1
|
Jin K, Mao Z, Tang Y, Feng W, Ju S, Jing R, Chen J, Zong W. tRF-23-R9J89O9N9:A novel liquid biopsy marker for diagnosis of hepatocellular carcinoma. Clin Chim Acta 2025; 572:120261. [PMID: 40147805 DOI: 10.1016/j.cca.2025.120261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Non-coding small RNA, specifically tRNA-derived small RNAs (tsRNAs), are readily detectable in cancer patients, exhibit remarkable stability, and are present in high abundance. They play a significant role in tumor development. However, the clinical significance of serum tsRNAs in hepatocellular carcinoma (HCC) remains poorly understood. In this study, we explored the impact of a novel tsRNA, named tRF-23-R9J89O9N9, in the adjuvant diagnosis, disease monitoring, and prognosis assessment of HCC. METHODS The tRF-23-R9J89O9N9 was identified as the target molecule through screening the The Cancer Genome Atlas(TCGA) database. Its expression levels were measured using qRT-PCR. Various methods, including agarose gel electrophoresis, Sanger sequencing, gradient dilution experiments, room temperature stability tests, and repeated freeze-thaw assessments, were employed to evaluate the performance of tRF-23-R9J89O9N9. The correlation between tRF-23-R9J89O9N9 levels and clinicopathological parameters was analyzed using the χ2 test. The diagnostic value of tRF-23-R9J89O9N9 in HCC was assessed with ROC curve analysis, while the prognostic value was evaluated using Kaplan-Meier curves. RESULTS Serum tRF-23-R9J89O9N9 expression levels were significantly elevated in HCC patients, while levels in postoperative patients were restored to those of healthy subjects. Additionally, the expression of tRF-23-R9J89O9N9 related to TNM stage(P = 0.009), lymph node metastasis(P<0.0001), and degree of differentiation(P<0.0001). Furthermore, the combination of AFP, PIVKA-II, and CEA greatly improved the diagnostic value for HCC. Serum tRF-23-R9J89O9N9 was also identified as a potential biomarker for dynamic monitoring and prognosis of HCC. CONCLUSIONS tRF-23-R9J89O9N9 may regard as a potential novel biomarker for the adjuvant diagnosis of HCC.
Collapse
Affiliation(s)
- Kangfeng Jin
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhiyun Mao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yelan Tang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wei Feng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianhui Chen
- Blood Transfusion Department of Yiwu Central Hospital, Yiwu, Zhejiang, China.
| | - Wei Zong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
2
|
Liu M, Zhuang X, Zhang H, Ji W, Yuan G. tRNA-derived small RNAs in digestive tract diseases: Progress and perspectives. Genes Dis 2025; 12:101326. [PMID: 40083327 PMCID: PMC11904584 DOI: 10.1016/j.gendis.2024.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/16/2025] Open
Abstract
tRNA-derived small RNAs (tsRNAs) are non-coding small RNAs that are produced through the precise cleavage of tRNA molecules under specific conditions. tsRNA has multiple functions, including inhibiting translation, acting in association with classical small RNA effector mechanisms, or acting in conjunction with Argonaute proteins that affect cell proliferation, migration, cycle, and apoptosis. Recent studies have revealed the clinical potential of tsRNAs in numerous diseases. This article aims to provide a comprehensive and up-to-date review of the classification and biological function of tsRNAs in gastrointestinal diseases. Furthermore, this review explores the underlying mechanisms by which tsRNAs are believed to exert their effects in both tumor and non-tumor digestive tract diseases. Therefore, specific tsRNAs prove promising for disease diagnosis, prognosis prediction, and therapeutic interventions as novel biomarkers for digestive tract diseases.
Collapse
Affiliation(s)
- Mingrui Liu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong 510080, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Haiqing Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong 510080, China
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong 510080, China
| | - Gang Yuan
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- International Medical Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Phase I Clinical Trial Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
3
|
Fatfat Z, Hussein M, Fatfat M, Gali-Muhtasib H. Omics technologies as powerful approaches to unravel colorectal cancer complexity and improve its management. Mol Cells 2025; 48:100200. [PMID: 40024318 PMCID: PMC11976254 DOI: 10.1016/j.mocell.2025.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/31/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025] Open
Abstract
Colorectal cancer (CRC) continues to rank among the deadliest and most prevalent cancers worldwide, necessitating an innovative and comprehensive approach that addresses this serious health challenge at various stages, from screening and diagnosis to treatment and prognosis. As CRC research progresses, the adoption of an omics-centered approach holds transformative potential to revolutionize the management of this disease. Advances in omics technologies encompassing genomics, transcriptomics, proteomics, metabolomics, and epigenomics allow to unravel the oncogenic alterations at these levels, elucidating the intricacies and the heterogeneous nature of CRC. By providing a comprehensive molecular landscape of CRC, omics technologies enable the discovery of potential biomarkers for early non-invasive detection of CRC, definition of CRC subtypes, prediction of its staging, prognosis, and overall survival of CRC patients. They also allow the identification of potential therapeutic targets, prediction of drug response, tracking treatment efficacy, detection of residual disease and cancer relapse, and deciphering the mechanisms of drug resistance. Moreover, they allow the distinction of non-metastatic CRC patients from metastatic ones as well as the stratification of metastatic risk. Importantly, omics technologies open up new opportunities to establish molecular-based criteria to guide the selection of effective treatment paving the way for the personalization of therapy for CRC patients. This review consolidates current knowledge on the omics-based preclinical discoveries in CRC research emphasizing the significant potential of these technologies to improve CRC screening, diagnosis, and prognosis and promote the implementation of personalized medicine to ultimately reduce CRC prevalence and mortality.
Collapse
Affiliation(s)
- Zaynab Fatfat
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Marwa Hussein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Maamoun Fatfat
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | | |
Collapse
|
4
|
Ding R, Li Y, Zhang Y, Li X, Song Y, Gu X, Shen X, Ju S. Comprehensive assessment of serum 3'-tRF Arg as a novel diagnostic biomarker for gastric cancer. Transl Oncol 2025; 54:102338. [PMID: 40058233 PMCID: PMC11929888 DOI: 10.1016/j.tranon.2025.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/15/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025] Open
Abstract
Gastric cancer is one of the malignant tumors with the highest morbidity and mortality rates worldwide. Yet, there is a lack of diagnostic markers with high sensitivity in the clinic. tRNA-derived small RNAs are a novel type of non-coding small RNAs, which are abundant in tumor cells and body fluids. In this study, we explored the potential of 3'-tRFArg as a tumor marker for the diagnosis of GC. Differential expression of 3'-tRFArg was screened by high-throughput sequencing, and Quantitative real-time PCR confirmed its low expression in GC serum with good stability. Differential expression of serum 3'-tRFArg could distinguish between GC patients, gastritis patients, and healthy donors and was significantly correlated with clinical pathological features such as tumor differentiation, lymph node metastasis, and TNM staging. The receiver operating characteristic curve showed that 3'-tRFArg had a higher diagnostic value compared with conventional biomarkers, especially in the diagnosis of early gastric cancer. In conclusion, our results suggest that 3'-tRFArg can serve as a highly sensitive biomarker with a certain value for monitoring tumor development and prognosis.
Collapse
Affiliation(s)
- Rui Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yang Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xun Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yunjian Song
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xinliang Gu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xianjuan Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
5
|
Saad AAA, Zhang K, Deng Q, Zhou J, Ge L, Wang H. The functions and modifications of tRNA-derived small RNAs in cancer biology. Cancer Metastasis Rev 2025; 44:38. [PMID: 40072687 DOI: 10.1007/s10555-025-10254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
Recent progress in noncoding RNA research has highlighted transfer RNA-derived small RNAs (tsRNAs) as key regulators of gene expression, linking them to numerous cellular functions. tsRNAs, which are produced by ribonucleases such as angiogenin and Dicer, are classified based on their size and cleavage positions. They play diverse regulatory roles at the transcriptional, post-transcriptional, and translational levels. Furthermore, tRNAs undergo various modifications that influence their biogenesis, stability, functionality, biochemical characteristics, and protein-binding affinity. tsRNAs, with their aberrant expression patterns and modifications, act as both oncogenes and tumor suppressors. This review explores the biogenetic pathways of tsRNAs and their complex roles in gene regulation. We then focus on the importance of RNA modifications in tsRNAs, evaluating their impact on the biogenesis and biological functions on tsRNAs. Furthermore, we summarize recent data indicating that tsRNAs exhibit varied expression profiles across different cancer types, highlighting their potential as innovative biomarkers and therapeutic targets. This discussion integrates both existing and new knowledge about tsRNAs, emphasizing their importance in cancer biology and clinical advancement.
Collapse
Grants
- (Nos. 82472761, 82173833, 82272658, and 82403178) National Natural Science Foundation of China
- (Nos. 82472761, 82173833, 82272658, and 82403178) National Natural Science Foundation of China
- (Nos. 82472761, 82173833, 82272658, and 82403178) National Natural Science Foundation of China
- (Nos. 82472761, 82173833, 82272658, and 82403178) National Natural Science Foundation of China
- (Nos. 82472761, 82173833, 82272658, and 82403178) National Natural Science Foundation of China
- (Nos. 82472761, 82173833, 82272658, and 82403178) National Natural Science Foundation of China
- (No. 2023B1515040006 and 2021A1515220048) Guangdong Basic and Applied Basic Research Foundation
- (No. 2023B1515040006 and 2021A1515220048) Guangdong Basic and Applied Basic Research Foundation
- (No. 2023B1515040006 and 2021A1515220048) Guangdong Basic and Applied Basic Research Foundation
- (No. 2023B1515040006 and 2021A1515220048) Guangdong Basic and Applied Basic Research Foundation
- (No. 2023B1515040006 and 2021A1515220048) Guangdong Basic and Applied Basic Research Foundation
- (No. 2023B1515040006 and 2021A1515220048) Guangdong Basic and Applied Basic Research Foundation
- (No. 2023B1111020007) Key-Area Research and Development Program of Guangdong Province
- (No. 2023B1111020007) Key-Area Research and Development Program of Guangdong Province
- (No. 2023B1111020007) Key-Area Research and Development Program of Guangdong Province
- (No. 2023B1111020007) Key-Area Research and Development Program of Guangdong Province
- (No. 2023B1111020007) Key-Area Research and Development Program of Guangdong Province
- (No. 2023B1111020007) Key-Area Research and Development Program of Guangdong Province
- (No. 2024A04J6480) Guangzhou Science and Technology Program
- (No. 2024A04J6480) Guangzhou Science and Technology Program
- (No. 2024A04J6480) Guangzhou Science and Technology Program
- (No. 2024A04J6480) Guangzhou Science and Technology Program
- (No. 2024A04J6480) Guangzhou Science and Technology Program
- (No. 2024A04J6480) Guangzhou Science and Technology Program
- (2023B1212060022) Guangdong Provincial Key Laboratory of Construction Foundation
- (2023B1212060022) Guangdong Provincial Key Laboratory of Construction Foundation
- (2023B1212060022) Guangdong Provincial Key Laboratory of Construction Foundation
- (2023B1212060022) Guangdong Provincial Key Laboratory of Construction Foundation
- (2023B1212060022) Guangdong Provincial Key Laboratory of Construction Foundation
- (2023B1212060022) Guangdong Provincial Key Laboratory of Construction Foundation
- (No. 2022YFC2601800) Shenzhen Bay Scholars Program, the National Key Research and Development Program of China
- (No. 2022YFC2601800) Shenzhen Bay Scholars Program, the National Key Research and Development Program of China
- (No. 2022YFC2601800) Shenzhen Bay Scholars Program, the National Key Research and Development Program of China
- (No. 2022YFC2601800) Shenzhen Bay Scholars Program, the National Key Research and Development Program of China
- (No. 2022YFC2601800) Shenzhen Bay Scholars Program, the National Key Research and Development Program of China
- (No. 2022YFC2601800) Shenzhen Bay Scholars Program, the National Key Research and Development Program of China
- (Grant No. 2024kjTzn03) CMC Excellent-talent Program
- (Grant No. 2024kjTzn03) CMC Excellent-talent Program
- (Grant No. 2024kjTzn03) CMC Excellent-talent Program
- (Grant No. 2024kjTzn03) CMC Excellent-talent Program
