal adenocarcinoma (PDAC) is identifying those that may benefit from adjuvant chemotherapy versus those that will not. Thus, there is a need for a robust and convenient biomarker for predicting chemotherapy response in PDAC patients. In this study, network inference was conducted by integrating the differentially expressed cell cycle signatures and target genes between the basal-like subtype and classical subtype of PDAC. As a result from this statistical analysis, two dominant cell cycle genes, RASAL2 and ASPM, were identified. Based on the expression levels of these two genes, we constructed a "Enhanced Cell Cycle" scoring system (ECC score). Patients were given an ECC score, and respectively divided into ECC-high and ECC-low groups. Survival, pathway enrichment, immune environment characteristics, and chemotherapy response analysis' were performed between the two groups in a total of 891 patients across 5 cohorts. ECC-high patients exhibited shortened recurrence-free survival (RFS) and overall survival (OS) rates. In addition, it was found that adjuvant chemotherapy could significantly improve the outcome of the ECC-high patients while ECC-low patients did not benefit from adjuvant chemotherapy. It was also found that there was less CD8+ T cell, natural killer (NK) cell, M1 macrophage, and plasma cell infiltration in ECC-high patients when compared to ECC-low patients. Also, the expression of CD73, an immune suppressor gene, and it's related hypoxia pathway were elevated in the ECC-high group when compared to the ECC-low group. In conclusion, this study showed that patients characterized as ECC-high not only had reduced RFS and OS rates, but were also more sensitive to adjuvant chemotherapy and could potentially be less sensitive to immune checkpoint inhibitors. Being able to characterize patients by these parameters would allow doctors to make more informed decisions on patient treatment regimens.
Collapse
|
25
|
Chen J, Zhao CC, Chen FR, Feng GW, Luo F, Jiang T. KIF4A Regulates the Progression of Pancreatic Ductal Adenocarcinoma through Proliferation and Invasion. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8249293. [PMID: 34805404 PMCID: PMC8601854 DOI: 10.1155/2021/8249293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pancreatic cancer is a malignant tumor of the digestive tract, which is difficult to diagnose and treat due to bad early diagnosis. We aimed to explore the role of kinesin superfamily 4A (KIF4A) in pancreatic ductal adenocarcinoma (PDAC). METHODS We first used the bioinformatic website to screen the data of pancreatic cancer in TCGA, and KIF4A protein was detected among the 86 specimens of patients in our hospital combined with clinic-pathological characteristics and survival analysis. KIF4A loss-expression cell lines were established by RNA interference (RNAi). In addition, we performed in vitro cell assays to detect the changes in cell proliferation, migration, and invasion. The proteins involved in the proliferation and metastasis of cancer cells were also detected by western blot. The above results could be proved in vivo. Further, the correlation between KIF4A and CDC5L was analyzed by TCGA and IHC data. RESULTS We first found a high expression of KIF4A in pancreatic cancer, suggesting a role of KIF4A in the development of pancreatic cancer. KIF4A was found to be differentially expressed (P < 0.05) among the 86 specimens of patients in our hospital and was significantly associated with PDAC TNM stages and tumor size. High KIF4A expression also significantly worsened overall survival (OS) and disease-free survival rate (DFS) (P < 0.05, respectively). In addition, cell proliferation, migration, and invasion were inhibited by the KIF4A-shRNA group compared with the control (P < 0.05, respectively). In the end, knockdown of KIF4A could inhibit tumor development and metastasis in vivo. Further, the positive correlation between KIF4A and CDC5L existed, and KIF4A might promote pancreatic cancer proliferation by affecting CDC5L expression. CONCLUSION In conclusion, the high expression level of KIF4A in PDAC was closely related to poor clinical and pathological status, lymphatic metastasis, and vascular invasion. KIF4A might be involved in promoting the development of PDAC in vitro and in vivo, which might be a new therapeutic target of PDAC.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Computational Biology
- Disease Progression
- Female
- Gene Knockdown Techniques
- Heterografts
- Humans
- Kinesins/antagonists & inhibitors
- Kinesins/genetics
- Kinesins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Retrospective Studies
- Up-Regulation
Collapse
Affiliation(s)
- Jing Chen
- College of Life Science, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
| | - Cui-Cui Zhao
- Department of VIP Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
| | - Fei-Ran Chen
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, No. 24, Binshui Street, Hexi District, Tianjin 300060, China
| | - Guo-Wei Feng
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, No. 24, Binshui Street, Hexi District, Tianjin 300060, China
| | - Fei Luo
- Department of Urology, Tianjin People's Hospital, No. 190, Jieyuan Road, Hongqiao District, Tianjin 300121, China
| | - Tao Jiang
- Department of General Surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, 100700 Beijing, China
| |
Collapse
|
26
|
Li GS, Yang LJ, Chen G, Huang SN, Fang YY, Huang WJ, Lu W, He J, Liu HC, Li LY, Mo BY, Lu HP. Laryngeal Squamous Cell Carcinoma: Clinical Significance and Potential Mechanism of Cell Division Cycle 45. Cancer Biother Radiopharm 2021; 37:300-312. [PMID: 34672813 DOI: 10.1089/cbr.2020.4314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Cell division cycle 45 (CDC45) plays an important role in the occurrence and development of numerous carcinomas, but its effect in laryngeal squamous cell carcinoma (LSCC) remains unclear. Materials and Methods: The messenger RNA and protein expression levels of CDC45 in LSCC were evaluated with a t test and the standard mean difference (SMD). The ability of CDC45 expression to distinguish the LSCC was assessed through receiver operating characteristic (ROC) curves. Gene set enrichment analysis (GSEA), protein-protein interaction, public databases, and online tools were used to explore the potential molecular mechanism of CDC45 in LSCC. Results: A high expression of CDC45 was identified in LSCC (SMD = 2.61, 95% confidence interval [1.62-3.61]). Through ROC curves, the expression of CDC45 makes it feasible to distinguish the LSCC group from the non-LSCC counterpart. CDC45 was relevant to the progression-free interval of LSCC patients (log-rank p = 0.03). GSEAs show that CDC45 is related to the cell cycle. CDC45, CDC6, KIF2C, and AURKB were identified as hub genes of LSCC. E2F1 may be the regulatory transcription factor of CDC45. Conclusions: High expression of CDC45 likely demonstrates carcinogenic effects in LSCC, and CDC45 is a potential target in screening and treatment of LSCC.
