1
|
Qian X, Jiang Y, Yang Y, Zhang Y, Xu N, Xu B, Pei K, Yu Z, Wu W. Recent advances of miR-23 in human diseases and growth development. Noncoding RNA Res 2025; 11:220-233. [PMID: 39896346 PMCID: PMC11787465 DOI: 10.1016/j.ncrna.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/17/2024] [Accepted: 12/29/2024] [Indexed: 02/04/2025] Open
Abstract
MicroRNA (miRNA) is broadly manifested in eukaryotes and serves as a critical function in biological development and disease occurrence. With the rapid advancement of experimental research tools, researchers have discovered functional correlations among different miRNA isoforms and clusters within the same miRNA family. As a highly conserved member in the miR-23-27-24 cluster, miR-23 exhibits different isoforms and participates in various essential development. Although the miR-23-27-24 cluster has overlapping target sites, their differential expression can demonstrate independent biological functions. Furthermore, the untapped effects of miR-23 on organisms, whether as a functional cluster or a single regulator, has not been systematically elucidated yet. In this review article, we analyze the genomic location of miR-23 and its sequence variances among its isoforms or family members while summarizing its regulatory functions in metabolic diseases, immune responses, cardiovascular diseases, cancer, organ development as well as nervous system function. This review highlights the significant role of miR-23 as a biomarker for disease diagnosis and a key regulatory factor in pathogenesis, which can help us comprehend the diverse functions of miRNAs and provide a theoretical reference for the functional differences among miRNA isoforms.
Collapse
Affiliation(s)
- Xu Qian
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongwei Jiang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yadi Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yukun Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Na Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ke Pei
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Wu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
2
|
Sadaty MM, Mekhemer SM, Abdel-Ghany S, El-Ansary AR, Mohamed R, Kamal NN, Sabit H. Expression profiles of miR-101-3p and miR-431-5p as potential diagnostic biomarkers for rheumatoid arthritis. Sci Rep 2025; 15:776. [PMID: 39755725 PMCID: PMC11700103 DOI: 10.1038/s41598-024-82339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent inflammation of the synovial joints, leading to cartilage and bone destruction. This study aimed to evaluate the diagnostic utility of specific microRNAs (miRNAs) as potential biomarkers for RA. The study was conducted on 60 patients with RA disease along with 20 control participants. Comprehensive analysis of patient data, encompassing serological, hematological, and biochemical markers, revealed significantly elevated levels of miR-99b-5p, miR-101-3p, and miR-431-5p in RA patients compared to healthy controls. Among these, miR-101-3p demonstrated the highest diagnostic accuracy, with an area under the curve (AUC) of 0.873. These findings contribute to a deeper understanding of RA pathogenesis and suggest that miR-101-3p may serve as a valuable biomarker for early disease detection and potentially improved patient management. Further research is warranted to elucidate the precise mechanisms underlying miRNA involvement in RA and to explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mohamed M Sadaty
- Department of Technology of Medical Laboratory, Faculty of Applied Health Science Technology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Salma M Mekhemer
- Department of Technology of Medical Laboratory, Faculty of Applied Health Science Technology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Amira R El-Ansary
- Department of Internal Medicine, Faculty of Medicine, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Rana Mohamed
- Department of Technology of Medical Laboratory, Faculty of Applied Health Science Technology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Nashaat N Kamal
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt.
| |
Collapse
|
3
|
Sahin D, Di Matteo A, Emery P. Biomarkers in the diagnosis, prognosis and management of rheumatoid arthritis: A comprehensive review. Ann Clin Biochem 2025; 62:3-21. [PMID: 39242085 PMCID: PMC11707974 DOI: 10.1177/00045632241285843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune condition that primarily affects the joints and periarticular soft tissues. In the past two decades, the discovery of new biomarkers has contributed to advances in the understanding of the pathogenesis and natural history of RA. These biomarkers, including genetic, clinical, serological and imaging biomarkers, play a key role in the different stages and aspects of RA, from the so called 'pre-clinical RA', which is characterized by subclinical pathological events, such as autoimmunity and inflammation, to diagnosis (including differential diagnosis), treatment decision making and disease monitoring.This review will provide an overview on the current role of traditional and newer biomarkers in the main aspects of RA management, from the identification of individuals 'at-risk' of RA who are likely to progress to clinically evident disease, to 'early' diagnosis of RA, prognosis, precision medicine, and prediction of response to treatment.