- (Grant No. 2024kjTzn03) CMC Excellent-talent Program
- (Grant No. 2024kjTzn03) CMC Excellent-talent Program
- (Grant No. CYYZZ24-01) Organized Research Projects of Chengdu Medical College
- (Grant No. CYYZZ24-01) Organized Research Projects of Chengdu Medical College
- (Grant No. CYYZZ24-01) Organized Research Projects of Chengdu Medical College
- (Grant No. CYYZZ24-01) Organized Research Projects of Chengdu Medical College
- (Grant No. CYYZZ24-01) Organized Research Projects of Chengdu Medical College
- (Grant No. CYYZZ24-01) Organized Research Projects of Chengdu Medical College
- (Grant No. 23L009) Natural Science Foundation of Chengdu Medical College
- (Grant No. 23L009) Natural Science Foundation of Chengdu Medical College
- (Grant No. 23L009) Natural Science Foundation of Chengdu Medical College
- (Grant No. 23L009) Natural Science Foundation of Chengdu Medical College
- (Grant No. 23L009) Natural Science Foundation of Chengdu Medical College
- (Grant No. 23L009) Natural Science Foundation of Chengdu Medical College
- (Grant Nos. 2022LHTD-02, 23LHNBZZD07, 24LHBBYY1-08, 24LHBBYY1-09, 24LHFYSZ1-27) Clinical Science Research Foundation of Chengdu Medical College
- (Grant Nos. 2022LHTD-02, 23LHNBZZD07, 24LHBBYY1-08, 24LHBBYY1-09, 24LHFYSZ1-27) Clinical Science Research Foundation of Chengdu Medical College
- (Grant Nos. 2022LHTD-02, 23LHNBZZD07, 24LHBBYY1-08, 24LHBBYY1-09, 24LHFYSZ1-27) Clinical Science Research Foundation of Chengdu Medical College
- (Grant Nos. 2022LHTD-02, 23LHNBZZD07, 24LHBBYY1-08, 24LHBBYY1-09, 24LHFYSZ1-27) Clinical Science Research Foundation of Chengdu Medical College
- (Grant Nos. 2022LHTD-02, 23LHNBZZD07, 24LHBBYY1-08, 24LHBBYY1-09, 24LHFYSZ1-27) Clinical Science Research Foundation of Chengdu Medical College
- (Grant Nos. 2022LHTD-02, 23LHNBZZD07, 24LHBBYY1-08, 24LHBBYY1-09, 24LHFYSZ1-27) Clinical Science Research Foundation of Chengdu Medical College
- (No. 2024M753801) China Postdoctoral Science Foundation
- (No. 2024M753801) China Postdoctoral Science Foundation
- (No. 2024M753801) China Postdoctoral Science Foundation
- (No. 2024M753801) China Postdoctoral Science Foundation
- (No. 2024M753801) China Postdoctoral Science Foundation
- (No. 2024M753801) China Postdoctoral Science Foundation
- (No. GZC20233241) Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation
- (No. GZC20233241) Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation
- (No. GZC20233241) Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation
- (No. GZC20233241) Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation
- (No. GZC20233241) Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation
- (No. GZC20233241) Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation
Collapse
Affiliation(s)
- Abdulaziz Ahmed A Saad
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, The State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Kun Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Nanbu People'S Hospital; Affiliated Cancer Hospital of Chengdu Medical College, School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Qianqian Deng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, The State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiawang Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, The State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lichen Ge
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, The State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Guo J, Chen X, Ren J, Wang Y, Wang K, Yang S. The Role of tRNA-Derived Small RNAs (tsRNAs) in Regulating Cell Death of Cardiovascular Diseases. BIOLOGY 2025; 14:218. [PMID: 40001986 PMCID: PMC11853139 DOI: 10.3390/biology14020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Transfer RNA is a class of non-coding RNA that plays a role in amino acid translocation during protein synthesis. After specific modification, the cleaved fragment is called tRNA-derived small RNA. The advancement of bioinformatics technology has led to an increase in the visibility of small RNA derived from tRNA, and their functions in biological processes are being revealed. These include gene silencing, transcription and translation, epigenetics, and cell death. These properties have led to the implication of tsRNAs in various diseases. Although the current research mainly focuses on the role of tRNA-derived small RNA in cancer, there is mounting evidence that they are also strongly associated with cardiovascular disease, including cardiac hypertrophy, atrial fibrillation, heart failure, and myocarditis. Therefore, the regulatory role of tRNA-derived small RNA in cardiovascular disease will become an emerging therapeutic strategy. This review succinctly summarizes the characteristics, classification, and regulatory effect of tsRNA. By exploring the mechanism of tsRNA, it will provide a new tool for the diagnosis and prognosis of cardiovascular disease.
Collapse
Affiliation(s)
- Jiaxu Guo
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; (J.G.); (X.C.); (J.R.)
| | - Xinzhe Chen
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; (J.G.); (X.C.); (J.R.)
| | - Jiahao Ren
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; (J.G.); (X.C.); (J.R.)
| | - Yunhong Wang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China;
| | - Kun Wang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; (J.G.); (X.C.); (J.R.)
| | - Sumin Yang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; (J.G.); (X.C.); (J.R.)
| |
Collapse
|
7
|
Liu X, Zhang J, Liang Y, Chen X, Xu S, Lin S, Dai Y, Chen X, Zhou Y, Bai Y, Chen C. tiRNA-Gly-GCC-002 promotes epithelial-mesenchymal transition and fibrosis in lupus nephritis via FKBP5-mediated activation of Smad. Br J Pharmacol 2025; 182:616-632. [PMID: 39419630 DOI: 10.1111/bph.17364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/11/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND PURPOSE Renal interstitial fibrosis is a frequent pathological manifestation of lupus nephritis (LN). tRNA halves (tiRNAs) are acquired from tRNA-derived small non-coding RNAs (sncRNAs) and are associated with fibrosis. Our previous study indicated enhanced tiRNA-Gly-GCC-002 (tiRNA002) levels in kidneys were positively related to LN-related fibrosis. However, the precise molecular mechanism remains unclear. EXPERIMENTAL APPROACH The mimic and agomiR of tiRNA002 were introduced into tubular epithelial cells (TECs) and MRL/lpr mice by transfection. The levels of gene and protein expressions were quantified using real-time quantitative polymerase chain reaction (RT-qPCR), Western blot and immunofluorescence assays. KEY RESULTS In TECs treated with LN serum, as well as in the kidneys of MRL/lpr mice, high levels of tiRNA002 directly influenced the epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) deposition. Furthermore, tiRNA002 overexpression promoted EMT in TECs and accelerated renal interstitial fibrosis in MRL/lpr mice via Smad signalling. The target gene of tiRNA002, FKBP prolyl isomerase 5 (FKBP5), improved Smad signalling by interacting with phosphorylated Smad2/3. Silencing FKBP5 alleviated LN serum- or tiRNA002-mimic-induced EMT in TECs. In addition, FKBP5 overexpression reversed the tiRNA002 knockdown-mediated reduction of EMT and ECM accumulation. CONCLUSIONS AND IMPLICATIONS These findings indicated that tiRNA002 is markedly increased in LN, which facilitates renal fibrosis by promoting EMT via FKBP5-mediated Smad signalling. Therefore, targeting tiRNA002 may be an innovative approach to treat renal interstitial fibrosis in LN.
Collapse
Affiliation(s)
- Xueting Liu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Ji Zhang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Yan Liang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Xuanwen Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Shungang Xu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Sishi Lin
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Yuanting Dai
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Xinxin Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Yongheng Bai
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Chen Y, Shao Z, Wu S. Research progress on the tsRNA biogenesis, function, and application in lung cancer. Noncoding RNA Res 2025; 10:63-69. [PMID: 39309197 PMCID: PMC11414277 DOI: 10.1016/j.ncrna.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/18/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
In recent years, there has been a mounting occurrence of lung cancer, which stands as one of the most prevalent malignancies globally. This rise in incidence poses a significant hazard to human health, making lung cancer a matter of grave concern. It has been shown that tRNA-derived small non-coding RNA (tsRNA) is involved in the development of tumors, especially lung cancer, through mechanisms such as regulating mRNA stability, influencing protein translation, and acting as epigenetic regulators. Recent studies have shown that tsRNA is abnormally expressed in the plasma and tissues of lung cancer patients, and its expression level is closely related to the malignancy degree and postoperative recurrence of lung cancer. Therefore, for lung cancer patients, tsRNA represents a promising non-invasive biomarker, exhibiting significant potential for facilitating early diagnosis and prognostic evaluation, and for achieving precision treatment of lung cancer by regulating its expression. This article focuses on the biogenesis of tsRNA and its ability to promote lung cancer cell proliferation and invasion. In addition, the specific clinical significance of tsRNA in lung cancer was discussed. Finally, we discuss the need for further improvement of small RNA sequencing technology, and the future research directions and strategies of tsRNA in lung cancer and tumor diseases were summarized.
Collapse
Affiliation(s)
- Yu Chen
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhuowei Shao
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Shibo Wu
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Zhang B, Pan Y, Li Z, Hu K. tRNA-derived small RNAs: their role in the mechanisms, biomarkers, and therapeutic strategies of colorectal cancer. J Transl Med 2025; 23:51. [PMID: 39806419 PMCID: PMC11727791 DOI: 10.1186/s12967-025-06109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy and the second leading cause of cancer-related mortality worldwide, with an increasing shift towards younger age of onset. In recent years, there has been increasing recognition of the significance of tRNA-derived small RNAs (tsRNAs), encompassing tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs). Their involvement in regulating translation, gene expression, reverse transcription, and epigenetics has gradually come to light. Emerging research has revealed dysregulation of tsRNAs in CRC, implicating their role in CRC initiation and progression, and highlighting their potential in early diagnosis, prognosis, and therapeutic strategies. Although the clinical application of tsRNAs is still in its early stages, recent findings highlight a close relationship between the biogenesis and function of tsRNAs, tRNA chemical modifications, and the tumor immune microenvironment (TIME). Additionally, similar to other small RNAs, tsRNAs can be effectively delivered via nanoparticles (NPs). Consequently, future research should focus on elucidating the clinical significance of tsRNAs concerning base modifications, TIME regulation, cancer immunotherapy, and NPs delivery systems to facilitate their clinical translation.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yanru Pan
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Zhe Li
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China.
| | - Kefeng Hu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China.
| |
Collapse
|
10
|
Yao J, Yao W, Zhu J, Liu Y, Liu J, Ji Y, Ni X, Mu W, Yan B. Targeting tRNA-Derived Non-Coding RNA Alleviates Diabetes-Induced Visual Impairment through Protecting Retinal Neurovascular Unit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411042. [PMID: 39513253 PMCID: PMC11714213 DOI: 10.1002/advs.202411042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Indexed: 11/15/2024]
Abstract
Diabetes is a major risk factor for compromised visual health, leading to retinal vasculopathy and neuropathy, both of which are hallmarks of neurovascular unit dysfunction. Despite the critical impact of diabetic retinopathy, the precise mechanism underlying neurovascular coupling and effective strategies to suppress neurovascular dysfunction remain unclear. In this study, the up-regulation of a tRNA-derived stress-induced RNA, 5'tiRNA-His-GTG, in response to diabetic stress is revealed. 5'tiRNA-His-GTG directly regulates Müller glia action and indirectly alters endothelial angiogenic effects and retinal ganglion cell (RGC) survival in vitro. Downregulation of 5'tiRNA-His-GTG alleviates diabetes-induced retinal neurovascular dysfunction, characterized by reduced retinal vascular dysfunction, decreased retinal neurodegeneration, and improved visually-guided behaviors in vivo. Mechanistically, 5'tiRNA-His-GTG acts as a key regulator of retinal neurovascular dysfunction, primarily by modulating arachidonic acid (AA) metabolism via the CYPs pathway. The 5'tiRNA-His-GTG-CYP2E1-19(S)-HETE signaling axis is identified as a key driver of retinal neurovascular dysfunction. Thus, targeting 5'tiRNA-His-GTG presents a promising therapeutic strategy for treating vasculopathy and neuropathy associated with diabetes mellitus. Modulating this novel signaling pathway can open up new avenues for intervention in diabetic retinopathy and its related complications.