Collapse
Affiliation(s)
- Guo-Sheng Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Lin-Jie Yang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, P.R. China
| | - Ye-Ying Fang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Wei-Jian Huang
- Department of Pathology, Redcross Hospital of Yulin, Yulin, P.R. China
| | - Wei Lu
- Department of Pathology, Nanning Second People's Hospital, Third Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Juan He
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - He-Chuan Liu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Lin-Yi Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Bin-Yu Mo
- Department of Otolaryngology, Liuzhou People's Hospital, Liuzhou, P.R. China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| |
Collapse
|
27
|
Clinical importance of preoperative red-cell volume distribution width as a prognostic marker in patients undergoing radical surgery for pancreatic cancer. Surg Today 2021; 52:465-474. [PMID: 34524510 PMCID: PMC8873122 DOI: 10.1007/s00595-021-02374-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022]
Abstract
Background and purpose A new noninvasive biomarker is being sought to predict the prognosis of patients with pancreatic cancer. Red-cell volume distribution width (RDW), a descriptive parameter for erythrocyte variation, has been shown to have prognostic value for some tumor types. Our purpose was to assess the RDW value to predict the prognosis of patients with pancreatic cancer. Methods The subjects of this retrospective study were 792 patients who underwent radical surgery for pancreatic cancer, divided into high-RDW and low-RDW groups based on receiver operating characteristic (ROC) curve analysis (15.6%). The controlling nutritional status (CONUT) score was used to assess preoperative nutritional status. Statistical analysis was conducted to investigate the differences between the high and low RDW groups, and to explore the possibility of the RDW being used as prognostic predictor for patients with pancreatic cancer. Results The immune-nutritional status was worse in the high-RDW group than in the low-RDW group. The high-RDW group patients also had a poorer prognosis. Risk factor analysis showed that the RDW could be an independent risk factor for pancreatic cancer. Conclusions The RDW is associated with immune-nutritional status in pancreatic cancer patients and can be used as an independent prognostic factor for their postoperative survival. Supplementary Information The online version contains supplementary material available at 10.1007/s00595-021-02374-7.
Collapse
|
28
|
Gutiérrez ML, Muñoz-Bellvís L, Orfao A. Genomic Heterogeneity of Pancreatic Ductal Adenocarcinoma and Its Clinical Impact. Cancers (Basel) 2021; 13:4451. [PMID: 34503261 PMCID: PMC8430663 DOI: 10.3390/cancers13174451] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer death due to limited advances in recent years in early diagnosis and personalized therapy capable of overcoming tumor resistance to chemotherapy. In the last decades, significant advances have been achieved in the identification of recurrent genetic and molecular alterations of PDAC including those involving the KRAS, CDKN2A, SMAD4, and TP53 driver genes. Despite these common genetic traits, PDAC are highly heterogeneous tumors at both the inter- and intra-tumoral genomic level, which might contribute to distinct tumor behavior and response to therapy, with variable patient outcomes. Despite this, genetic and genomic data on PDAC has had a limited impact on the clinical management of patients. Integration of genomic data for classification of PDAC into clinically defined entities-i.e., classical vs. squamous subtypes of PDAC-leading to different treatment approaches has the potential for significantly improving patient outcomes. In this review, we summarize current knowledge about the most relevant genomic subtypes of PDAC including the impact of distinct patterns of intra-tumoral genomic heterogeneity on the classification and clinical and therapeutic management of PDAC.
Collapse
Affiliation(s)
- María Laura Gutiérrez
- Department of Medicine and Cytometry Service (NUCLEUS), Universidad de Salamanca, 37007 Salamanca, Spain;
- Cancer Research Center (IBMCC-CSIC/USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, 28029 Madrid, Spain
| | - Luis Muñoz-Bellvís
- Cancer Research Center (IBMCC-CSIC/USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, 28029 Madrid, Spain
- Service of General and Gastrointestinal Surgery, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine and Cytometry Service (NUCLEUS), Universidad de Salamanca, 37007 Salamanca, Spain;
- Cancer Research Center (IBMCC-CSIC/USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, 28029 Madrid, Spain
| |
Collapse
|
29
|
Liu B, Fu T, He P, Du C, Xu K. Construction of a five-gene prognostic model based on immune-related genes for the prediction of survival in pancreatic cancer. Biosci Rep 2021; 41:BSR20204301. [PMID: 34143198 PMCID: PMC8252190 DOI: 10.1042/bsr20204301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To identify differentially expressed immune-related genes (DEIRGs) and construct a model with survival-related DEIRGs for evaluating the prognosis of patients with pancreatic cancer (PC). METHODS Six microarray gene expression datasets of PC from the Gene Expression Omnibus (GEO) and Immunology Database and Analysis Portal (ImmPort) were used to identify DEIRGs. RNA sequencing and clinical data from The Cancer Genome Atlas Program-Pancreatic Adenocarcinoma (TCGA-PAAD) database were used to establish the prognostic model. Univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses were applied to determine the final variables of the prognostic model. The median risk score was used as the cut-off value to classify samples into low- and high-risk groups. The prognostic model was further validated using an internal validation set of TCGA and an external validation set of GSE62452. RESULTS In total, 142 DEIRGs were identified from six GEO datasets, 47 were survival-related DEIRGs. A prognostic model comprising five genes (i.e., ERAP2, CXCL9, AREG, DKK1, and IL20RB) was established. High-risk patients had poor survival compared with low-risk patients. The 1-, 2-, 3-year area under the receiver operating characteristic (ROC) curve of the model reached 0.85, 0.87, and 0.93, respectively. Additionally, the prognostic model reflected the infiltration of neutrophils and dendritic cells. The expression of most characteristic immune checkpoints was significantly higher in the high-risk group versus the low-risk group. CONCLUSIONS The five-gene prognostic model showed reliably predictive accuracy. This model may provide useful information for immunotherapy and facilitate personalized monitoring for patients with PC.
Collapse
Affiliation(s)
- Bo Liu
- Department of Hepatobiliary Surgery, Pidu District People’s Hospital of Chengdu, Chengdu, Sichuan, China
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingting Fu
- Department of Nosocomial Infection Control, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ping He
- Department of Hepatobiliary Surgery, Pidu District People’s Hospital of Chengdu, Chengdu, Sichuan, China
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Chengyou Du
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Xu
- Department of Oncology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Mao M, Ling H, Lin Y, Chen Y, Xu B, Zheng R. Construction and Validation of an Immune-Based Prognostic Model for Pancreatic Adenocarcinoma Based on Public Databases. Front Genet 2021; 12:702102. [PMID: 34335699 PMCID: PMC8318842 DOI: 10.3389/fgene.2021.702102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is a highly lethal and aggressive tumor with poor prognoses. The predictive capability of immune-related genes (IRGs) in PAAD has yet to be explored. We aimed to explore prognostic-related immune genes and develop a prediction model for indicating prognosis in PAAD. Methods The messenger (m)RNA expression profiles acquired from public databases were comprehensively integrated and differentially expressed genes were identified. Univariate analysis was utilized to identify IRGs that related to overall survival. Whereafter, a multigene signature in the Cancer Genome Atlas cohort was established based on the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Moreover, a transcription factors regulatory network was constructed to reveal potential molecular processes in PAAD. PAAD datasets downloaded from the Gene Expression Omnibus database were applied for the validations. Finally, correlation analysis between the prognostic model and immunocyte infiltration was investigated. Results Totally, 446 differentially expressed immune-related genes were screened in PAAD tissues and normal tissues, of which 43 IRGs were significantly related to the overall survival of PAAD patients. An immune-based prognostic model was developed, which contained eight IRGs. Univariate and multivariate Cox regression revealed that the risk score model was an independent prognostic indicator in PAAD (HR > 1, P < 0.001). Besides, the sensitivity of the model was evaluated by the receiver operating characteristic curve analysis. Finally, immunocyte infiltration analysis revealed that the eight-gene signature possibly played a pivotal role in the status of the PAAD immune microenvironment. Conclusion A novel prognostic model based on immune genes may serve to characterize the immune microenvironment and provide a basis for PAAD immunotherapy.