Collapse
Affiliation(s)
- Didem Sahin
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Andrea Di Matteo
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Paul Emery
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Lee SY, Moon YM, Kim EK, Lee AR, Jeon SB, Lee CR, Choi JW, Cho ML. Aberrant overexpression of the autoantigen protein vimentin promotes Th17 cell differentiation and autoimmune arthritis via activation of STAT3 signaling. Clin Immunol 2024; 269:110383. [PMID: 39454740 DOI: 10.1016/j.clim.2024.110383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Vimentin contributes to the positioning and function of organelles, cell migration, adhesion, and division. However, secreted vimentin accumulates on the cell surface (Mor-Vaknin et al., 2003; Ramos et al., 2020 [1,2]) where it acts as a coreceptor for viral infection and as an autoantigen in inflammatory and autoimmune diseases. The roles of vimentin in Th17 cells were examined in mice with knockdown of vimentin. We also examined whether STAT3 is required for vimentin expression. Vimentin expression was significantly increased in Th17 cells through STAT3 activation, and vimentin+ IL-17+ T cells were markedly increased in the joint and spleen tissues of CIA mice. The arthritis score and expression levels of proinflammatory cytokines were significantly decreased in CIA mice treated with vimentin shRNA vector. In this study, we demonstrated that vimentin is significantly expressed in Th17 cells through STAT3 activation. Our results provide new insights into the role of vimentin in Th17 cells and the complex pathogenesis of RA.
Collapse
Affiliation(s)
- Seon-Yeong Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Young-Mee Moon
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Eun-Kyung Kim
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - A Ram Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Su Been Jeon
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Chae Rim Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Jeong Won Choi
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Mi-La Cho
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.
| |
Collapse
|
5
|
Zhao L, Wu Q, Long Y, Qu Q, Qi F, Liu L, Zhang L, Ai K. microRNAs: critical targets for treating rheumatoid arthritis angiogenesis. J Drug Target 2024; 32:1-20. [PMID: 37982157 DOI: 10.1080/1061186x.2023.2284097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Vascular neogenesis, an early event in the development of rheumatoid arthritis (RA) inflammation, is critical for the formation of synovial vascular networks and plays a key role in the progression and persistence of chronic RA inflammation. microRNAs (miRNAs), a class of single-stranded, non-coding RNAs with approximately 21-23 nucleotides in length, regulate gene expression by binding to the 3' untranslated region (3'-UTR) of specific mRNAs. Increasing evidence suggests that miRNAs are differently expressed in diseases associated with vascular neogenesis and play a crucial role in disease-related vascular neogenesis. However, current studies are not sufficient and further experimental studies are needed to validate and establish the relationship between miRNAs and diseases associated with vascular neogenesis, and to determine the specific role of miRNAs in vascular development pathways. To better treat vascular neogenesis in diseases such as RA, we need additional studies on the role of miRNAs and their target genes in vascular development, and to provide more strategic references. In addition, future studies can use modern biotechnological methods such as proteomics and transcriptomics to investigate the expression and regulatory mechanisms of miRNAs, providing a more comprehensive and in-depth research basis for the treatment of related diseases such as RA.