Collapse
Affiliation(s)
- Jin Yao
- The Affiliated Eye HospitalNanjing Medical UniversityNanjing210000China
| | - Wen Yao
- The Affiliated Eye HospitalNanjing Medical UniversityNanjing210000China
| | - Jun‐Ya Zhu
- The Affiliated Eye HospitalNanjing Medical UniversityNanjing210000China
- School of MedicineSoutheast UniversityNanjing210009China
| | - Yan Liu
- The Affiliated Eye HospitalNanjing Medical UniversityNanjing210000China
| | - Jin‐Hong Liu
- The Affiliated Eye HospitalNanjing Medical UniversityNanjing210000China
| | - Yu‐Ke Ji
- The Affiliated Eye HospitalNanjing Medical UniversityNanjing210000China
| | - Xi‐Shen Ni
- The Affiliated Eye HospitalNanjing Medical UniversityNanjing210000China
| | - Wan Mu
- Department of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
- Eye Institute and Department of OphthalmologyEye and ENT HospitalFudan UniversityShanghai200031China
| | - Biao Yan
- Department of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| |
Collapse
|
11
|
Li H, Zhang L, Li ML, Chen ZF, Fei SK. Progress in application and research of tsRNAs in digestive system tumors. Shijie Huaren Xiaohua Zazhi 2024; 32:872-877. [DOI: 10.11569/wcjd.v32.i12.872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 12/28/2024] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a class of non-coding small RNAs derived from mature transfer RNAs or transfer RNA precursors under specific conditions, and they exhibit abnormal expression in various digestive system tumors. In recent years, research has revealed that abnormal expression of tsRNAs can not only serve as biomarkers for the early diagnosis of digestive system tumors but also play significant regulatory roles in the proliferation, invasion, and metastasis of digestive system tumor cells. tsRNAs provide a novel group of biomarkers for early diagnosis and new therapeutic directions for patients with digestive system tumors. This article reviews the progress in application and research of tsRNAs in common digestive system tumors such as gastric cancer, liver cancer, and colorectal cancer, providing new directions for their clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Hui Li
- Department of Hepatobiliary, Pancreatic, and Splenic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Liang Zhang
- Department of Nephrology, Rheumatology, and Immunology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Ming-Liang Li
- Department of Hepatobiliary, Pancreatic, and Splenic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Zhi-Fei Chen
- Department of General Surgery, The Third Hospital of Changsha, Changsha 410000, Hunan Province, China
| | - Shu-Ke Fei
- Department of Hepatobiliary, Pancreatic, and Splenic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| |
Collapse
|
12
|
Uzelac M, Ongkeko WM. Assessing the diagnostic utility of tRNA-derived fragments as biomarkers of head and neck cancer. Transl Oncol 2024; 50:102135. [PMID: 39317063 PMCID: PMC11462370 DOI: 10.1016/j.tranon.2024.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
Roughly 54,000 individuals are diagnosed with head and neck cancers in the United States yearly. Transfer RNA-derived fragments (tRF) are the products of enzymatic cleavage of precursor tRNAs, and have been proposed for use as biomarkers of head and neck cancer. In this study, we aim to further analyze the utility that tRFs might provide as biomarkers of head and neck cancer. tRF read counts were obtained for 453 tumor and 44 adjacent normal tissue samples and used to construct a gradient boosting diagnostic model. Although we identified 129 tRFs that were significantly dysregulated between these samples, the model achieved a sensitivity of only 69 % and a specificity of 59 %. tRFs are thought to induce the degradation of mRNA transcripts containing a complementary "seed" region. Despite the above performances, we chose to explore this concept of translational regulation by analyzing these tRFs for inverse correlation to the expression of select oncogenes and tumor suppressor genes implicated in head and neck cancer. Among others, CysGCA 5'-half and LysCTT 3'-tRF were upregulated in the tumor samples, and corresponded to decreased expression of PIK3R1, AKT1, and CPEB3. These transcripts were further found to contain numerous significantly complementary sites at which tRF-mediated mRNA degradation might occur. Although these tRFs did appear to correlate to many of the oncogenic metrics analyzed, we believe that additional research is needed before they might be used to improve the diagnosis, treatment, and survival of patients with this disease.
Collapse
Affiliation(s)
- Matthew Uzelac
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA 92093, United States; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, United States; Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Weg M Ongkeko
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA 92093, United States; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, United States.
| |
Collapse
|
13
|
Zhao P, Zhu K, Xie C, Liu S, Chen X. Role and clinical value of serum hsa_tsr011468 in lung adenocarcinoma. Mol Med Rep 2024; 30:226. [PMID: 39364758 PMCID: PMC11485271 DOI: 10.3892/mmr.2024.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Transfer RNA‑derived small RNAs (tsRNAs) are novel non‑coding RNAs that are associated with the pathogenesis of various diseases. However, their association with lung adenocarcinoma (LUAD) has not been studied comprehensively. Therefore, the present study aimed to explore the diagnostic value of a tsRNA, hsa_tsr011468, in LUAD. The OncotRF database was used to screen tsRNAs and reverse transcription‑quantitative PCR (RT‑qPCR) was performed to detect the expression levels of hsa_tsr011468 in various samples. Subsequently, the diagnostic and prognostic values of hsa_tsr011468 for LUAD were determined via receiver operating characteristic (ROC) curve and survival curve analyses, and by assessing clinicopathological parameters. In addition, both nuclear and cytoplasmic RNA were extracted to assess the location of hsa_tsr011468. The OncotRF database identified high expression of hsa_tsr011468 in LUAD. In addition, the results of RT‑qPCR showed that the relative expression levels of hsa_tsr011468 in the serum and tissues of patients with LUAD were higher than those in normal controls. Furthermore, its expression was lower in postoperative serum samples than in preoperative serum samples from patients with LUAD. ROC and survival curves indicated that hsa_tsr011468 had good diagnostic and prognostic value. Furthermore, the clinicopathological analysis revealed that hsa_tsr011468 was associated with tumor size. In addition, hsa_tsr011468 was mainly localized in the cytoplasm of LUAD cells. The present study indicated that hsa_tsr011468 has good diagnostic value and, therefore, could be employed as a serum marker for LUAD.
Collapse
Affiliation(s)
- Ping Zhao
- Department of Laboratory Medicine, Nantong First People's Hospital and The Second Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Kui Zhu
- Department of Laboratory Medicine, Nantong First People's Hospital and The Second Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Cuihua Xie
- Department of Laboratory Medicine, Rugao Hospital of Traditional Chinese Medicine, Nantong, Jiangsu 226001, P.R. China
| | - Sinan Liu
- Department of Laboratory Medicine, Nantong First People's Hospital and The Second Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiang Chen
- Department of Laboratory Medicine, Nantong First People's Hospital and The Second Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
14
|
Gong L, Hu Y, Pan L, Cheng Y. tRNA-derived small RNAs (tsRNAs): establishing their dominance in the regulation of human cancer. Front Genet 2024; 15:1466213. [PMID: 39659673 PMCID: PMC11628509 DOI: 10.3389/fgene.2024.1466213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
The main function of transfer RNAs (tRNAs) is to carry amino acids into the ribosome and synthesize proteins under the guidance of messenger RNAs (mRNAs). In addition to this, it has been observed that tRNAs undergo precise cleavage at specific loci, giving rise to an extensive array of distinct small RNAs, termed tRNA-derived small RNAs (tsRNAs). Existing studies have shown that tsRNAs are widely present across various organisms and comprehensively regulate gene expression, aberrant expression of tsRNAs is inextricably linked to tumorigenesis and development, thus, a systematic understanding of tsRNAs is necessary. This review aims to comprehensively delineate the genesis and expression patterns of tsRNAs, elucidate their diverse functions and emphasize their prospective clinical application as biomarkers and targets for therapy. It is noteworthy that we innovatively address the roles played by tsRNAs in human cancers at the level of the hallmarks of tumorigenesis proposed by Hanahan in anticipation of a broad understanding of tsRNAs and to guide the treatment of tumors.
Collapse
Affiliation(s)
- Li Gong
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Yajie Hu
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Ling Pan
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
Jia Q, Zhao Y. Expression profile of tsRNAs in white adipose tissue of vitamin D deficiency young male mice with or without obesity. Sci Rep 2024; 14:27486. [PMID: 39523373 PMCID: PMC11551137 DOI: 10.1038/s41598-024-77910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The expression of tsRNA in white adipose tissue (WAT) of VD deficiency male mice with obesity has not been reported. The healthy male C57BL/6J mice aged 4-6 weeks were divided into 4 groups according to the VD3 and fat energy supplement in daily diets. The qPCR verification further demonstrated that tRF5-20-HisGTG-3 were significantly up-regulated and mt-tRF3a-ProTGG was significantly down-regulated not only in HFVDD vs HFVDS, but aslo in HFVDD vs ConVDS. tRF5-22-CysGCA-27 were significantly up-regulated and mt-5'tiRNA-32-SerTGA, mt-5'tiRNA-33-SerTGA and mt-5'tiRNA-33-AlaTGC was significantly down-regulated only in HFVDD vs ConVDS. Enrichment analysis of the qPCR verified DE tsRNAs showed that the 3 up-regulated tsRNAs seemed to be associated with FoxO signaling pathway, GnRH secretion, 2-Oxocarboxylic acid metabolism, Autophagy-animal, Glucagon and insulin signaling pathway, while 4 down-regulated tsRNA seemed to be associated with cell communication, primary metabolic process, metabolic process, response to stimulus, multicellular organismal process, cellular metabolic process, cellular process and biological regulation. The tsRNAs were differentially expressed in VD deficiency with obesity, especially tRF5-20-HisGTG-3, tRF5-22-CysGCA-27, tRF3a-GlyGCC-1, mt-5'tiRNA-33-AlaTGC, mt-5'tiRNA-33-SerTGA, mt-5'tiRNA-32-SerTGA and mt-tRF3a-ProTGG. These tsRNAs seemed to be associated with FoxO signaling pathway, GnRH secretion, 2-oxocarboxylic acid metabolism, autophagy, glucagon and insulin signaling pathway, metabolic process and biological regulation.
Collapse
Affiliation(s)
- Qiaowei Jia
- Department of Cardiovascular Medicine, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Yan Zhao
- Department of Clinical Nutrition, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
16
|
Goldkamp AK, Atchison RG, Falkenberg SM, Dassanayake RP, Neill JD, Casas E. Transfer RNA-derived fragment production in calves challenged with Mycoplasma bovis or co-infected with bovine viral diarrhea virus and Mycoplasma bovis in several tissues and blood. Front Vet Sci 2024; 11:1463431. [PMID: 39582886 PMCID: PMC11583443 DOI: 10.3389/fvets.2024.1463431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Understanding the molecular mechanisms underlying immune response can allow informed decisions in drug or vaccine development, and aid in the identification of biomarkers to predict exposure or evaluate treatment efficacy. The objective of this study was to identify differentially expressed transfer RNA-derived fragments (tRFs) in calves challenged with Mycoplasma bovis (M. bovis) or co-infected with M. bovis and bovine viral diarrhea virus (BVDV). Serum, white blood cells (WBC), liver, mesenteric lymph node (MLN), tracheal-bronchial lymph node (TBLN), spleen, and thymus were collected from Control (n = 2), M. bovis (MB; n = 3), and co-infected (Dual; n = 3) animals, and small RNAs extracted for sequencing. An average of 94% of reads were derived from 5` halves and/or 5` tRFs in serum, liver, WBC, TBLN, spleen, MLN, and thymus. The expression of tRFs in lymphatic tissues (MLN, TBLN, Thymus, Spleen) were highly correlated with each other (r ≥ 0.82), but not with serum and WBC. A total of 25 and 65 differentially expressed tRFs were observed in liver and thymus, respectively. There were no differentially expressed tRFs found in other tissues analyzed. Nineteen thymus tRFs were differentially expressed in Dual compared to Control and MB, and the predicted targets of these tRFs were associated with MAPK signaling pathways and ERK1 and ERK2 cascades. The differentially expressed tRFs found in thymus and liver may underlie mechanisms of thymic depletion or liver inflammation previously observed in BVDV. Additional studies should be pursued to investigate differential expression of the predicted tRF targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Eduardo Casas
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
17
|
Jin H, Yeom JH, Shin E, Ha Y, Liu H, Kim D, Joo M, Kim YH, Kim HK, Ryu M, Kim HM, Kim J, Kim KP, Hahn Y, Bae J, Lee K. 5'-tRNA Gly(GCC) halves generated by IRE1α are linked to the ER stress response. Nat Commun 2024; 15:9273. [PMID: 39468069 PMCID: PMC11519470 DOI: 10.1038/s41467-024-53624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Transfer RNA halves (tRHs) have various biological functions. However, the biogenesis of specific 5'-tRHs under certain conditions remains unknown. Here, we report that inositol-requiring enzyme 1α (IRE1α) cleaves the anticodon stem-loop region of tRNAGly(GCC) to produce 5'-tRHs (5'-tRH-GlyGCC) with highly selective target discrimination upon endoplasmic reticulum (ER) stress. Levels of 5'-tRH-GlyGCC positively affect cancer cell proliferation and modulate mRNA isoform biogenesis both in vitro and in vivo; these effects require co-expression of two nuclear ribonucleoproteins, HNRNPM and HNRNPH2, which we identify as binding proteins of 5'-tRH-GlyGCC. In addition, under ER stress in vivo, we observe simultaneous induction of IRE1α and 5'-tRH-GlyGCC expression in mouse organs and a distantly related organism, Cryptococcus neoformans. Thus, collectively, our findings indicate an evolutionarily conserved function for IRE1α-generated 5'-tRH-GlyGCC in cellular adaptation upon ER stress.