Collapse
Affiliation(s)
- Miaobin Mao
- The Graduate School, Fujian Medical University, Fuzhou, China.,Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Hongjian Ling
- The Graduate School, Fujian Medical University, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Yuping Lin
- The Graduate School, Fujian Medical University, Fuzhou, China.,Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Yanling Chen
- Department of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China.,College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China.,College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
31
|
Iacobas S, Iacobas DA. A Personalized Genomics Approach of the Prostate Cancer. Cells 2021; 10:cells10071644. [PMID: 34209090 PMCID: PMC8305988 DOI: 10.3390/cells10071644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Decades of research identified genomic similarities among prostate cancer patients and proposed general solutions for diagnostic and treatments. However, each human is a dynamic unique with never repeatable transcriptomic topology and no gene therapy is good for everybody. Therefore, we propose the Genomic Fabric Paradigm (GFP) as a personalized alternative to the biomarkers approach. Here, GFP is applied to three (one primary—“A”, and two secondary—“B” & “C”) cancer nodules and the surrounding normal tissue (“N”) from a surgically removed prostate tumor. GFP proved for the first time that, in addition to the expression levels, cancer alters also the cellular control of the gene expression fluctuations and remodels their networking. Substantial differences among the profiled regions were found in the pathways of P53-signaling, apoptosis, prostate cancer, block of differentiation, evading apoptosis, immortality, insensitivity to anti-growth signals, proliferation, resistance to chemotherapy, and sustained angiogenesis. ENTPD2, AP5M1 BAIAP2L1, and TOR1A were identified as the master regulators of the “A”, “B”, “C”, and “N” regions, and potential consequences of ENTPD2 manipulation were analyzed. The study shows that GFP can fully characterize the transcriptomic complexity of a heterogeneous prostate tumor and identify the most influential genes in each cancer nodule.
Collapse
Affiliation(s)
- Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| | - Dumitru A. Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
- Correspondence: ; Tel.: +1-936-261-9926
| |
Collapse
|
32
|
Gui T, Yao C, Jia B, Shen K. Identification and analysis of genes associated with epithelial ovarian cancer by integrated bioinformatics methods. PLoS One 2021; 16:e0253136. [PMID: 34143800 PMCID: PMC8213194 DOI: 10.1371/journal.pone.0253136] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Background Though considerable efforts have been made to improve the treatment of epithelial ovarian cancer (EOC), the prognosis of patients has remained poor. Identifying differentially expressed genes (DEGs) involved in EOC progression and exploiting them as novel biomarkers or therapeutic targets is of great value. Methods Overlapping DEGs were screened out from three independent gene expression omnibus (GEO) datasets and were subjected to Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses. The protein-protein interactions (PPI) network of DEGs was constructed based on the STRING database. The expression of hub genes was validated in GEPIA and GEO. The relationship of hub genes expression with tumor stage and overall survival and progression-free survival of EOC patients was investigated using the cancer genome atlas data. Results A total of 306 DEGs were identified, including 265 up-regulated and 41 down-regulated. Through PPI network analysis, the top 20 genes were screened out, among which 4 hub genes, which were not researched in depth so far, were selected after literature retrieval, including CDC45, CDCA5, KIF4A, ESPL1. The four genes were up-regulated in EOC tissues compared with normal tissues, but their expression decreased gradually with the continuous progression of EOC. Survival curves illustrated that patients with a lower level of CDCA5 and ESPL1 had better overall survival and progression-free survival statistically. Conclusion Two hub genes, CDCA5 and ESPL1, identified as probably playing tumor-promotive roles, have great potential to be utilized as novel therapeutic targets for EOC treatment.
Collapse
Affiliation(s)
- Ting Gui
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenhe Yao
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| | - Binghan Jia
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
33
|
Sahu D, Chang YL, Lin YC, Lin CC. Characterization of the Survival Influential Genes in Carcinogenesis. Int J Mol Sci 2021; 22:4384. [PMID: 33922264 PMCID: PMC8122717 DOI: 10.3390/ijms22094384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 11/25/2022] Open
Abstract
The genes influencing cancer patient mortality have been studied by survival analysis for many years. However, most studies utilized them only to support their findings associated with patient prognosis: their roles in carcinogenesis have not yet been revealed. Herein, we applied an in silico approach, integrating the Cox regression model with effect size estimated by the Monte Carlo algorithm, to screen survival-influential genes in more than 6000 tumor samples across 16 cancer types. We observed that the survival-influential genes had cancer-dependent properties. Moreover, the functional modules formed by the harmful genes were consistently associated with cell cycle in 12 out of the 16 cancer types and pan-cancer, showing that dysregulation of the cell cycle could harm patient prognosis in cancer. The functional modules formed by the protective genes are more diverse in cancers; the most prevalent functions are relevant for immune response, implying that patients with different cancer types might develop different mechanisms against carcinogenesis. We also identified a harmful set of 10 genes, with potential as prognostic biomarkers in pan-cancer. Briefly, our results demonstrated that the survival-influential genes could reveal underlying mechanisms in carcinogenesis and might provide clues for developing therapeutic targets for cancers.
Collapse
Affiliation(s)
| | | | | | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (D.S.); (Y.-L.C.); (Y.-C.L.)
| |
Collapse
|
34
|
Listik E, Horst B, Choi AS, Lee NY, Győrffy B, Mythreye K. A bioinformatic analysis of the inhibin-betaglycan-endoglin/CD105 network reveals prognostic value in multiple solid tumors. PLoS One 2021; 16:e0249558. [PMID: 33819300 PMCID: PMC8021191 DOI: 10.1371/journal.pone.0249558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/21/2021] [Indexed: 12/13/2022] Open
Abstract
Inhibins and activins are dimeric ligands belonging to the TGFβ superfamily with emergent roles in cancer. Inhibins contain an α-subunit (INHA) and a β-subunit (either INHBA or INHBB), while activins are mainly homodimers of either βA (INHBA) or βB (INHBB) subunits. Inhibins are biomarkers in a subset of cancers and utilize the coreceptors betaglycan (TGFBR3) and endoglin (ENG) for physiological or pathological outcomes. Given the array of prior reports on inhibin, activin and the coreceptors in cancer, this study aims to provide a comprehensive analysis, assessing their functional prognostic potential in cancer using a bioinformatics approach. We identify cancer cell lines and cancer types most dependent and impacted, which included p53 mutated breast and ovarian cancers and lung adenocarcinomas. Moreover, INHA itself was dependent on TGFBR3 and ENG/CD105 in multiple cancer types. INHA, INHBA, TGFBR3, and ENG also predicted patients' response to anthracycline and taxane therapy in luminal A breast cancers. We also obtained a gene signature model that could accurately classify 96.7% of the cases based on outcomes. Lastly, we cross-compared gene correlations revealing INHA dependency to TGFBR3 or ENG influencing different pathways themselves. These results suggest that inhibins are particularly important in a subset of cancers depending on the coreceptor TGFBR3 and ENG and are of substantial prognostic value, thereby warranting further investigation.