Collapse
Affiliation(s)
- Lingyun Zhao
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qingze Wu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Yiying Long
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Qirui Qu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Qi
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Li Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liang Zhang
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Kun Ai
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Mosa DM, Mohsen S, Taman M, Khaled N, Gaafar SM, Abdelhafez MS, Elmowafy R, Elnagdy MH, Sobh A. The epigenetic determinants for systemic juvenile idiopathic arthritis phenotyping and treatment response. BMC Musculoskelet Disord 2024; 25:624. [PMID: 39107724 PMCID: PMC11302843 DOI: 10.1186/s12891-024-07702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Determining the role of epigenetics in systemic juvenile idiopathic arthritis (SJIA) provides an opportunity to explore previously unrecognized disease pathways and new therapeutic targets. AIM We aimed to identify the clinical significance of microRNAs (miRNA-26a, miRNA-223) in SJIA. MATERIALS AND METHODS This cross-sectional study was conducted on a group of children with SJIA attending to pediatric rheumatology clinic, at Mansoura University Children's Hospital (MUCH) from December 2021 to November 2022. Patient demographics, and clinical, and laboratory data were collected with the measurement of microRNAs by quantitative real-time PCR. The Mann-Whitney, Kruskal-Wallis, and Spearman correlation tests were used for variable comparison and correlations, besides the receiver operating characteristic (ROC) curve for microRNAs disease activity and treatment non-response discrimination. RESULTS Forty patients were included in the study. On comparison of miRNA-26a, and miRNA-223 levels to the clinical, assessment measures, and laboratory features, miRNA-26a was statistically higher in cases with systemic manifestations versus those without. Similarly, it was higher in children who did not fulfill the Wallace criteria for inactive disease and the American College of Rheumatology (ACR) 70 criteria for treatment response. Meanwhile, miRNA-223 was not statistically different between cases regarding the studied parameters. The best cut-off value for systemic juvenile arthritis disease activity score-10 (sJADAS-10) and the ability of miRNA-26a, and miRNA-223 to discriminate disease activity and treatment non-response were determined by the (ROC) curve. CONCLUSION The significant association of miRNA-26a with SJIA features points out that this molecule may be preferentially assessed in SJIA disease activity and treatment non-response discrimination.
Collapse
Affiliation(s)
- Doaa Mosad Mosa
- Department of Rheumatology & Rehabilitation, Mansoura University Hospitals, Mansoura University Faculty of Medicine, Mansoura, Egypt.
| | - Shorouk Mohsen
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Taman
- Department of Obstetrics and Gynecology, Mansoura University Hospital, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Nada Khaled
- Department of Clinical Pathology (Hematology unit), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sherine Mohamed Gaafar
- Department of Rheumatology & Rehabilitation, Mansoura University Hospitals, Mansoura University Faculty of Medicine, Mansoura, Egypt
| | - Mona S Abdelhafez
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rasha Elmowafy
- Department of Medical Biochemistry and Molecular Biology, Mansoura University Faculty of Medicine, Mansoura, Egypt
| | - Marwa H Elnagdy
- Department of Medical Biochemistry and Molecular Biology, Mansoura University Faculty of Medicine, Mansoura, Egypt
| | - Ali Sobh
- Department of Pediatrics, Mansoura University Children's Hospital, Mansoura University Faculty of Medicine, Mansoura, Egypt
| |
Collapse
|
7
|
Chasov V, Ganeeva I, Zmievskaya E, Davletshin D, Gilyazova E, Valiullina A, Bulatov E. Cell-Based Therapy and Genome Editing as Emerging Therapeutic Approaches to Treat Rheumatoid Arthritis. Cells 2024; 13:1282. [PMID: 39120313 PMCID: PMC11312096 DOI: 10.3390/cells13151282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints. Although much remains unknown about the pathogenesis of RA, there is evidence that impaired immune tolerance and the development of RA are related. And it is precisely the restoration of immune tolerance at the site of the inflammation that is the ultimate goal of the treatment of RA. Over the past few decades, significant progress has been made in the treatment of RA, with higher rates of disease remission and improved long-term outcomes. Unfortunately, despite these successes, the proportion of patients with persistent, difficult-to-treat disease remains high, and the task of improving our understanding of the basic mechanisms of disease development and developing new ways to treat RA remains relevant. This review focuses on describing new treatments for RA, including cell therapies and gene editing technologies that have shown potential in preclinical and early clinical trials. In addition, we discuss the opportunities and limitations associated with the use of these new approaches in the treatment of RA.