Collapse
Affiliation(s)
- Hanyong Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
- R & D Institute, NES Biotechnology, Seoul, 06974, Republic of Korea
| | - Eunkyoung Shin
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
- Department of Microbiology, School of Medicine, Catholic University of Daegu, Daegu, 42472, Republic of Korea
| | - Yoonjie Ha
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Haifeng Liu
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Daeyoung Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minju Joo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
- R & D Institute, NES Biotechnology, Seoul, 06974, Republic of Korea
| | - Yong-Hak Kim
- Department of Microbiology, School of Medicine, Catholic University of Daegu, Daegu, 42472, Republic of Korea
| | - Hak Kyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minkyung Ryu
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
- R & D Institute, NES Biotechnology, Seoul, 06974, Republic of Korea
| | - Hong-Man Kim
- R & D Institute, NES Biotechnology, Seoul, 06974, Republic of Korea
| | - Jeongkyu Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Keun P Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
- R & D Institute, NES Biotechnology, Seoul, 06974, Republic of Korea.
| |
Collapse
|
18
|
Yang M, Mo Y, Ren D, Hu Y, Tian Y, Zeng Z, Xiong W. A versatile and efficient method for detecting tRNA-derived fragments. Mol Cell Probes 2024; 77:101975. [PMID: 39111403 DOI: 10.1016/j.mcp.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
Recently, it has been discovered surprisingly that tRNA can be cleaved into specific small fragments under certain conditions. Most importantly, these tRNA-derived fragments (tRFs) participate in the regulation of gene expression, playing pivotal roles in various physiological and pathological processes and thus attracting widespread attention. Detecting tRF expression in tissues and cells often involves using tRF-specific stem-loop primers for reverse transcription. However, the high specificity offered by this method limits it to transcribing only one specific tRF sequence per reaction, necessitating separate reverse transcription and qPCR steps for multiple tRFs, leading to substantially increased time and resource consumption. This becomes especially challenging in precious samples with limited RNA availability. To address these issues, there is an urgent need for a universal and cost-effective tRF identification method. This study introduces a versatile tRF detection approach based on the uniform polyadenylation of all tRFs, allowing reverse transcription with a universal oligo(dT) primer. This method enables simultaneous reverse transcription of all target tRFs in one reaction, greatly facilitating subsequent qPCR analysis. Furthermore, it demonstrates exceptional sensitivity and specificity, offering significant value in tRF-related research.
Collapse
Affiliation(s)
- Mei Yang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daixi Ren
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yan Hu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yiting Tian
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
19
|
Luo LL, Cao Y, Zhang JJ, Xie YX, Li L, Yang H, Long ZB, Wang L, Wang WP. The role of tRF-Val-CAC-010 in lung adenocarcinoma: implications for tumorigenesis and metastasis. BMC Cancer 2024; 24:1033. [PMID: 39169309 PMCID: PMC11337561 DOI: 10.1186/s12885-024-12800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
OBJECTIVE Transfer RNA-derived fragments (tRFs) are short non-coding RNA (ncRNA) sequences, ranging from 14 to 30 nucleotides, produced through the precise cleavage of precursor and mature tRNAs. While tRFs have been implicated in various diseases, including cancer, their role in lung adenocarcinoma (LUAD) remains underexplored. This study aims to investigate the impact of tRF-Val-CAC-010, a specific tRF molecule, on the phenotype of LUAD cells and its role in tumorigenesis and progression in vivo. METHODS The expression level of tRF-Val-CAC-010 was quantified using quantitative real-time polymerase chain reaction (qRT-PCR). Specific inhibitors and mimics of tRF-Val-CAC-010 were synthesized for transient transfection. Cell proliferation was assessed using the Cell Counting Kit-8 (CCK-8), while cell invasion and migration were evaluated through Transwell invasion and scratch assays. Flow cytometry was utilized to analyze cell cycle and apoptosis. The in vivo effects of tRF-Val-CAC-010 on tumor growth and metastasis were determined through tumor formation and metastasis imaging experiments in nude mice. RESULTS The expression level of tRF-Val-CAC-010 was upregulated in A549 and PC9 LUAD cells (P < 0.01). Suppression of tRF-Val-CAC-010 expression resulted in decreased proliferation of A549 and PC9 cells (P < 0.001), reduced invasion and migration of A549 (P < 0.05, P < 0.001) and PC9 cells (P < 0.05, P < 0.01), enhanced apoptosis in both A549 (P < 0.05) and PC9 cells (P < 0.05), and increased G2 phase cell cycle arrest in A549 cells (P < 0.05). In vivo, the tumor formation volume in the tRF-inhibitor group was significantly smaller than that in the model and tRF-NC groups (P < 0.05). The metastatic tumor flux value in the tRF-inhibitor group was also significantly lower than that in the model and tRF-NC groups (P < 0.05). CONCLUSION This study demonstrates that tRF-Val-CAC-010 promotes proliferation, migration, and invasion of LUAD cells and induces apoptosis in vitro, however, its specific effects on the cell cycle require further elucidation. Additionally, tRF-Val-CAC-010 enhances tumor formation and metastasis in vivo. Therefore, tRF-Val-CAC-010 may serve as a novel diagnostic biomarker and potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Li-Lin Luo
- Department of Pathology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Yue Cao
- Kunming University of Science and Technology, Kunming, Yunnan, 650031, China
| | - Juan-Juan Zhang
- Department of Pathology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Yu-Xin Xie
- Kunming University of Science and Technology, Kunming, Yunnan, 650031, China
| | - Linhui Li
- Department of Pathology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Hui Yang
- Department of Pathology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Zheng-Bo Long
- Kunming University of Science and Technology, Kunming, Yunnan, 650031, China
| | - Li Wang
- Department of Pathology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650032, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China.
| | - Wan-Pu Wang
- Department of Pathology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650032, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China.
| |
Collapse
|
20
|
Peng J, Zhang Y, Zhou G, Shao L, Li L, Zhang Z. Circulating serum exosomes i-tRF-AspGTC and tRF-1-SerCGA as diagnostic indicators for non-small cell lung cancer. Clin Transl Oncol 2024; 26:1988-1997. [PMID: 38502292 DOI: 10.1007/s12094-024-03423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND tRF-RNA-a representative of non-coding RNA (ncRNA)-is a precursor or fragment of mature tRNA and plays a crucial regulatory role in the occurrence and development of cancer. There is currently little research on tRF-RNA as a diagnostic marker in cancer, especially for NSCLC from serum exosomes. METHOD Serum exosomes were successfully extracted from serum; their physical morphology was captured by transmission electron microscopy (TEM); appropriate particle size detection was performed using qNano; surface labeling was verified through western blotting. Serum exosomes i-tRF-AspGTC and tRF-1-SerCGA were selected through gene microarray, and qPCR was used to validate their significance in 242 patients and 201 healthy individuals. The area under the curve (AUC) was used to evaluate the diagnostic indicators of non-small cell lung cancer (NSCLC). RESULT Compared with 201 healthy individuals, i-tRF-AspGTC and tRF-1-SerCGA were significantly downregulated in 242 NSCLC patients and 95 early-stage patients. For tRF-AspGTC and tRF-1-SerCGA, the predictive diagnostic efficiency rates of AUC were 0.690 and 0.680, respectively, whereas the early diagnostic efficiency rates were 0.656 and 0.688, respectively. The result of combined diagnosis with CEA and CYFRA21-1 was 0.928, and the early diagnostic efficiency was 0.843, which is a very high biological predictive factor for NSCLC. CONCLUSION The expression of serum exosomes i-tRF-AspGTC and tRF-1-SerCGA was significantly downregulated in NSCLC patients. These exosomes could be used as predictive indicators for diagnosis or early diagnosis of NSCLC.
Collapse
Affiliation(s)
- Jiefei Peng
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian, 271000, China
| | - Yue Zhang
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Guangfei Zhou
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Luolin Shao
- Department of Dermatology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Lin Li
- Pharmacy Intravenous Admixture Services, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China.
| | - Zhijun Zhang
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China.
- Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian, 271000, China.
| |
Collapse
|
21
|
Zhang S, Gu Y, Ge J, Xie Y, Yu X, Wu X, Sun D, Zhang X, Guo J, Guo J. tRF-33-P4R8YP9LON4VDP inhibits gastric cancer progression via modulating STAT3 signaling pathway in an AGO2-dependent manner. Oncogene 2024; 43:2160-2171. [PMID: 38783100 DOI: 10.1038/s41388-024-03062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
It has been demonstrated that tRNA-derived small RNAs (tsRNAs) perform essential functions in the pathophysiology of cancer. In this study, we focused on the possible mechanisms of tRF-33-P4R8YP9LON4VDP (tRF-33) underlying the development of gastric malignancy. In total, 454 tissue samples with different gastric mucosal lesions were collected. The tRF-33 expression level in different cohorts was determined, and its value for diagnostic efficiency and prognosis evaluation were assessed. Cell proliferation assays, Transwell assay, flow cytometry, and xenotransplantation model were used to evaluate its effect on gastric cancer cells. The molecular mechanism was verified by fluorescence in situ hybridization, dual luciferase assay, Western blot, and RNA binding protein immunoprecipitation. The results showed that the expression of tRF-33 exhibited a gradual modification from normal control samples to gastritis tissues, early and latent stage of gastric cancer tissues. Consequently, tRF-33 holds significant potential as a predictive and diagnostic biomarker for gastric malignancy. Over-expression of tRF-33 inhibited gastric cancer cell progression and metastatic viability, and induced cell apoptosis. Tumorigenicity in nude mice showed the suppressive characteristics of tRF-33. Mechanistic investigation revealed that tRF-33 exerted silencing on STAT3 mRNA via binding to AGO2. In conclusion, tRF-33 exhibited values in diagnosing gastric cancer and evaluating its prognosis, and suppressed tumor cell viability by inhibiting STAT3 signaling pathway. The schematic mechanisms underlying tRF-33 regulating gastric cancer occurrence. tRF-33 binds to AGO2 proteins and then negatively regulates STAT3 expression through targeting its 3'UTR. The downregulated expression of STAT3 results in the decrease of STAT3 and p-STAT3 and further blocks the transcription of the downstream genes and finally inhibits the gastric cancer occurrence. MMP-9, matrix metalloproteinase-9; Bcl-2, B-cell lymphoma-2; STAT3, signal transducer and activator of transcription 3; UTR, untranslated region.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yeqi Gu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jiaxin Ge
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, China.
- Institute of Digestive Diseases of Ningbo University, Ningbo, 315020, China.
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xiuchong Yu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xinxin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Desen Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xinjun Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
- Institute of Digestive Diseases of Ningbo University, Ningbo, 315020, China
| | - Jie Guo
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Junming Guo
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China.
- Institute of Digestive Diseases of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
22
|
Mao C, Yuan W, Fang R, Wu Y, Zhang Z, Cong H. Transfer RNA‑derived small RNAs: A class of potential biomarkers in multiple cancers (Review). Oncol Lett 2024; 28:293. [PMID: 38737976 PMCID: PMC11082847 DOI: 10.3892/ol.2024.14427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Transfer (t)RNA-derived small RNAs (tsRNAs) are a class of novel non-coding small RNAs that are created via precise cleavage of tRNAs or tRNA precursors by different enzymes. tsRNAs are specific biological molecules that serve essential roles in cell proliferation, apoptosis, transcriptional regulation, post-transcriptional modification and translational regulation. Additionally, tsRNAs participate in the pathogenesis of several diseases, particularly in the development of malignant tumors. At present, the process of discovering and understanding the functions of tsRNAs is still in its early stages. The present review introduces the known biological functions and mechanisms of tsRNAs, and discusses the tsRNAs progression in several types of cancers as well as the possibility of tsRNAs becoming novel tumor biomarkers. Furthermore, tsRNAs may promote and hinder tumor formation according to different mechanisms and act as oncogenic or oncostatic molecules. Therefore, tsRNAs may be future potential tumor biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Chunyan Mao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wentao Yuan
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ronghua Fang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yi Wu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhihan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Blood Transfusion, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
23
|
Saha S, Mukherjee B, Banerjee P, Das D. The 'Not-So-Famous Five' in tumorigenesis: tRNAs, tRNA fragments, and tRNA epitranscriptome in concert with AARSs and AIMPs. Biochimie 2024; 222:45-62. [PMID: 38401639 DOI: 10.1016/j.biochi.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
RNA profiling studies have revealed that ∼75% of the human genome is transcribed to RNA but only a meagre fraction of it is translated to proteins. Majority of transcribed RNA constitute a specialized pool of non-coding RNAs. Human genome contains approximately 506 genes encoding a set of 51 different tRNAs, constituting a unique class of non-coding RNAs that not only have essential housekeeping functions as translator molecules during protein synthesis, but have numerous uncharted regulatory functions. Intriguing findings regarding a variety of non-canonical functions of tRNAs, tRNA derived fragments (tRFs), esoteric epitranscriptomic modifications of tRNAs, along with aminoacyl-tRNA synthetases (AARSs) and ARS-interacting multifunctional proteins (AIMPs), envision a 'peripheral dogma' controlling the flow of genetic information in the backdrop of qualitative information wrung out of the long-live central dogma of molecular biology, to drive cells towards either proliferation or differentiation programs. Our review will substantiate intriguing peculiarities of tRNA gene clusters, atypical tRNA-transcription from internal promoters catalysed by another distinct RNA polymerase enzyme, dynamically diverse tRNA epitranscriptome, intricate mechanism of tRNA-charging by AARSs governing translation fidelity, epigenetic regulation of gene expression by tRNA fragments, and the role of tRNAs and tRNA derived/associated molecules as quantitative determinants of the functional proteome, covertly orchestrating the process of tumorigenesis, through a deregulated tRNA-ome mediating selective codon-biased translation of cancer related gene transcripts.