Collapse
Affiliation(s)
- Eduardo Listik
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ben Horst
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Alex Seok Choi
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nam. Y. Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Balázs Győrffy
- TTK Cancer Biomarker Research Group, Institute of Enzymology, and Semmelweis University Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary
| | - Karthikeyan Mythreye
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
35
|
Kang Y, Zhu X, Wang X, Liao S, Jin M, Zhang L, Wu X, Zhao T, Zhang J, Lv J, Zhu D. Identification and Validation of the Prognostic Stemness Biomarkers in Bladder Cancer Bone Metastasis. Front Oncol 2021; 11:641184. [PMID: 33816287 PMCID: PMC8017322 DOI: 10.3389/fonc.2021.641184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/29/2021] [Indexed: 12/22/2022] Open
Abstract
Background Bladder urothelial carcinoma (BLCA) is one of the most common urinary system malignancies with a high metastasis rate. Cancer stem cells (CSCs) play an important role in the occurrence and progression of BLCA, however, its roles in bone metastasis and the prognostic stemness biomarkers have not been identified in BLCA. Method In order to identify the roles of CSC in the tumorigenesis, bone metastasis and prognosis of BLCA, the RNA sequencing data of patients with BLCA were retrieved from The Cancer Genome Atlas (TCGA) databases. The mRNA expression-based stemness index (mRNAsi) and the differential expressed genes (DEGs) were evaluated and identified. The associations between mRNAsi and the tumorigenesis, bone metastasis, clinical stage and overall survival (OS) were also established. The key prognostic stemness-related genes (PSRGs) were screened by Lasso regression, and based on them, the predict model was constructed. Its accuracy was tested by the area under the curve (AUC) of the receiver operator characteristic (ROC) curve and the risk score. Additionally, in order to explore the key regulatory network, the relationship among differentially expressing TFs, PSRGs, and absolute quantification of 50 hallmarks of cancer were also identified by Pearson correlation analysis. To verify the identified key TFs and PSRGs, their expression levels were identified by our clinical samples via immunohistochemistry (IHC). Results A total of 8,647 DEGs were identified between 411 primary BLCAs and 19 normal solid tissue samples. According to the clinical stage, mRNAsi and bone metastasis of BLCA, 2,383 stage-related DEGs, 3,680 stemness-related DEGs and 716 bone metastasis-associated DEGs were uncovered, respectively. Additionally, compared with normal tissue, mRNAsi was significantly upregulated in the primary BLCA and also associated with the prognosis (P = 0.016), bone metastasis (P < 0.001) and AJCC clinical stage (P < 0.001) of BLCA patients. A total of 20 PSRGs were further screened by Lasso regression, and based on them, we constructed the predict model with a relatively high accuracy (AUC: 0.699). Moreover, we found two key TFs (EPO, ARID3A), four key PRSGs (CACNA1E, LINC01356, CGA and SSX3) and five key hallmarks of cancer gene sets (DNA repair, myc targets, E2F targets, mTORC1 signaling and unfolded protein response) in the regulatory network. The tissue microarray of BLCA and BLCA bone metastasis also revealed high expression of the key TFs (EPO, ARID3A) and PRSGs (SSX3) in BLCA. Conclusion Our study identifies mRNAsi as a reliable index in predicting the tumorigenesis, bone metastasis and prognosis of patients with BLCA and provides a well-applied model for predicting the OS for patients with BLCA based on 20 PSRGs. Besides, we also identified the regulatory network between key PSRGs and cancer gene sets in mediating the BLCA bone metastasis.
Collapse
Affiliation(s)
- Yao Kang
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China.,Department of Orthopedics, Hangzhou Medical College People's Hospital, Hangzhou, China
| | - Xiaojun Zhu
- Department of Musculoskeletal Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xijun Wang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shiyao Liao
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China.,Department of Orthopedics, Hangzhou Medical College People's Hospital, Hangzhou, China
| | - Mengran Jin
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China.,Department of Orthopedics, Hangzhou Medical College People's Hospital, Hangzhou, China
| | - Li Zhang
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China.,Department of Orthopedics, Hangzhou Medical College People's Hospital, Hangzhou, China
| | - Xiangyang Wu
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China.,Department of Orthopedics, Hangzhou Medical College People's Hospital, Hangzhou, China
| | - Tingxiao Zhao
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China.,Department of Orthopedics, Hangzhou Medical College People's Hospital, Hangzhou, China
| | - Jun Zhang
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China.,Department of Orthopedics, Hangzhou Medical College People's Hospital, Hangzhou, China
| | - Jun Lv
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China.,Department of Orthopedics, Hangzhou Medical College People's Hospital, Hangzhou, China
| | - Danjie Zhu
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China.,Department of Orthopedics, Hangzhou Medical College People's Hospital, Hangzhou, China
| |
Collapse
|
36
|
Wang W, Yan L, Guan X, Dong B, Zhao M, Wu J, Tian X, Hao C. Identification of an Immune-Related Signature for Predicting Prognosis in Patients With Pancreatic Ductal Adenocarcinoma. Front Oncol 2021; 10:618215. [PMID: 33718118 PMCID: PMC7945593 DOI: 10.3389/fonc.2020.618215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is one of the highest fatality rate cancers with poor survival rates. The tumor microenvironment (TME) is vital for tumor immune responses, leading to resistance to chemotherapy and poor prognosis of PDAC patients. This study aimed to provide a comprehensive evaluation of the immune genes and microenvironment in PDAC that might help in predicting prognosis and guiding clinical treatments. METHODS We developed a prognosis-associated immune signature (i.e., PAIS) based on immune-associated genes to predict the overall survival of patients with PDAC. The clinical significance and immune landscapes of the signature were comprehensively analyzed. RESULTS Owing to gene expression profiles from TCGA database, functional enrichment analysis revealed a significant difference in the immune response between PDAC and normal pancreas. Using transcriptome data analysis of a training set, we identified an immune signature represented by 5 genes (ESR2, IDO1, IL20RB, PPP3CA, and PLAU) related to the overall survival of patients with PDAC, significantly. This training set was well-validated in a test set. Our results indicated a clear association between a high-risk score and a very poor prognosis. Stratification analysis and multivariate Cox regression analysis revealed that PAIS was an important prognostic factor. We also found that the risk score was positively correlated with the inflammatory response, antigen-presenting process, and expression level of some immunosuppressive checkpoint molecules (e.g., CD73, PD-L1, CD80, and B7-H3). These results suggested that high-risk patients had a suppressed immune response. However, they could respond better to chemotherapy. In addition, PAIS was positively correlated with the infiltration of M2 macrophages in PDAC. CONCLUSIONS This study highlighted the relationship between the immune response and prognosis in PDAC and developed a clinically feasible signature that might serve as a powerful prognostic tool and help further optimize the cancer therapy paradigm.