Collapse
Affiliation(s)
- Vitaly Chasov
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Irina Ganeeva
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Ekaterina Zmievskaya
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Damir Davletshin
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Elvina Gilyazova
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Aygul Valiullina
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Emil Bulatov
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119048, Russia
| |
Collapse
|
8
|
Sharma SD, Bluett J. Towards Personalized Medicine in Rheumatoid Arthritis. Open Access Rheumatol 2024; 16:89-114. [PMID: 38779469 PMCID: PMC11110814 DOI: 10.2147/oarrr.s372610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, incurable, multisystem, inflammatory disease characterized by synovitis and extra-articular features. Although several advanced therapies targeting inflammatory mechanisms underlying the disease are available, no advanced therapy is universally effective. Therefore, a ceiling of treatment response is currently accepted where no advanced therapy is superior to another. The current challenge for medical research is the discovery and integration of predictive markers of drug response that can be used to personalize medicine so that the patient is started on "the right drug at the right time". This review article summarizes our current understanding of predicting response to anti-rheumatic drugs in RA, obstacles impeding the development of personalized medicine approaches and future research priorities to overcome these barriers.
Collapse
Affiliation(s)
- Seema D Sharma
- Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - James Bluett
- Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Gaál Z. Role of microRNAs in Immune Regulation with Translational and Clinical Applications. Int J Mol Sci 2024; 25:1942. [PMID: 38339220 PMCID: PMC10856342 DOI: 10.3390/ijms25031942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
MicroRNAs (miRNAs) are 19-23 nucleotide long, evolutionarily conserved noncoding RNA molecules that regulate gene expression at the post-transcriptional level. In this review, involvement of miRNAs is summarized in the differentiation and function of immune cells, in anti-infective immune responses, immunodeficiencies and autoimmune diseases. Roles of miRNAs in anticancer immunity and in the transplantation of solid organs and hematopoietic stem cells are also discussed. Major focus is put on the translational clinical applications of miRNAs, including the establishment of noninvasive biomarkers for differential diagnosis and prediction of prognosis. Patient selection and response prediction to biological therapy is one of the most promising fields of application. Replacement or inhibition of miRNAs has enormous therapeutic potential, with constantly expanding possibilities. Although important challenges still await solutions, evaluation of miRNA fingerprints may contribute to an increasingly personalized management of immune dysregulation with a remarkable reduction in toxicity and treatment side effects. More detailed knowledge of the molecular effects of physical exercise and nutrition on the immune system may facilitate self-tailored lifestyle recommendations and advances in prevention.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt, 4032 Debrecen, Hungary
| |
Collapse
|
10
|