Collapse
Affiliation(s)
- Sutapa Saha
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India.
| | - Biyas Mukherjee
- Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata, 700064, India
| | - Proma Banerjee
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India
| | - Debadrita Das
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India
| |
Collapse
|
24
|
Zhou M, He X, Zhang J, Mei C, Zhong B, Ou C. tRNA-derived small RNAs in human cancers: roles, mechanisms, and clinical application. Mol Cancer 2024; 23:76. [PMID: 38622694 PMCID: PMC11020452 DOI: 10.1186/s12943-024-01992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are a new type of non-coding RNAs (ncRNAs) produced by the specific cleavage of precursor or mature tRNAs. tsRNAs are involved in various basic biological processes such as epigenetic, transcriptional, post-transcriptional, and translation regulation, thereby affecting the occurrence and development of various human diseases, including cancers. Recent studies have shown that tsRNAs play an important role in tumorigenesis by regulating biological behaviors such as malignant proliferation, invasion and metastasis, angiogenesis, immune response, tumor resistance, and tumor metabolism reprogramming. These may be new potential targets for tumor treatment. Furthermore, tsRNAs can exist abundantly and stably in various bodily fluids (e.g., blood, serum, and urine) in the form of free or encapsulated extracellular vesicles, thereby affecting intercellular communication in the tumor microenvironment (TME). Meanwhile, their abnormal expression is closely related to the clinicopathological features of tumor patients, such as tumor staging, lymph node metastasis, and poor prognosis of tumor patients; thus, tsRNAs can be served as a novel type of liquid biopsy biomarker. This review summarizes the discovery, production, and expression of tsRNAs and analyzes their molecular mechanisms in tumor development and potential applications in tumor therapy, which may provide new strategies for early diagnosis and targeted therapy of tumors.
Collapse
Affiliation(s)
- Manli Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jing Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan, 410008, China.
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
25
|
Chen Q, Li D, Jiang L, Wu Y, Yuan H, Shi G, Liu F, Wu P, Jiang K. Biological functions and clinical significance of tRNA-derived small fragment (tsRNA) in tumors: Current state and future perspectives. Cancer Lett 2024; 587:216701. [PMID: 38369004 DOI: 10.1016/j.canlet.2024.216701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
A new class of noncoding RNAs, tsRNAs are not only abundant in humans but also have high tissue specificity. Recently, an increasing number of studies have explored the correlations between tsRNAs and tumors, showing that tsRNAs can affect biological behaviors of tumor cells, such as proliferation, apoptosis and metastasis, by modulating protein translation, RNA transcription or posttranscriptional regulation. In addition, tsRNAs are widely distributed and stably expressed, which endows them with broad application prospects in diagnosing and predicting the prognosis of tumors, and they are expected to become new biomarkers. However, notably, the current research on tsRNAs still faces problems that need to be solved. In this review, we describe the characteristics of tsRNAs as well as their unique features and functions in tumors. Moreover, we also discuss the potential opportunities and challenges in clinical applications and research of tsRNAs.
Collapse
Affiliation(s)
- Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Danrui Li
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Luyang Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Yuan
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guodong Shi
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengyuan Liu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
26
|
Xiong Q, Zhang Y, Xu Y, Yang Y, Zhang Z, Zhou Y, Zhang S, Zhou L, Wan X, Yang X, Zeng Z, Liu J, Zheng Y, Han J, Zhu Q. tiRNA-Val-CAC-2 interacts with FUBP1 to promote pancreatic cancer metastasis by activating c‑MYC transcription. Oncogene 2024; 43:1274-1287. [PMID: 38443680 PMCID: PMC11035144 DOI: 10.1038/s41388-024-02991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Cumulative studies have established the significance of transfer RNA-derived small RNA (tsRNA) in tumorigenesis and progression. Nevertheless, its function and mechanism in pancreatic cancer metastasis remain largely unclear. Here, we screened and identified tiRNA-Val-CAC-2 as highly expressed in pancreatic cancer metastasis samples by tsRNA sequencing. We also observed elevated levels of tiRNA-Val-CAC-2 in the serum of pancreatic cancer patients who developed metastasis, and patients with high levels of tiRNA-Val-CAC-2 exhibited a worse prognosis. Additionally, knockdown of tiRNA-Val-CAC-2 inhibited the metastasis of pancreatic cancer in vivo and in vitro, while overexpression of tiRNA-Val-CAC-2 promoted the metastasis of pancreatic cancer. Mechanically, we discovered that tiRNA-Val-CAC-2 interacts with FUBP1, leading to enhanced stability of FUBP1 protein and increased FUBP1 enrichment in the c-MYC promoter region, thereby boosting the transcription of c-MYC. Of note, rescue experiments confirmed that tiRNA-Val-CAC-2 could influence pancreatic cancer metastasis via FUBP1-mediated c-MYC transcription. These findings highlight a potential novel mechanism underlying pancreatic cancer metastasis, and suggest that both tiRNA-Val-CAC-2 and FUBP1 could serve as promising prognostic biomarkers and potential therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Qunli Xiong
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaguang Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongfeng Xu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiwei Zhang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Zhou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Su Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lian Zhou
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaowen Wan
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojuan Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhu Zeng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinlu Liu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Zheng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
27
|
Cabrelle C, Giorgi FM, Mercatelli D. Quantitative and qualitative detection of tRNAs, tRNA halves and tRFs in human cancer samples: Molecular grounds for biomarker development and clinical perspectives. Gene 2024; 898:148097. [PMID: 38128792 DOI: 10.1016/j.gene.2023.148097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Transfer RNAs (tRNAs) are small non-coding RNAs playing a central role during protein synthesis. Besides translation, growing evidence suggests that in many contexts, precursor or mature tRNAs can also be processed into smaller fragments playing many non-canonical regulatory roles in different biological pathways with oncogenic relevance. Depending on the source, these molecules can be classified as tRNA halves (also known as tiRNAs) or tRNA-derived fragments (tRFs), and furtherly divided into 5'-tRNA and 3'-tRNA halves, or tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF, respectively. Unlike DNA and mRNA, high-throughput sequencing of tRNAs is challenging, because of technical limitations of currently developed sequencing methods. In recent years, different sequencing approaches have been proposed allowing the quantification and identification of an increasing number of tRNA fragments with critical functions in distinct physiological and pathophysiological processes. In the present review, we discussed pros and cons of recent advances in different sequencing methods, also introducing the expanding repertoire of bioinformatics tool and resources specifically focused on tRNA research and discussing current issues in the study of these small RNA molecules. Furthermore, we discussed the potential value of tRNA fragments as diagnostic and prognostic biomarkers for different types of cancers.
Collapse
Affiliation(s)
- Chiara Cabrelle
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | | | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
28
|
Song J, Ham J, Park W, Song G, Lim W. Osthole impairs mitochondrial metabolism and the autophagic flux in colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155383. [PMID: 38295666 DOI: 10.1016/j.phymed.2024.155383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Osthole is active constituent of Cnidium monnieri (L.) Cuss. with various physiological functions including anti-inflammation and anti-lipedemic effects. However, the regulatory activity of osthole in colorectal cancer development, focusing on mitochondrial metabolism, is not well known. HYPOTHESIS/PURPOSE We hypothesized that osthole may suppress progression of colorectal cancer and aimed to determine the underlying mitochondrial metabolism and the autophagic flux. STUDY DESIGN In this study, we elucidated the mechanism of action of osthole in colorectal cancer using an in vivo azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model and an in vitro cell culture system. METHODS AOM/DSS mouse model was established and analyzed the effects of osthole on survival rate, diseases activity index, number of tumor and histopathology. Then, cell based assays including viability, cell cycle, reactive oxygen species (ROS), apoptosis, calcium efflux, and mitochondrial function were analyzed. Moreover, osthole-mediated signaling was demonstrated by western blot analyses. RESULTS Osthole effectively suppressed the growth of colorectal tumors and alleviated AOM/DSS-induced intestinal injury. Osthole restored the function of goblet cells and impaired the expression of Claudin1 and Axin1 impaired by AOM/DSS. In addition, osthole specifically showed cytotoxicity in colorectal carcinoma cells, but not in normal colon cells. Osthole decreased the ASC/caspase-1/IL-1β inflammasome pathway and induced mitochondrial dysfunction in redox homeostasis, calcium homeostasis. Furthermore, osthole inhibited both oxidative phosphorylation (OXPHOS) and glycolysis, leading to the suppression of ATP production. Moreover, via combination treatment with chloroquine (CQ), we demonstrated that osthole impaired autophagic flux, leading to apoptosis of HCT116 and HT29 cells. Finally, we elucidated that the functional role of tiRNAHisGTG regulated by osthole directly affects the cellular fate of colon cancer cells. CONCLUSION These results suggest that osthole has the potential to manage progression of colorectal cancer by regulating autophagy- and mitochondria-mediated signal transduction.
Collapse
Affiliation(s)
- Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiyeon Ham
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
29
|
Salehi M, Kamali MJ, Rajabzadeh A, Minoo S, Mosharafi H, Saeedi F, Daraei A. tRNA-derived fragments: Key determinants of cancer metastasis with emerging therapeutic and diagnostic potentials. Arch Biochem Biophys 2024; 753:109930. [PMID: 38369227 DOI: 10.1016/j.abb.2024.109930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Metastasis is a significant clinical challenge responsible for cancer mortality and non-response to treatment. However, the molecular mechanisms driving metastasis remain unclear, limiting the development of efficient diagnostic and therapeutic approaches. Recent breakthroughs in cancer biology have discovered a group of small non-coding RNAs called tRNA-derived fragments (tRFs), which play a critical role in the metastatic behavior of various tumors. tRFs are produced from cleavage modifications of tRNAs and have different functional classes based on the pattern of these modifications. They perform post-transcriptional regulation through microRNA-like functions, displacing RNA-binding proteins, and play a role in translational regulation by inducing ribosome synthesis, translation initiation, and epigenetic regulation. Tumor cells manipulate tRFs to develop and survive the tumor mass, primarily by inducing metastasis. Multiple studies have demonstrated the potential of tRFs as therapeutic, diagnostic, and prognostic targets for tumor metastasis. This review discusses the production and function of tRFs in cells, their aberrant molecular contributions to the metastatic environment, and their potential as promising targets for anti-metastasis treatment strategies.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Aliakbar Rajabzadeh
- Department of Anatomical Sciences, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Shima Minoo
- Department of Dentistry, Khorasgan Branch, Islamic Azad University, Isfahan, Iran
| | | | - Fatemeh Saeedi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
30
|
Amini M, Rezasoltani S, Asadzadeh Aghdaei H, Pourhoseingholi MA, Zali MR. Accuracy of the Discriminatory Ability of Combined Fecal Microbiota Panel in the Early Detection of Patients with Colorectal Cancer. J Gastrointest Cancer 2024; 55:332-343. [PMID: 37566155 DOI: 10.1007/s12029-023-00962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) screening and detecting it at an early stage is an effective way to decrease mortality from CRC. Colonoscopy, considered the gold standard (GS) for diagnosing the disease in many countries, has several limitations. Therefore, the main focus of this literature is to investigate the ability of combining candidate gut microbiota for early diagnosis of CRC, both in the presence and absence of GS test outcomes. METHODS We analyzed the data derived from a case-control study, including 83 screening colonoscopies conducted on subjects aged 18-92 years in Tehran, Iran. The candidate gut microbiota including, ETBF, Enterococcus faecalis, and Porphyromonas gingivalis were quantified in samples using absolute qRT PCR. The Bayesian latent class model (LCM) was employed to combine the values from the multiple bacterial markers in order to optimize the discriminatory ability compared with a single marker. RESULTS Based on Bayesian logistic regression, we discovered that family history of CRC, physical activity, cigarette smoking, and food diet were all significantly associated with an increased risk of CRC. When comparing ETBF and E. faecalis to P. gingivalis, we have observed that P. gingivalis exhibited greater predictive power in detecting high-risk individuals with CRC. As such, the sensitivity, specificity, and the area under the receiver-operating characteristics curve of combining ETBF, E. faecalis, and P. gingivalis were 98%, 96%, and 0.97, respectively. CONCLUSIONS This study suggests that the combined use of the three markers markedly improves classification performance compared to pairwise combinations, as well as individual markers, both with and without GS test outcomes. Noticeably, the triple composition of the fecal markers may serve as a reliable non-invasive indicator for the early prediction of CRC.