Collapse
Affiliation(s)
- Weijia Wang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liang Yan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoya Guan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Zhao
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jianhui Wu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
37
|
Wei T, Fa B, Luo C, Johnston L, Zhang Y, Yu Z. An Efficient and Easy-to-Use Network-Based Integrative Method of Multi-Omics Data for Cancer Genes Discovery. Front Genet 2021; 11:613033. [PMID: 33488678 PMCID: PMC7820902 DOI: 10.3389/fgene.2020.613033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/25/2020] [Indexed: 12/25/2022] Open
Abstract
Identifying personalized driver genes is essential for discovering critical biomarkers and developing effective personalized therapies of cancers. However, few methods consider weights for different types of mutations and efficiently distinguish driver genes over a larger number of passenger genes. We propose MinNetRank (Minimum used for Network-based Ranking), a new method for prioritizing cancer genes that sets weights for different types of mutations, considers the incoming and outgoing degree of interaction network simultaneously, and uses minimum strategy to integrate multi-omics data. MinNetRank prioritizes cancer genes among multi-omics data for each sample. The sample-specific rankings of genes are then integrated into a population-level ranking. When evaluating the accuracy and robustness of prioritizing driver genes, our method almost always significantly outperforms other methods in terms of precision, F1 score, and partial area under the curve (AUC) on six cancer datasets. Importantly, MinNetRank is efficient in discovering novel driver genes. SP1 is selected as a candidate driver gene only by our method (ranked top three), and SP1 RNA and protein differential expression between tumor and normal samples are statistically significant in liver hepatocellular carcinoma. The top seven genes stratify patients into two subtypes exhibiting statistically significant survival differences in five cancer types. These top seven genes are associated with overall survival, as illustrated by previous researchers. MinNetRank can be very useful for identifying cancer driver genes, and these biologically relevant marker genes are associated with clinical outcome. The R package of MinNetRank is available at https://github.com/weitinging/MinNetRank.
Collapse
Affiliation(s)
- Ting Wei
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Botao Fa
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Chengwen Luo
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Luke Johnston
- SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhangsheng Yu
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Yi M, Li A, Zhou L, Chu Q, Luo S, Wu K. Immune signature-based risk stratification and prediction of immune checkpoint inhibitor's efficacy for lung adenocarcinoma. Cancer Immunol Immunother 2021; 70:1705-1719. [PMID: 33386920 PMCID: PMC8139885 DOI: 10.1007/s00262-020-02817-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a common pulmonary malignant disease with a poor prognosis. There were limited studies investigating the influences of the tumor immune microenvironment on LUAD patients' survival and response to immune checkpoint inhibitors (ICIs). METHODS Based on TCGA-LUAD dataset, we constructed a prognostic immune signature and validated its predictive capability in the internal as well as total datasets. Then, we explored the differences of tumor-infiltrating lymphocytes, tumor mutation burden, and patients' response to ICI treatment between the high-risk score group and low-risk score group. RESULTS This immune signature consisted of 17 immune-related genes, which was an independent prognostic factor for LUAD patients. In the low-risk score group, patients had better overall survival. Although the differences were non-significant, patients with low-risk scores had more tumor-infiltrating follicular helper T cells and fewer macrophages (M0), which were closely related to clinical outcomes. Additionally, the total TMB was markedly decreased in the low-risk score group. Using immunophenoscore as a surrogate of ICI response, we found that patients with low-risk scores had significantly higher immunophenoscore. CONCLUSION The 17-immune-related genes signature may have prognostic and predictive relevance with ICI therapy but needs prospective validation.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Anping Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Linghui Zhou
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Qian Chu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
39
|
Kong K, Zhao Y, Xia L, Jiang H, Xu M, Zheng J. B3GNT3: A prognostic biomarker associated with immune cell infiltration in pancreatic adenocarcinoma. Oncol Lett 2020; 21:159. [PMID: 33552277 PMCID: PMC7798085 DOI: 10.3892/ol.2020.12420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022] Open
Abstract
Pancreatic cancer, one of the most malignant gastrointestinal tumors, is prone to liver metastasis. However, due to the lack of appropriate and comprehensive diagnostic methods, it is difficult to accurately predict the survival outcomes. Therefore, there is a need to identify effective biomarkers, such as UDP-GlcNAc: βGal β-1,3-N-acetylglucosaminyltransferase 3 (B3GNT3), that predict the survival outcome of patients with pancreatic cancer. In the present study, based on data from 171 cases of pancreatic cancer obtained from The Cancer Genome Atlas portal, the differential expression of mRNAs was screened by comparing cancerous tissues with adjacent tissues. Univariate Cox regression analysis demonstrated that B3GNT3 had prognostic capability and could be an independent prognostic factor for pancreatic adenocarcinoma (PAAD). Using the Tumor Immune Estimation Resource tool and Tumor-Immune System Interaction Database, a potential relationship between B3GNT3 expression and immune cell infiltration was identified in pancreatic carcinoma. Furthermore, 177 samples of pancreatic carcinoma were collected and the association of CD68 expression with B3GNT3 was assessed by immunohistochemical staining. B3GNT3 expression was associated with clinical outcomes in pancreatic carcinoma and related to infiltrating levels of immune cells, which indicated that B3GNT3 could be used as an immunotherapy target for PAAD.