Barrera-Vázquez OS, Hernández-González O. Structural and Pharmacological Network Focused on MiRNAs Involved in Rheumatoid Arthritis: A Systematic Review. Curr Mol Med 2024; 24:599-609. [PMID: 37185324 DOI: 10.2174/1566524023666230423144114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Rheumatoid Arthritis (RA) is a chronic autoimmune disease that has a prevalence of over one percent of the world population, causing substantial pain, joint deformity, and functional disability in patients. The identification and measurement of miRNAs are relatively easy to perform. Future studies will corroborate if miRNAs can fulfill their roles as biomarkers with either predictive or diagnostic evaluation of treatment potential and provide actual clinical utility. METHODS In the last decade, various advances have been made regarding the identification of the origin and exact functions of miRNAs, allowing us to have a potential use both in the research and clinical fields. OBJECTIVE This systematic review aimed to collect, analyze, and improve the current understanding of RA-related miRNAs and their applicability in therapeutics. A bibliographic search of the miRNAs involved in RA was carried out, and through the use of databases, their target genes and small molecules that had some relationship with their expression were searched. The analysis of these data was done through structural network analysis. RESULTS During the network analysis, miR-30a, miR-30c, let-7a, miR-144, miR-17-5p, miR-124, miR -23b, miR-23, miR-15a, miR-16 were the most connected, which could be used as possible biomarkers or be candidates for further analysis due to their interaction with other miRNAs and genes. CONCLUSION Additionally, this is the first systematic review, in which we proposed that small compounds like toxicants and drugs could have a potential role within RA because they regulate the expression of miRNAs involved in this pathology. Some of these compounds are commonly found as environmental contaminants, and others as drugs. These ideas open a new panorama of understanding RA, proposing possible causes or treatments against this pathology. Therefore, these small molecules would give us some indication of a relationship with RA, thereby helping in seeking causes, treatment, or prevention of this disease. CONCLUSION This is the first time it is intended to use structural network analysis to determine possible biomarkers of AR for diagnosis and prognosis through the expression of these miRNAs and their relationship with compounds of daily life.
Collapse
Affiliation(s)
| | - Olivia Hernández-González
- Laboratorio de Microscopia Electrónica, Instituto Nacional de Rehabilitación, Mexico City, 14389, Mexico
| |
Collapse
|
11
|
Gao Y, Wang X, Gao Y, Bai J, Zhao Y, Wang R, Wang H, Zhu G, Wang X, Han X, Zhang Y, Wang H. The Lnc-ENST00000602558/IGF1 axis as a predictor of response to treatment with tripterygium glycosides in rheumatoid arthritis patients. Immun Inflamm Dis 2024; 12:e1098. [PMID: 38270302 PMCID: PMC10790680 DOI: 10.1002/iid3.1098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 01/26/2024] Open
Abstract
AIMS Growing clinical evidence suggests that not all patients with rheumatoid arthritis (RA) benefit to the same extent by treatment with tripterygium glycoside (TG), which highlights the need to identify RA-related genes that can be used to predict drug responses. In addition, single genes as markers of RA are not sufficiently accurate for use as predictors. Therefore, there is a need to identify paired expression genes that can serve as biomarkers for predicting the therapeutic effects of TG tablets in RA. METHODS A total of 17 pairs of co-expressed genes were identified as candidates for predicting an RA patient's response to TG therapy, and genes involved in the Lnc-ENST00000602558/GF1 axis were selected for that purpose. A partial-least-squares (PLS)-based model was constructed based on the expression levels of Lnc-ENST00000602558/IGF1 in peripheral blood. The model showed high efficiency for predicting an RA patient's response to TG tablets. RESULTS Our data confirmed that genes co-expressed in the Lnc-ENST00000602558/IGF1 axis mediate the efficacy of TG in RA treatment, reduce tumor necrosis factor-α induced IGF1 expression, and decrease the inflammatory response of MH7a cells. CONCLUSION We found that genes expressed in the Lnc-ENST00000602558/IGF1 axis may be useful for identifying RA patients who will not respond to TG treatment. Our findings provide a rationale for the individualized treatment of RA in clinical settings.