Collapse
Affiliation(s)
- Maedeh Amini
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sama Rezasoltani
- Section Mass Spectrometry and Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Amin Pourhoseingholi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Zhang Y, Gu X, Li Y, Huang Y, Ju S. Multiple regulatory roles of the transfer RNA-derived small RNAs in cancers. Genes Dis 2024; 11:597-613. [PMID: 37692525 PMCID: PMC10491922 DOI: 10.1016/j.gendis.2023.02.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 09/12/2023] Open
Abstract
With the development of sequencing technology, transfer RNA (tRNA)-derived small RNAs (tsRNAs) have received extensive attention as a new type of small noncoding RNAs. Based on the differences in the cleavage sites of nucleases on tRNAs, tsRNAs can be divided into two categories, tRNA halves (tiRNAs) and tRNA-derived fragments (tRFs), each with specific subcellular localizations. Additionally, the biogenesis of tsRNAs is tissue-specific and can be regulated by tRNA modifications. In this review, we first elaborated on the classification and biogenesis of tsRNAs. After summarizing the latest mechanisms of tsRNAs, including transcriptional gene silencing, post-transcriptional gene silencing, nascent RNA silencing, translation regulation, rRNA regulation, and reverse transcription regulation, we explored the representative biological functions of tsRNAs in tumors. Furthermore, this review summarized the clinical value of tsRNAs in cancers, thus providing theoretical support for their potential as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yu Zhang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yang Li
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuejiao Huang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Medical Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
32
|
Wu F, Yang Q, Pan W, Meng W, Ma Z, Wang W. tRNA-derived fragments: mechanism of gene regulation and clinical application in lung cancer. Cell Oncol (Dordr) 2024; 47:37-54. [PMID: 37642916 DOI: 10.1007/s13402-023-00864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Lung cancer, being the most widespread and lethal form of cancer globally, has a high incidence and mortality rate primarily attributed to challenges associated with early detection, extensive metastasis, and frequent recurrence. In the context of lung cancer development, noncoding RNA molecules have a crucial role in governing gene expression and protein synthesis. Specifically, tRNA-derived fragments (tRFs), a subset of noncoding RNAs, exert significant biological influences on cancer progression, encompassing transcription and translation processes as well as epigenetic regulation. This article primarily examines the mechanisms by which tRFs modulate gene expression and contribute to tumorigenesis in lung cancer. Furthermore, we provide a comprehensive overview of the current bioinformatics analysis of tRFs in lung cancer, with the objective of offering a systematic and efficient approach for studying the expression profiling, functional enrichment, and molecular mechanisms of tRFs in this disease. Finally, we discuss the clinical significance and potential avenues for future research on tRFs in lung cancer. This paper presents a comprehensive systematic review of the existing research findings on tRFs in lung cancer, aiming to offer improved biomarkers and drug targets for clinical management of lung cancer.
Collapse
Affiliation(s)
- Fan Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Qianqian Yang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Wei Meng
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China.
| | - Weiwei Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital, Yunnan Cancer Center, Kunming, 650118, China.
| |
Collapse
|
33
|
Chen W, Peng W, Wang R, Bai S, Cao M, Xiong S, Li Y, Yang Y, Liang J, Liu L, Yazdani HO, Zhao Y, Cheng B. Exosome-derived tRNA fragments tRF-GluCTC-0005 promotes pancreatic cancer liver metastasis by activating hepatic stellate cells. Cell Death Dis 2024; 15:102. [PMID: 38291031 PMCID: PMC10827722 DOI: 10.1038/s41419-024-06482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Early metastasis is the primary factor in the very poor prognosis of pancreatic ductal adenocarcinoma (PDAC), with liver metastasis being the most common form of distant metastasis in PDAC. To investigate the mechanism of PDAC liver metastasis, we found that PDAC cells can promote the formation of pre-metastatic niches (PMNs) through exosomes to facilitate liver metastasis in the early stage. In our study, hepatic stellate cells (HSCs) were treated with PDAC-derived exosomes (PDAC-exo), and the activation of HSCs was detected. A novel transfer RNA-derived fragment, the tRF-GluCTC-0005 was obtained by small RNA sequencing from serum exosomes of PDAC patients. Bioinformatics analysis and RNA pull-down assays revealed the interaction between WDR1 and tRF-GluCTC-0005. A KPC transgenic mouse model and an AAV-mediated sh-WDR1 mouse model were used to detect the mechanism of liver metastasis in vivo. Finally, the dual luciferase reporter assay, protein mutation truncation assay, Co-IP assay, and flow cytometry assay were used to explore the molecular mechanism in HSCs activation and PMNs formation. We found that the tRF-GluCTC-0005 in exosomes binds to the 3' untranslated region of the mRNA of the WDRl in HSCs and increases mRNA stability. The N-terminals of WDR1 bind to the YAP protein directly, inhibit YAP phosphorylation, and promote the expression of YAP transcription factors. The tRF-GluCTC-0005 in PDAC-exo significantly recruits myeloid-derived suppressor cells (MDSCs) in the liver, creating a PMNs immunosuppressive microenvironment and further advancing liver metastasis from PDAC. Our results suggest that the key of PDAC liver metastasis is the activation of HSCs through upregulation of WDR1 by tRF-GluCTC-0005 in exosomes, which mediates the infiltration of MDSCs to form PMNs.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ronghua Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengdie Cao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanling Li
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yilei Yang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingwen Liang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luyao Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hamza O Yazdani
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
34
|
Yang N, Li R, Liu R, Yang S, Zhao Y, Xiong W, Qiu L. The Emerging Function and Promise of tRNA-Derived Small RNAs in Cancer. J Cancer 2024; 15:1642-1656. [PMID: 38370372 PMCID: PMC10869971 DOI: 10.7150/jca.89219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/01/2024] [Indexed: 02/20/2024] Open
Abstract
Fragments derived from tRNA, called tRNA-derived small RNAs (tsRNAs), have attracted widespread attention in the past decade. tsRNAs are widespread in prokaryotic and eukaryotic transcriptome, which contains two main types, tRNA-derived fragments (tRFs) and tRNA-derived stress-inducing RNA (tiRNAs), derived from the precursor tRNAs or mature tRNAs. According to differences in the cleavage position, tRFs can be divided into tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF, whereas tiRNAs can be divided into 5'-tiRNA and 3'-tiRNA. Studies have found that tRFs and tiRNAs are abnormally expressed in a variety of human malignant tumors, promote or inhibit the proliferation and apoptosis of cancer cells by regulating the expression of oncogene, and play an important role in the aggressive metastasis and progression of tumors. This article reviews the biological origins of various tsRNAs, introduces their functions and new concepts of related mechanisms, and focuses on the molecular mechanisms of tsRNAs in cancer, including breast cancer, prostate cancer, colorectal cancer, lung cancer, b-cell lymphoma, and chronic lymphoma cell leukemia. Lastly, this article puts forward some unresolved problems and future research prospects.
Collapse
Affiliation(s)
- Na Yang
- College of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, China
- College of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Ruijun Li
- College of Foreign Languages, Chuxiong Normal University, Chuxiong 675000, China
| | - Ruai Liu
- College of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Shengjie Yang
- The People's Hospital of ChuXiong Yi Autonomous Prefecture, Chuxiong 675000, China
| | - Yi Zhao
- The People's Hospital of ChuXiong Yi Autonomous Prefecture, Chuxiong 675000, China
| | - Wei Xiong
- College of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Lu Qiu
- College of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, China
| |
Collapse
|
35
|
Ye C, Cheng F, Huang L, Wang K, Zhong L, Lu Y, Ouyang M. New plasma diagnostic markers for colorectal cancer: transporter fragments of glutamate tRNA origin. J Cancer 2024; 15:1299-1313. [PMID: 38356701 PMCID: PMC10861818 DOI: 10.7150/jca.92102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Early diagnosis of the disease can greatly improve the clinical prognosis for patients with CRC. Unfortunately, there are no current simple and effective early diagnostic markers available. The transfer RNA (tRNA)-derived RNA fragments (tRFs) are a class of small non-coding RNAs (sncRNAs), which have been shown to play an important role in the development and prognosis of CRC. However, only a few studies on tRFs as early diagnostic markers in CRC have been conducted. In this study, previously ignored tRFs expression data were extracted from six paired small RNA sequencing data in the Sequence Read Archive (SRA) database using MINTmap. Three i-tRFs, derived from the tRNA that transports glutamate (i-tRF-Glu), were identified and used to construct a random forest diagnostic model. The model performance was evaluated using the receiver operating characteristic (ROC) curve and precision-recall (PR) curve. The area under the curves (AUC) for the ROC and PR was 0.941 and 0.944, respectively. We further verified the differences in expression of the these i-tRF-Glu in the tissue and plasma of both CRC patients and healthy subjects using quantitative real-time PCR (qRT-PCR). We found that the ROC-AUC of the three was greater than traditional plasma tumor markers such as CEA and CA199. Our bioinformatics analysis suggested that the these i-tRF-Glu are associated with cancer development and glutamate (Glu)-glutamine (Gln) metabolism. Overall, our study uncovered these i-tRF-Glu that have early diagnostic significance and therapeutic potential for CRC, this warrants further investigation into the diagnostic and therapeutic potential of these i-tRF-Glu in CRC.
Collapse
Affiliation(s)
- Changda Ye
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Fu Cheng
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Luji Huang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Kang Wang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Lin Zhong
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Yan Lu
- GCP Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
| | - Manzhao Ouyang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| |
Collapse
|
36
|
Wang Q, Song X, Zhao F, Chen Q, Xia W, Dong G, Xu L, Mao Q, Jiang F. Noninvasive diagnosis of pulmonary nodules using a circulating tsRNA-based nomogram. Cancer Sci 2023; 114:4607-4621. [PMID: 37770420 PMCID: PMC10728016 DOI: 10.1111/cas.15971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
Evaluating the accuracy of pulmonary nodule diagnosis avoids repeated low-dose computed tomography (LDCT)/CT scans or invasive examination, yet remains a main clinical challenge. Screening for new diagnostic tools is urgent. Herein, we established a nomogram based on the diagnostic signature of five circulating tsRNAs and CT information to predict malignant pulmonary nodules. In total, 249 blood samples of patients with pulmonary nodules were selected from three different lung cancer centers. Five tsRNAs were identified in the discovery and training cohorts and the diagnostic signature was established by the randomForest algorithm (tRF-Ser-TGA-003, tRF-Val-CAC-005, tRF-Ala-AGC-060, tRF-Val-CAC-024, and tiRNA-Gln-TTG-001). A nomogram was developed by combining tsRNA signature and CT information. The high level of accuracy was identified in an internal validation cohort (n = 83, area under the receiver operating characteristic curve [AUC] = 0.930, sensitivity 100.0%, specificity 73.8%) and external validation cohort (n = 66, AUC = 0.943, sensitivity 100.0%, specificity 86.8%). Furthermore, the diagnostic ability of our model discriminating invasive malignant ones from noninvasive lesions was assessed. A robust performance was achieved in the diagnosis of invasive malignant lesions in both training and validation cohorts (discovery cohort: AUC = 0.850, sensitivity 86.0%, specificity 81.4%; internal validation cohort: AUC = 0.784, sensitivity 78.8%, specificity 78.1%; and external validation cohort: AUC = 0.837, sensitivity 85.7%, specificity 84.0%). This novel circulating tsRNA-based diagnostic model has potential significance in predicting malignant pulmonary nodules. Application of the model could improve the accuracy of pulmonary nodule diagnosis and optimize surgical plans.