Collapse
Affiliation(s)
- Kaiwen Kong
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai 200433, P.R. China
| | - Yuanyu Zhao
- Department of Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai 200433, P.R. China
| | - Leilei Xia
- Department of Obstetrics and Gynecology, Changhai Hospital, Navy Medical University, Shanghai 200433, P.R. China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai 200433, P.R. China
| | - Mingjuan Xu
- Department of Obstetrics and Gynecology, Changhai Hospital, Navy Medical University, Shanghai 200433, P.R. China
| | - Jianming Zheng
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
40
|
Feng S, Luo S, Ji C, Shi J. miR-29c-3p regulates proliferation and migration in ovarian cancer by targeting KIF4A. World J Surg Oncol 2020; 18:315. [PMID: 33261630 PMCID: PMC7709319 DOI: 10.1186/s12957-020-02088-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/16/2020] [Indexed: 12/27/2022] Open
Abstract
Background Increasing evidence suggested that microRNA and kinesin superfamily proteins play an essential role in ovarian cancer. The association between KIF4A and ovarian cancer (OC) was investigated in this study. Methods We performed bioinformatics analysis in the GEO database to screen out the differentially expressed miRNAs (DEmiRNAs) associated with ovarian cancer prognosis. Upstream targeting prediction for KIF4A was acquired by using the mirDIP database. The potential regulatory factor miR-29c-3p for KIF4A was obtained from the intersection of the above all miRNAs. The prognosis of KIF4A and target-miRNA in OC was obtained in the subsequent analysis. qRT-PCR and Western blot detected KIF4A expression level in IOSE80 (human normal ovarian epithelial cell line). In the meantime, the gene expression level was detected in A2780, HO-8910PM, COC1, and SKOV3 cell lines (human ovarian carcinoma cell line). MTT and colony formation assays were used to detect cell proliferation of SKOV3 cell line. The following assays detected cell migration through the use of transwell and wound heal assays. Targeted binding relationship between KIF4A and miRNA was detected by using the dual-luciferase reporter assay. Results Both high expression of KIF4A and lower expression of miR-29c-3p could be used as biomarkers indicating poor prognosis in OC patients. Cellular function tests confirmed that when KIF4A was silenced, it inhibited the proliferation and migration of OC cells. In addition, 3′-UTR of KIF4A had a direct binding site with miR-29c-3p, which indicated that the expression of KIF4A could be regulated by miR-29c-3p. In subsequent assays, the proliferation and migration of OC cells were inhibited by the overexpression of miR-29c-3p. At the same time, rescue experiments also confirmed that the promotion of KIF4A could be reversed by miR-29c-3p. Conclusion In a word, our data revealed a new mechanism for the role of KIF4A in the occurrence and development of OC.
Collapse
Affiliation(s)
- Songwei Feng
- Department of Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Shanhui Luo
- Department of Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Chenchen Ji
- Orthopedic Institute, Soochow University, Suzhou, People's Republic of China
| | - Jia Shi
- Department of Laboratory, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, 48 Huaishuxiang, Wuxi, 214002, Jiangsu Province, People's Republic of China.
| |
Collapse
|
41
|
Atay S. Integrated transcriptome meta-analysis of pancreatic ductal adenocarcinoma and matched adjacent pancreatic tissues. PeerJ 2020; 8:e10141. [PMID: 33194391 PMCID: PMC7597628 DOI: 10.7717/peerj.10141] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022] Open
Abstract
A comprehensive meta-analysis of publicly available gene expression microarray data obtained from human-derived pancreatic ductal adenocarcinoma (PDAC) tissues and their histologically matched adjacent tissue samples was performed to provide diagnostic and prognostic biomarkers, and molecular targets for PDAC. An integrative meta-analysis of four submissions (GSE62452, GSE15471, GSE62165, and GSE56560) containing 105 eligible tumor-adjacent tissue pairs revealed 344 differentially over-expressed and 168 repressed genes in PDAC compared to the adjacent-to-tumor samples. The validation analysis using TCGA combined GTEx data confirmed 98.24% of the identified up-regulated and 73.88% of the down-regulated protein-coding genes in PDAC. Pathway enrichment analysis showed that “ECM-receptor interaction”, “PI3K-Akt signaling pathway”, and “focal adhesion” are the most enriched KEGG pathways in PDAC. Protein-protein interaction analysis identified FN1, TIMP1, and MSLN as the most highly ranked hub genes among the DEGs. Transcription factor enrichment analysis revealed that TCF7, CTNNB1, SMAD3, and JUN are significantly activated in PDAC, while SMAD7 is inhibited. The prognostic significance of the identified and validated differentially expressed genes in PDAC was evaluated via survival analysis of TCGA Pan-Cancer pancreatic ductal adenocarcinoma data. The identified candidate prognostic biomarkers were then validated in four external validation datasets (GSE21501, GSE50827, GSE57495, and GSE71729) to further improve reliability. A total of 28 up-regulated genes were found to be significantly correlated with worse overall survival in patients with PDAC. Twenty-one of the identified prognostic genes (ITGB6, LAMC2, KRT7, SERPINB5, IGF2BP3, IL1RN, MPZL2, SFTA2, MET, LAMA3, ARNTL2, SLC2A1, LAMB3, COL17A1, EPSTI1, IL1RAP, AK4, ANXA2, S100A16, KRT19, and GPRC5A) were also found to be significantly correlated with the pathological stages of the disease. The results of this study provided promising prognostic biomarkers that have the potential to differentiate PDAC from both healthy and adjacent-to-tumor pancreatic tissues. Several novel dysregulated genes merit further study as potentially promising candidates for the development of more effective treatment strategies for PDAC.
Collapse
Affiliation(s)
- Sevcan Atay
- Department of Medical Biochemistry, Ege University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
42
|
Yan S, Fang J, Zhu Y, Xie Y, Fang F. Comprehensive analysis of prognostic immune-related genes associated with the tumor microenvironment of pancreatic ductal adenocarcinoma. Oncol Lett 2020; 20:366. [PMID: 33133266 PMCID: PMC7590433 DOI: 10.3892/ol.2020.12228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with a specific tumor immune microenvironment (TIME). Therefore, investigating prognostic immune-related genes (IRGs) that are closely associated with TIME to predict PDAC clinical outcomes is necessary. In the present study, 459 samples of PDAC from the Genotype-Tissue Expression database, The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) were included and a survival-associated module was identified using weighted gene co-expression network analysis. Based on the Cox regression analysis and least absolute shrinkage and selection operator analysis, four IRGs (2′-5′-oligoadenylate synthetase 1, MET proto-oncogene, receptor tyrosine kinase, interleukin 1 receptor type 2 and interleukin 20 receptor subunit β) were included in the prognostic model to calculate the risk score (RS), and patients with PDAC were divided into high- and low-RS groups. Kaplan-Meier survival and receiver operating characteristic curve analyses demonstrated that the low-RS group had significantly improved survival conditions compared with the high-RS group in TCGA training set. The prognostic function of the model was also validated using ICGC and GEO cohorts. To investigate the mechanism of different overall survival between the high- and low-RS groups, the present study included Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using Expression Data and Cell Type Identification by Estimating Relative Subset of Known RNA Transcripts algorithms to investigate the state of the tumor microenvironment and immune infiltration inpatients in the cohort from TCGA. In summary, four genes associated with the TIME of PDAC were identified, which may provide a reference for clinical treatment.