Collapse
Affiliation(s)
- Qinglin Wang
- Department of Thoracic Surgery, Jiangsu Cancer HospitalJiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu Province, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Xuming Song
- Department of Thoracic Surgery, Jiangsu Cancer HospitalJiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu Province, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Feng Zhao
- Department of Thoracic SurgeryTaixing People's HospitalTaizhouChina
| | - Qiang Chen
- Department of Thoracic SurgeryXuzhou Central HospitalXuzhouChina
| | - Wenjie Xia
- Department of Thoracic Surgery, Jiangsu Cancer HospitalJiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu Province, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Gaochao Dong
- Department of Thoracic Surgery, Jiangsu Cancer HospitalJiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu Province, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer HospitalJiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu Province, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Qixing Mao
- Department of Thoracic Surgery, Jiangsu Cancer HospitalJiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu Province, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangsu Cancer HospitalJiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu Province, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
| |
Collapse
|
37
|
Pinzaru AM, Tavazoie SF. Transfer RNAs as dynamic and critical regulators of cancer progression. Nat Rev Cancer 2023; 23:746-761. [PMID: 37814109 DOI: 10.1038/s41568-023-00611-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 10/11/2023]
Abstract
Transfer RNAs (tRNAs) have been historically viewed as non-dynamic adaptors that decode the genetic code into proteins. Recent work has uncovered dynamic regulatory roles for these fascinating molecules. Advances in tRNA detection methods have revealed that specific tRNAs can become modulated upon DNA copy number and chromatin alterations and can also be perturbed by oncogenic signalling and transcriptional regulators in cancer cells or the tumour microenvironment. Such alterations in the levels of specific tRNAs have been shown to causally impact cancer progression, including metastasis. Moreover, sequencing methods have identified tRNA-derived small RNAs that influence various aspects of cancer progression, such as cell proliferation and invasion, and could serve as diagnostic and prognostic biomarkers or putative therapeutic targets in various cancers. Finally, there is accumulating evidence, including from genetic models, that specific tRNA synthetases - the enzymes responsible for charging tRNAs with amino acids - can either promote or suppress tumour formation. In this Review, we provide an overview of how deregulation of tRNAs influences cancer formation and progression.
Collapse
Affiliation(s)
- Alexandra M Pinzaru
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA.
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
38
|
Du J, Huang T, Zheng Z, Fang S, Deng H, Liu K. Biological function and clinical application prospect of tsRNAs in digestive system biology and pathology. Cell Commun Signal 2023; 21:302. [PMID: 37904174 PMCID: PMC10614346 DOI: 10.1186/s12964-023-01341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023] Open
Abstract
tsRNAs are small non-coding RNAs originating from tRNA that play important roles in a variety of physiological activities such as RNA silencing, ribosome biogenesis, retrotransposition, and epigenetic inheritance, as well as involvement in cellular differentiation, proliferation, and apoptosis. tsRNA-related abnormalities have a significant influence on the onset, development, and progression of numerous human diseases, including malignant tumors through affecting the cell cycle and specific signaling molecules. This review introduced origins together with tsRNAs classification, providing a summary for regulatory mechanism and physiological function while dysfunctional effect of tsRNAs in digestive system diseases, focusing on the clinical prospects of tsRNAs for diagnostic and prognostic biomarkers. Video Abstract.
Collapse
Affiliation(s)
- Juan Du
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Tianyi Huang
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zhen Zheng
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shuai Fang
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Hongxia Deng
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
39
|
Shi H, Xie J, Pei S, He D, Hou H, Xu S, Fu Z, Shi X. Digging out the biology properties of tRNA-derived small RNA from black hole. Front Genet 2023; 14:1232325. [PMID: 37953919 PMCID: PMC10637384 DOI: 10.3389/fgene.2023.1232325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
An unique subclass of functional non-coding RNAs generated by transfer RNA (tRNA) under stress circumstances is known as tRNA-derived small RNA (tsRNA). tsRNAs can be divided into tRNA halves and tRNA-derived fragments (tRFs) based on the different cleavage sites. Like microRNAs, tsRNAs can attach to Argonaute (AGO) proteins to target downstream mRNA in a base pairing manner, which plays a role in rRNA processing, gene silencing, protein expression and viral infection. Notably, tsRNAs can also directly bind to protein and exhibit functions in transcription, protein modification, gene expression, protein stabilization, and signaling pathways. tsRNAs can control the expression of tumor suppressor genes and participate in the initiation of cancer. It can also mediate the progression of diseases by regulating cell viability, migration ability, inflammatory factor content and autophagy ability. Precision medicine targeting tsRNAs and drug therapy of plant-derived tsRNAs are expected to be used in clinical practice. In addition, liquid biopsy technology based on tsRNAs indicates a new direction for the non-invasive diagnosis of diseases.
Collapse
Affiliation(s)
- Hengmei Shi
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danni He
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Huyang Hou
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Shipeng Xu
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyan Shi
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
40
|
Cao W, Zeng Z, Lei S. 5'-tRF-19-Q1Q89PJZ Suppresses the Proliferation and Metastasis of Pancreatic Cancer Cells via Regulating Hexokinase 1-Mediated Glycolysis. Biomolecules 2023; 13:1513. [PMID: 37892195 PMCID: PMC10605356 DOI: 10.3390/biom13101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
tRNA-derived small RNAs (tDRs) are dysregulated in several diseases, including pancreatic cancer (PC). However, only a limited number of tDRs involved in PC progression are known. Herein, a novel tDR, 5'-tRF-19-Q1Q89PJZ (tRF-19-Q1Q89PJZ), was verified in PC plasma using RNA and Sanger sequencing. tRF-19-Q1Q89PJZ was downregulated in PC tissues and plasma, which was related to advanced clinical characteristics and poor prognosis. tRF-19-Q1Q89PJZ overexpression inhibited the malignant activity of PC cells in vitro, while tRF-19-Q1Q89PJZ inhibition produced an opposite effect. The differentially expressed genes induced by tRF-19-Q1Q89PJZ overexpression were enriched in "pathways in cancer" and "glycolysis". Mechanistically, tRF-19-Q1Q89PJZ directly sponged hexokinase 1 (HK1) mRNA and inhibited its expression, thereby suppressing glycolysis in PC cells. HK1 restoration relieved the inhibitory effect of tRF-19-Q1Q89PJZ on glycolysis in PC cells and on their proliferation and mobility in vitro. tRF-19-Q1Q89PJZ upregulation inhibited PC cell proliferation and metastasis in vivo and suppressed HK1 expression in tumor tissues. Furthermore, tRF-19-Q1Q89PJZ expression was attenuated under hypoxia. Collectively, these findings indicate that tRF-19-Q1Q89PJZ suppresses the malignant activity of PC cells by regulating HK1-mediated glycolysis. Thus, tRF-19-Q1Q89PJZ may serve as a key target for PC therapy.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China;
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China;
| |
Collapse
|
41
|
Li X, Zhang Y, Li Y, Gu X, Ju S. A comprehensive evaluation of serum tRF-29-R9J8909NF5JP as a novel diagnostic and prognostic biomarker for gastric cancer. Mol Carcinog 2023; 62:1504-1517. [PMID: 37314123 DOI: 10.1002/mc.23592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
Gastric cancer (GC) is a common malignant digestive system tumor. Since the early symptoms of GC are usually vague and the positive rate of common biomarkers of GC is low, it is of urgent need to find new biomarkers with good sensitivity and specificity to screen and diagnose GC patients. The tRNA-derived small RNAs (tsRNAs) are emerging small noncoding RNAs that play an essential role in cancer progression. In this study, we explored whether novel tsRNAs have the potential to serve as biomarkers for GC. Three tsRNAs significantly upregulated in GC were screened by the tsRFun database. The expression level of tRF-29-R9J8909NF5JP was detected by real-time fluorescence quantitative polymerase chain reaction. Agarose gel electrophoresis and Sanger sequencing were used to verify the characteristics of tRF-29-R9J8909NF5JP. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of tRF-29-R9J8909NF5JP. The χ2 test was used to analyze the correlation between tRF-29-R9J8909NF5JP expression level and clinicopathological parameters. Kaplan-Meier survival curves were used to analyze the correlation between tRF-29-R9J8909NF5JP expression levels and survival time of GC patients. In this study, the expression level of tRF-29-R9J8909NF5JP was significantly increased in GC tissues. The expression level of tRF-29-R9J8909NF5JP was considerably higher in the serum of GC patients than in the serum of gastritis patients and in the serum of healthy donors, and the expression level of tRF-29-R9J8909NF5JP was significantly decreased in the serum of GC patients after surgery. In addition, the χ2 test showed that the expression level of tRF-29-R9J8909NF5JP in GC serum was correlated with differentiation grade, T-stage, lymph node metastasis, tumor node metastasis stage, and neurological/vascular invasion. The results of the survival curve showed that the high expression of serum tRF-29-R9J8909NF5JP was associated with a low survival rate. ROC analysis showed that serum tRF-29-R9J8909NF5JP had higher diagnostic efficiency than common GC biomarkers, and the diagnostic efficiency was further improved by combining them. At the end of the study, we predicted the downstream of tRF-29-R9J8909NF5JP. The expression level of tRF-29-R9J8909NF5JP in the serum of GC patients can effectively identify GC patients and has higher efficacy than conventional biomarkers. In addition, serum tRF-29-R9J8909NF5JP can monitor the postoperative condition of GC patients, suggesting that it has the potential to become a biomarker for GC.
Collapse
Affiliation(s)
- Xun Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yu Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yang Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
42
|
Cao W, Dai S, Ruan W, Long T, Zeng Z, Lei S. Pancreatic stellate cell-derived exosomal tRF-19-PNR8YPJZ promotes proliferation and mobility of pancreatic cancer through AXIN2. J Cell Mol Med 2023; 27:2533-2546. [PMID: 37488774 PMCID: PMC10468654 DOI: 10.1111/jcmm.17852] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/26/2023] Open
Abstract
The pancreatic stellate cells (PSCs) play an important role in the development of pancreatic cancer (PC) through mechanisms that remain unclear. Exosomes secreted from PSCs act as mediators for communication in PC. This study aimed to explore the role of PSC-derived exosomal small RNAs derived from tRNAs (tDRs) in PC cells. Exosomes from PSCs were extracted and used to detect their effects on PC cell proliferation, migration and invasion. Exosomal tDRs profiling was performed to identify PSC-derived exosomal tDRs. ISH and qRT-PCR were used to examine the tRF-19-PNR8YPJZ levels and clinical value in clinical samples. The biological function of exosomal tRF-19-PNR8YPJZ was determined using the CCK-8, clone formation, wound healing and transwell assays, subcutaneous tumour formation and lung metastatic models. The relationship between the selected exosomal tRF-19-PNR8YPJZ and AXIN2 was determined by RNA sequencing, luciferase reporter assay. PSC-derived exosomes promoted the proliferation, migration, and invasion of PC cells. Novel and abundant tDRs are found to be differentially expressed in PANC-1 cells after treatment with PSC-derived exosomes, such as tRF-19-PNR8YPJZ. PC tissue samples showed markedly higher levels of tRF-19-PNR8YPJZ than normal controls. Patients with PC exhibiting high tRF-19-PNR8YPJZ expression had a highly lymph node invasion, metastasis, perineural invasion, advanced clinical stage and poor overall survival. Exosomal tRF-19-PNR8YPJZ from PSCs targeted AXIN2 in PC cells and decreased its expression, thus activating the Wnt pathway and promoting proliferation and metastasis. Exosomal tRF-19-PNR8YPJZ from PSCs promoted proliferation and metastasis in PC cells via AXIN2.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Shisi Dai
- Department of Anatomy, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
- Department of Anatomy, School of Basic MedicineGuizhou Nursing Vocational collegeGuiyangChina
| | - Wanyuan Ruan
- School of Clinical MedicineGuizhou Medical UniversityGuiyangChina
| | - Tingting Long
- Department of Anatomy, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Zhirui Zeng
- Department of Physiology, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Shan Lei
- Department of Physiology, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
43
|
Xing S, Zhu Y, You Y, Wang S, Wang H, Ning M, Jin H, Liu Z, Zhang X, Yu C, Lu ZJ. Cell-free RNA for the liquid biopsy of gastrointestinal cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1791. [PMID: 37086051 DOI: 10.1002/wrna.1791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Gastrointestinal (GI) cancer includes many cancer types, such as esophageal, liver, gastric, pancreatic, and colorectal cancer. As the cornerstone of personalized medicine for GI cancer, liquid biopsy based on noninvasive biomarkers provides promising opportunities for early diagnosis and dynamic treatment management. Recently, a growing number of studies have demonstrated the potential of cell-free RNA (cfRNA) as a new type of noninvasive biomarker in body fluids, such as blood, saliva, and urine. Meanwhile, transcriptomes based on high-throughput RNA detection technologies keep discovering new cfRNA biomarkers. In this review, we introduce the origins and applications of cfRNA, describe its detection and qualification methods in liquid biopsy, and summarize a comprehensive list of cfRNA biomarkers in different GI cancer types. Moreover, we also discuss perspective studies of cfRNA to overcome its current limitations in clinical applications. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Shaozhen Xing
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| | - Yumin Zhu
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Department of Maternal & Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yaxian You
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siqi Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hongke Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Meng Ning
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Heyue Jin
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Department of Maternal & Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhengxia Liu
- Department of General Surgery, SIR RUN RUN Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinhua Zhang
- Department of Health Care, Jiangsu Women and Children Health Hospital, the First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, SIR RUN RUN Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
44
|
Huang D, Chu Y, Qiu J, Chen X, Zhao J, Zhang Y, Li S, Cheng Y, Shi H, Han L, Wang J. A novel diagnostic signature of circulating tsRNAs and miRNAs in esophageal squamous cell carcinoma detected with a microfluidic platform. Anal Chim Acta 2023; 1272:341520. [PMID: 37355337 DOI: 10.1016/j.aca.2023.341520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
Small non-coding RNAs (sncRNAs) consisting of tRNA-derived small RNAs (tsRNAs) and miRNAs can be released by cancer cells and detected in blood, offering great potential for diagnosis of malignant tumors such as squamous cell carcinoma of the esophagus (ESCC). One of the major challenges for the clinical application of blood-based sncRNAs biomarkers is the difficulty of detection because of their small sncRNA size and low abundance. The deferentially expressed tsRNAs and miRNAs in plasma were studied with high-throughput sequencing and polymerase chain reaction in ESCC cohorts. A novel signature containing tRF-55:74-chrM.Phe-GAA, tRF-56:75-Ala-CGC-1-M4 and miR-4488 was identified with diagnostic potential. The signature was further confirmed by an attomolar-level ultrasensitive and rapid microfluidic biochip, which can achieve a multiplex, simple and low-cost detection. Our results indicated that a combination of tsRNAs and miRNAs has high diagnostic efficiency and tremendous potential to act as specific biomarkers through a reliable, highly sensitive, fast, and economic microfluidic biochip for ESCC diagnosis.