Collapse
Affiliation(s)
- Shibai Yan
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Juntao Fang
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Yuanqiang Zhu
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yong Xie
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Feng Fang
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| |
Collapse
|
43
|
Wu B, Wang J, Wang X, Zhu M, Chen F, Shen Y, Zhong Z. CXCL5 expression in tumor tissues is associated with poor prognosis in patients with pancreatic cancer. Oncol Lett 2020; 20:257. [PMID: 32994820 PMCID: PMC7509746 DOI: 10.3892/ol.2020.12120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/25/2020] [Indexed: 02/02/2023] Open
Abstract
Immunotherapy based on the tumor microenvironment is a feasible method for treating cancer; therefore, it is necessary to investigate the immune microenvironment of pancreatic cancer and the influencing factors of the immune microenvironment. Chemokines are an important factor affecting the tumor immune microenvironment. In the present study, chemokines or chemokine receptors were screened to identify those differentially expressed in pancreatic cancer compared with normal controls and associated with patient prognosis. Chemokines or chemokine receptors that are differentially expressed in pancreatic cancer tumor tissues were initially screened using the Gene Expression Omnibus database. Next, survival analysis was performed using GEPIA, a website based on The Cancer Genome Atlas (TCGA) database. Immunohistochemical staining of CXCL5 was performed in tissue microarrays (TMAs) containing 119 cases of pancreatic cancer. Histochemistry score (H-SCORE) was used to evaluate the expression of CXCL5. Next, association analysis of the H-SCORE of CXCL5 and the clinical characteristics of patients was performed, as well as Kaplan-Meier survival and Cox multivariate regression analyses. The results of the bioinformatics analysis demonstrated that CXCL5 was highly expressed in pancreatic cancer tissues. High expression of CXCL5 in pancreatic cancer tissues was associated with a poor prognosis in patients in TCGA cohort. The expression level of CXCL5 in tumor tissues was significantly higher compared with that in adjacent peritumoral normal tissues in the immunohistochemical analysis. There was no significant association between CXCL5 expression in pancreatic cancer tumor tissues and clinicopathological factors. Patients with pancreatic cancer with high CXCL5 expression had a poor prognosis, as determined by Kaplan-Meier survival analysis based on the TMA dataset. The results of Cox multivariate regression analysis showed that CXCL5 was an independent factor for a poor prognosis in patients with pancreatic cancer. In conclusion, the results of the present study revealed that the chemokine CXCL5 was highly expressed in pancreatic cancer tissues; high CXCL5 expression was associated with a poor prognosis in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Bin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Jing Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaoguang Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Mingyuan Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Fei Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yiyu Shen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Zhengxiang Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
44
|
Feng Z, Shi M, Li K, Ma Y, Jiang L, Chen H, Peng C. Development and validation of a cancer stem cell-related signature for prognostic prediction in pancreatic ductal adenocarcinoma. J Transl Med 2020; 18:360. [PMID: 32958051 PMCID: PMC7507616 DOI: 10.1186/s12967-020-02527-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cancer stem cells (CSCs) are crucial to the malignant behaviour and poor prognosis of pancreatic ductal adenocarcinoma (PDAC). In recent years, CSC biology has been widely studied, but practical prognostic signatures based on CSC-related genes have not been established or reported in PDAC. Methods A signature was developed and validated in seven independent PDAC datasets. The MTAB-6134 cohort was used as the training set, while one local Chinese cohort and five other public cohorts were used for external validation. CSC-related genes with credible prognostic roles were selected to form the signature, and their predictive performance was evaluated by Kaplan–Meier survival, receiver operating characteristic (ROC), and calibration curves. Correlation analysis was employed to clarify the potential biological characteristics of the gene signature. Results A robust signature comprising DCBLD2, GSDMD, PMAIP1, and PLOD2 was developed. It classified patients into high-risk and low-risk groups. High-risk patients had significantly shorter overall survival (OS) and disease-free survival (DFS) than low-risk patients. Calibration curves and Cox regression analysis demonstrated powerful predictive performance. ROC curves showed the better survival prediction by this model than other models. Functional analysis revealed a positive association between risk score and CSC markers. These results had cross-dataset compatibility. Impact This signature could help further improve the current TNM staging system and provide data for the development of novel personalized therapeutic strategies in the future.
Collapse
Affiliation(s)
- Zengyu Feng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kexian Li
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yang Ma
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
45
|
Zhang Z, Gu J, Yin M, Wang D, Ma C, Du J, Lin Z, Hu S, Wang X, Li Y, Tan G, Luo H, Wei G. Establishment and Investigation of a Multiple Gene Expression Signature to Predict Long-Term Survival in Pancreatic Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1570862. [PMID: 33015155 PMCID: PMC7516738 DOI: 10.1155/2020/1570862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/01/2020] [Indexed: 11/23/2022]
Abstract
Pancreatic cancer remains a lethal type of cancer with poor prognosis. Molecular classification enables in-depth, precise prognostic assessment. This study is aimed at identifying a robust and simple mRNA signature to predict the overall survival (OS) of pancreatic cancer (PC) patients. Differentially expressed genes (DEGs) between 45 paired pancreatic tumor samples and adjacent healthy tissues were selected. For risk determination, a LASSO Cox regression model with DEGs was used to generate the OS-associated risk score formula for the training cohort containing 177 PC patients. Another five independent datasets were used as the testing cohort to determine the predictive efficiency for further validation. In total, 441 DEGs were selected after considering the enrichment of classical pathways, such as EMT, cell cycle, cell adhesion, and PI3K-AKT. A five-gene signature for risk discrimination was established with high efficacy using LASSO Cox regression in the training group. External validation showed that patients identified by the gene expression signature to be in the high-risk group had poorer prognosis compared with the low-risk patients. Further investigation identified the differential epigenetic modification patterns of the five genes, which indicated their roles in tumor progression and their effect on therapy. In conclusion, we constructed a robust five-gene expression signature that could predict the OS of PC patients, offering a new insight for risk discrimination in daily clinical practice.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiangning Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Menghong Yin
- Department of Sports Medicine, Dalian Municipal Central Hospital, Dalian Medical University, Dalian, Liaoning Province, China
| | - Di Wang
- Department of Scientific Research, Eyes & ENT Hospital of Fudan University, Shanghai, China
| | - Chi Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jian Du
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhikun Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Siling Hu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuelong Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guang Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Haifeng Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
46
|
Kaushik AC, Wang YJ, Wang X, Wei DQ. Irinotecan and vandetanib create synergies for treatment of pancreatic cancer patients with concomitant TP53 and KRAS mutations. Brief Bioinform 2020; 22:5879228. [PMID: 32743640 DOI: 10.1093/bib/bbaa149] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/01/2020] [Accepted: 06/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The most frequently mutated gene pairs in pancreatic adenocarcinoma (PAAD) are KRAS and TP53, and our goal is to illustrate the multiomics and molecular dynamics landscapes of KRAS/TP53 mutation and also to obtain prospective novel drugs for KRAS- and TP53-mutated PAAD patients. Moreover, we also made an attempt to discover the probable link amid KRAS and TP53 on the basis of the abovementioned multiomics data. METHOD We utilized TCGA & Cancer Cell Line Encyclopedia data for the analysis of KRAS/TP53 mutation in a multiomics manner. In addition to that, we performed molecular dynamics analysis of KRAS and TP53 to produce mechanistic descriptions of particular mutations and carcinogenesis. RESULT We discover that there is a significant difference in the genomics, transcriptomics, methylomics, and molecular dynamics pattern of KRAS and TP53 mutation from the matching wild type in PAAD, and the prognosis of pancreatic cancer is directly linked with a particular mutation of KRAS and protein stability. Screened drugs are potentially effective in PAAD patients. CONCLUSIONS KRAS and TP53 prognosis of PAAD is directly associated with a specific mutation of KRAS. Irinotecan and vandetanib are prospective drugs for PAAD patients with KRASG12Dmutation and TP53 mutation.
Collapse
Affiliation(s)
| | - Yan-Jing Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Xiangeng Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Dong-Qing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| |
Collapse
|
47
|
Yang C, Liu Z, Zeng X, Wu Q, Liao X, Wang X, Han C, Yu T, Zhu G, Qin W, Peng T. Evaluation of the diagnostic ability of laminin gene family for pancreatic ductal adenocarcinoma. Aging (Albany NY) 2020; 11:3679-3703. [PMID: 31182680 PMCID: PMC6594799 DOI: 10.18632/aging.102007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
A poor outcome for pancreatic ductal adenocarcinoma (PDAC) patients is still a challenge worldwide. The aim of our study is to investigate the potential of key laminin subunits for being used both as a diagnostic and prognostic biomarker for PDAC patients. We evaluated the mRNA expression and prognostic value of laminin gene family in PDAC tissues using online public databases. Moreover, the relationship between key laminin subunits in PDAC blood cells and circulating tumor cells (CTCs) and the distinguishing ability of joint serum levels with carbohydrate antigen 19-9 (CA19-9) was analyzed. Two key differentially expressed subunits (LAMA3 and LAMC2) that are associated with prognosis of PDAC patients were found to show a potential for distinguishing between PDAC and non-tumor tissues. LAMA3 and LAMC2 expression were found to be positively related with CTC quantity in PDAC blood (R=0.628, p=0.029; R=0.776, p=0.003, respectively) using IgG chips. Furthermore, serum LAMC2 levels offered significant improvement over using CA19-9 alone for the discrimination of PDAC. Joint serum LAMC2 and CA19-9 levels increased the net benefit proportion in early stage/operational PDAC patients. Using integrated profiling, we identified LAMA3 and LAMC2 as potential therapeutic targets and prognostic markers for PDAC, for which further validation is warranted.
Collapse
Affiliation(s)
- Chengkun Yang
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Xianmin Zeng
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Qiongyuan Wu
- Department of Tuina, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Province, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| |
Collapse
|
48
|
Liu G, Lu Y, Li L, Jiang T, Chu S, Hou P, Bai J, Chen M. The kinesin motor protein KIF4A as a potential therapeutic target in renal cell carcinoma. Invest New Drugs 2020; 38:1730-1742. [PMID: 32533288 DOI: 10.1007/s10637-020-00961-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
Kinesin family member 4A (KIF4A) is located in the human chromosome band Xq13.1. It has a highly conserved kinesin motor region at its N-terminus, which is followed by a central coiled-coil region and a C-terminus cargo-binding domain that contains a cysteine-rich motif. It is aberrantly expressed in a variety of cancers. Our study aimed to determine the expression of KIF4A in renal cell carcinoma (RCC) and to gain new insights into the underlying molecular mechanisms of this disease. Here, we found that KIF4A expression in RCC specimens increased relative to that in normal renal tissues. A significant correlation existed between the expression of KIF4A and the clinicopathologic features of RCC. Elevated KIF4A expression was associated with poor overall survival and disease-free survival. Univariate and multivariate Cox regression analysis revealed that KIF4A was an independent prognostic factor for poor survival in human patients with RCC. CCK-8 proliferation assay, cell cycle analysis, and subcutaneous tumor formation analysis in nude mice consistently showed that KIF4A promoted RCC proliferation. Our findings also indicated that KIF4A functions as an accelerator of RCC metastasis as certified through transwell chamber analysis, wound healing assay, and angiogenesis assay. The expression levels of cyclin D1, cyclin E2, matrix metalloproteinase-2, matrix metalloproteinase-9, hypoxia-inducible factor 1α, and vascular endothelial growth factor in the KIF4A knockdown group were lower than those in the control group and were consistent with those in classic oncogenic pathways. These findings implied that the expression of KIF4A was significantly related to the tumor incidence, metastasis, and prognosis of patients with RCC. Our work provides new breakthroughs for the diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Guihong Liu
- Department of Radiotherapy Oncology, The second affiliated Hospital of Soohow University, Suzhou, Jiangsu Province, 215004, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, China
| | - Yachun Lu
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, China.,Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu Province, 221002, China
| | - Liantao Li
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, China.,Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu Province, 221002, China
| | - Tao Jiang
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, China.,Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu Province, 221002, China
| | - Sufang Chu
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, China.,Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu Province, 221002, China
| | - Pingfu Hou
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, China.,Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu Province, 221002, China
| | - Jin Bai
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, China. .,Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu Province, 221002, China.
| | - Ming Chen
- Department of Radiotherapy Oncology, The second affiliated Hospital of Soohow University, Suzhou, Jiangsu Province, 215004, China.
| |
Collapse
|
49
|
Deng Y, Zhou T, Wu JL, Chen Y, Shen CY, Zeng M, Chen T, Zhang XM. The impact of molecular classification based on the transcriptome of pancreatic cancer: from bench to bedside. CHINESE JOURNAL OF ACADEMIC RADIOLOGY 2020; 3:67-75. [DOI: 10.1007/s42058-020-00037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 07/25/2024]
|
50
|
Wang P, Li W, Zhai B, Jiang X, Jiang H, Zhang C, Sun X. Integrating high-throughput microRNA and mRNA expression data to identify risk mRNA signature for pancreatic cancer prognosis. J Cell Biochem 2020; 121:3090-3098. [PMID: 31886578 DOI: 10.1002/jcb.29576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is a malignancy of the digestive system characterized by poor prognosis. A number of prognostic messenger RNA (mRNA) signatures have been identified by using the high-throughput expression profiles. MicroRNAs (miRNA) play a critical role in regulating multiple cellular functions. However, no such integrated analysis of miRNAs and mRNAs for studying the prognostic mechanisms of pancreatic cancer has been reported. In this study, we first identified prognostic mRNAs and miRNAs based on The Cancer Genome Atlas datasets, and then performed an enrichment analysis to explore the underlying biological mechanisms involved in pancreatic cancer prognosis at the mRNA level. Furthermore, we performed an integrated analysis of mRNAs and miRNAs to identify prognostic subpathways, which were closely associated with pancreatic cancer genes and tumor hallmarks and involved in hypoxia, oxidative phosphyorylation and xenobiotic metabolisms. Meanwhile, we performed a random walk algorithm based on global network, prognostic mRNAs and miRNAs, and identified top risk mRNAs as the prognostic signature. Finally, an independent testing set was used to confirm the predictive power of the top mRNA signature, and most of these genes involved were known oncogenes. In conclusion, we performed a series of integrated analyses by comprehensively exploring pancreatic cancer prognosis and systematically optimized the prognostic signature for clinical use.
Collapse
Affiliation(s)
- Ping Wang
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Interventional Radiology, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weidong Li
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Zhai
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xian Jiang
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongchi Jiang
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunlong Zhang
- Division of Computer and Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xueying Sun
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|