Collapse
Affiliation(s)
- Di Huang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, China
| | - Yujin Chu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Jiaoyan Qiu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Xiaoshuang Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Junhua Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, China Medical University, Shenyang, 110001, China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Shunjia Li
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, China
| | - Han Shi
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, China Medical University, Shenyang, 110001, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, China.
| |
Collapse
|
45
|
Li Y, Zhang Y, Li X, Li X, Gu X, Ju S. Serum tRF-27-FDXXE6XRK45 as a Promising Biomarker for the Clinical Diagnosis in Gastric Cancer. Int J Med Sci 2023; 20:1189-1201. [PMID: 37575270 PMCID: PMC10416715 DOI: 10.7150/ijms.85180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Objective: Gastric cancer (GC) has high morbidity and mortality due to inefficient early screening. Therefore, we are searching for more sensitive and specific diagnostic markers for GC. tRNA-derived small RNAs are novel non-coding small RNAs with good abundance and stable presence in body fluids, which may play multiple biological regulatory roles. In this study, we aimed to find a potential biomarker with high accuracy in tRNA-derived small RNAs that can help diagnose GC. Methods: tRF-27-FDXXE6XRK45 was screened as a target molecule by high-throughput sequencing in three pairs of GC tissues. RNA quantitative reverse transcription PCR was conducted to detect the expression levels of tRF-27-FDXXE6XRK45. Agarose gel electrophoresis, Sanger sequencing, cytoplasmic and nuclear RNA isolation assays, gradient dilution experiments, and room temperature and repeated freeze-thaw experiments were used to assess the detection performance of tRF-27-FDXXE6XRK45. Using the chi-square test to analyze the correlation between tRF-27-FDXXE6XRK45 expression levels and clinicopathological parameters. In addition, receiver operating characteristic curves were used to evaluate the diagnostic value of tRF-27-FDXXE6XRK45 in GC. Results: tRF-27-FDXXE6XRK45 expression levels, significantly upregulated in tissues and sera of GC patients and decreased after radical GC surgery, were correlated with the degree of differentiation, depth of tumor infiltration, TNM stage, lymph node metastasis, and nerve/vascular invasion. In comparison with current GC diagnostic markers, tRF-27-FDXXE6XRK45 displayed better efficacy. Conclusions: tRF-27-FDXXE6XRK45, with high diagnostic efficacy, can distinguish GC patients from gastritis patients and healthy donors, suggesting that tRF-27-FDXXE6XRK45 may be a promising candidate as a diagnostic marker for GC.
Collapse
Affiliation(s)
- Yang Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226006, China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226007, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226006, China
| | - Yu Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226006, China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226007, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226006, China
| | - Xun Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226006, China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226007, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226006, China
| | - Xian Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226006, China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226007, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226006, China
| | - Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226007, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226006, China
| |
Collapse
|
46
|
Christodoulou S, Katsaraki K, Vassiliu P, Danias N, Michalopoulos N, Tzikos G, Sideris DC, Arkadopoulos N. High Intratumoral i-tRF-Gly GCC Expression Predicts Short-Term Relapse and Poor Overall Survival of Colorectal Cancer Patients, Independent of the TNM Stage. Biomedicines 2023; 11:1945. [PMID: 37509584 PMCID: PMC10377136 DOI: 10.3390/biomedicines11071945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Colorectal cancer (CRC), one of the most prevalent types of cancer, requires the discovery of new tumor biomarkers for accurate patient prognosis. In this work, the prognostic value of the tRNA fragment i-tRF-GlyGCC in CRC was examined. Total RNA extraction from 211 CRC patient cancer tissue specimens and 83 adjacent normal tissues was conducted. Each RNA extract was subjected to in vitro polyadenylation and reverse transcription. A real-time quantitative PCR assay was used to quantify i-tRF-GlyGCC in all samples. Extensive biostatics analysis showed that i-tRF-GlyGCC levels in CRC tissues were significantly lower than in matched normal colorectal tissues. Additionally, the disease-free survival (DFS) and overall survival (OS) time intervals were considerably shorter in CRC patients with high i-tRF-GlyGCC expression. i-tRF-GlyGCC expression maintained its prognostic value independently of other established prognostic factors, as shown by the multivariate Cox regression analysis. Additionally, survival analysis after TNM stage stratification revealed that higher i-tRF-GlyGCC levels were linked to shorter DFS time intervals in patients with TNM stage II tumors, as well as an increased probability of having a worse OS for patients in TNM stage II. In conclusion, i-tRF-GlyGCC has the potential to be a useful molecular tissue biomarker in CRC, independent of other clinicopathological variables.
Collapse
Affiliation(s)
- Spyridon Christodoulou
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Katerina Katsaraki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Panteleimon Vassiliu
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Danias
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Michalopoulos
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Georgios Tzikos
- Propaedeutic Department of Surgery, University General Hospital "AHEPA", Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Nikolaos Arkadopoulos
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
47
|
Gao H, Zhang Q, Wu W, Gu J, Li J. The diagnostic and prognostic value of tsRNAs in gastric cancers: a systematic review and meta-analysis. Expert Rev Mol Diagn 2023; 23:985-997. [PMID: 37649251 DOI: 10.1080/14737159.2023.2254237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common types of cancer worldwide. Recent studies have shown that tsRNAs play important roles in GC and that changes in the expression levels of tsRNAs can be used for GC diagnosis and treatment response prediction. RESEARCH DESIGN AND METHODS Hazard ratios (HRs), odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the correlation between tsRNA expression and prognosis and other clinicopathologic features of GC patients. The sensitivity, specificity, area under the receiver operating characteristic curve (AUC) and diagnostic odds ratio (DOR) were analyzed to evaluate the diagnostic value of tsRNAs. RESULTS The results showed that patients with tsRNA upregulation had a poor prognosis (HR = 2.48, 95% CI: 1.85-3.34), while patients with tsRNA downregulation had a favorable prognosis (HR = 0.55, 95% CI: 0.31-0.98). In addition, tsRNA expression was significantly correlated with various clinicopathological features in patients with GC. Finally, in diagnostic studies, GC-related tsRNAs could differentiate healthy controls (AUC = 0.81, DOR = 7.74) from patients with inflammation (AUC = 0.74, DOR = 4.44). CONCLUSIONS tsRNAs have potential clinical application in GC diagnosis and prognosis evaluation. It is necessary to further assess and verify the practicability and feasibility of additional specific tsRNAs as GC markers in the future.
Collapse
Affiliation(s)
- Hua Gao
- Taicang Hospital of Traditional Chinese Medicine, Suzhou, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiankun Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Weibing Wu
- Taicang Hospital of Traditional Chinese Medicine, Suzhou, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Gu
- Taicang Hospital of Traditional Chinese Medicine, Suzhou, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Li
- Taicang Hospital of Traditional Chinese Medicine, Suzhou, China
- Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
48
|
Wu C, Liu D, Zhang L, Wang J, Ding Y, Sun Z, Wang W. 5'-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I. Front Med 2023; 17:476-492. [PMID: 36973570 DOI: 10.1007/s11684-022-0966-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/01/2022] [Indexed: 03/29/2023]
Abstract
tRNA-derived small RNAs (tsRNAs) are novel non-coding RNAs that are involved in the occurrence and progression of diverse diseases. However, their exact presence and function in hepatocellular carcinoma (HCC) remain unclear. Here, differentially expressed tsRNAs in HCC were profiled. A novel tsRNA, tRNAGln-TTG derived 5'-tiRNA-Gln, is significantly downregulated, and its expression level is correlated with progression in patients. In HCC cells, 5'-tiRNA-Gln overexpression impaired the proliferation, migration, and invasion in vitro and in vivo, while 5'-tiRNA-Gln knockdown yielded opposite results. 5'-tiRNA-Gln exerted its function by binding eukaryotic initiation factor 4A-I (EIF4A1), which unwinds complex RNA secondary structures during translation initiation, causing the partial inhibition of translation. The suppressed downregulated proteins include ARAF, MEK1/2 and STAT3, causing the impaired signaling pathway related to HCC progression. Furthermore, based on the construction of a mutant 5'-tiRNA-Gln, the sequence of forming intramolecular G-quadruplex structure is crucial for 5'-tiRNA-Gln to strongly bind EIF4A1 and repress translation. Clinically, 5'-tiRNA-Gln expression level is negatively correlated with ARAF, MEK1/2, and STAT3 in HCC tissues. Collectively, these findings reveal that 5'-tiRJNA-Gln interacts with EIF4A1 to reduce related mRNA binding through the intramolecular G-quadruplex structure, and this process partially inhibits translation and HCC progression.
Collapse
Affiliation(s)
- Chengdong Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310009, China
| | - Dekai Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310009, China
| | - Lufei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310009, China
| | - Jingjie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310009, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310009, China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310009, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China.
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China.
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China.
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
49
|
Dang Y, Dai L, Xu J, Zhou W, Xu Y, Ji G. tRNA-derived fragments are promising biomarkers for screening of early colorectal cancer. MedComm (Beijing) 2023; 4:e227. [PMID: 37153112 PMCID: PMC10156994 DOI: 10.1002/mco2.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 05/09/2023] Open
Affiliation(s)
- Yanqi Dang
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Liang Dai
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- Clinical Research AcademyPeking University Shenzhen HospitalPeking UniversityShenzhenChina
| | - Jingjuan Xu
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yangxian Xu
- Department of General SurgeryLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
50
|
Cai Z, Li P, Zhu W, Wei J, Lu J, Song X, Li K, Li S, Li M. Metagenomic analysis reveals gut plasmids as diagnosis markers for colorectal cancer. Front Microbiol 2023; 14:1130446. [PMID: 37283932 PMCID: PMC10239823 DOI: 10.3389/fmicb.2023.1130446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Background Colorectal cancer (CRC) is linked to distinct gut microbiome patterns. The efficacy of gut bacteria as diagnostic biomarkers for CRC has been confirmed. Despite the potential to influence microbiome physiology and evolution, the set of plasmids in the gut microbiome remains understudied. Methods We investigated the essential features of gut plasmid using metagenomic data of 1,242 samples from eight distinct geographic cohorts. We identified 198 plasmid-related sequences that differed in abundance between CRC patients and controls and screened 21 markers for the CRC diagnosis model. We utilize these plasmid markers combined with bacteria to construct a random forest classifier model to diagnose CRC. Results The plasmid markers were able to distinguish between the CRC patients and controls [mean area under the receiver operating characteristic curve (AUC = 0.70)] and maintained accuracy in two independent cohorts. In comparison to the bacteria-only model, the performance of the composite panel created by combining plasmid and bacteria features was significantly improved in all training cohorts (mean AUCcomposite = 0.804 and mean AUCbacteria = 0.787) and maintained high accuracy in all independent cohorts (mean AUCcomposite = 0.839 and mean AUCbacteria = 0.821). In comparison to controls, we found that the bacteria-plasmid correlation strength was weaker in CRC patients. Additionally, the KEGG orthology (KO) genes in plasmids that are independent of bacteria or plasmids significantly correlated with CRC. Conclusion We identified plasmid features associated with CRC and showed how plasmid and bacterial markers could be combined to further enhance CRC diagnosis accuracy.
Collapse
Affiliation(s)
- Zhiyuan Cai
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wen Zhu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jingyue Wei
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jieyu Lu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiaoyi Song
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Kunwei Li
- Radiology Department, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Sikai Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Man Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|