Collapse
Affiliation(s)
- Yang Gao
- Department of Chinese MedicineTsinghua University HospitalBeijingChina
| | - Xiaoyue Wang
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yanfeng Gao
- Department of DermatologyThe Second Mongolian Medical Hospital of Traditional Chinese MedicineChi Feng CityInner MongoliaChina
| | - Jian Bai
- Guizhou University of Traditional Chinese Medicine Graduate SchoolGuiyang CityGuizhouChina
| | - Yanpeng Zhao
- Guizhou University of Traditional Chinese Medicine Graduate SchoolGuiyang CityGuizhouChina
| | - Renyi Wang
- Guizhou University of Traditional Chinese Medicine Graduate SchoolGuiyang CityGuizhouChina
| | - Hanzhou Wang
- Department of Rheumatology, Guang'anmen HospitalChina Medical SciencesBeijingChina
| | - Guangzhao Zhu
- Department of RheumatologyQinghai Hospital of TCMXining CityQinghaiChina
| | - Xixi Wang
- Guizhou University of Traditional Chinese Medicine Graduate SchoolGuiyang CityGuizhouChina
| | - Xiaochen Han
- Department of Internal MedicineBeijing Fengsheng Hospital of Traditional Medical Traumatology & OrthopedicsBeijingChina
| | - Yanqiong Zhang
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Hailong Wang
- Department of Rheumatology, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
12
|
Cherry AD, Chu CP, Cianciolo RE, Hokamp JA, Jacobson SA, Nabity MB. MicroRNA-126 in dogs with immune complex-mediated glomerulonephritis. J Vet Intern Med 2024; 38:216-227. [PMID: 38116844 PMCID: PMC10800198 DOI: 10.1111/jvim.16932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Most proteinuric dogs with naturally occurring chronic kidney disease have amyloidosis (AMYL), glomerulosclerosis (GS), or immune complex-mediated glomerulonephritis (ICGN), each with different treatment and prognosis. A noninvasive and disease-specific biomarker is lacking. HYPOTHESIS We hypothesized that the expression pattern of biofluid microRNA (miRNAs and miRs) would correlate with disease progression and categorization. ANIMALS Archived serum and urine samples from 18 dogs with glomerular disease and 6 clinically healthy dogs; archived urine samples from 49 dogs with glomerular disease and 13 clinically healthy dogs. METHODS Retrospective study. Archived biofluid samples from adult dogs with biopsy-confirmed glomerular disease submitted to the International Veterinary Renal Pathology Service between 2008 and 2016 were selected. Serum and urinary miRNAs were isolated and profiled using RNA sequencing. Urinary miR-126, miR-21, miR-182, and miR-486 were quantified using quantitative reverse transcription PCR. RESULTS When comparing more advanced disease with earlier disease, no serum miRNAs were differentially expressed, but urinary miR-21 and miR-182 were 1.63 (95% CI: .86-3.1) and 1.45 (95% CI: .82-2.6) times higher in azotemic dogs, respectively (adjusted P < .05) and weakly correlated with tubulointerstitial fibrosis (miR-21: r = .32, P = .03; miR-182: r = .28, P = .05). Expression of urinary miR-126 was 10.5 (95% CI: 4.1-26.7), 28.9 (95% CI: 10.5-79.8), and 126.2 (95% CI: 44.7-356.3) times higher in dogs with ICGN compared with dogs with GS, AMYL, and healthy controls, respectively (P < .001). CONCLUSIONS AND CLINICAL IMPORTANCE The miR-126 could help identify dogs that might benefit from immunosuppressive therapy in the absence of a biopsy. MiR-21 and miR-182 are potential markers of disease severity and fibrosis.
Collapse
Affiliation(s)
- Ariana D. Cherry
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Candice P. Chu
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Rachel E. Cianciolo
- Department of Veterinary Biosciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
- Present address:
Niche Diagnostics, LLCColumbusOhioUSA
- Present address:
Zoetis Inc.ColumbusOhioUSA
| | - Jessica A. Hokamp
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Sarah A. Jacobson
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Mary B. Nabity
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
13
|
Sisto M, Lisi S. Targeting Interleukin-17 as a Novel Treatment Option for Fibrotic Diseases. J Clin Med 2023; 13:164. [PMID: 38202170 PMCID: PMC10780256 DOI: 10.3390/jcm13010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Fibrosis is the end result of persistent inflammatory responses induced by a variety of stimuli, including chronic infections, autoimmune reactions, and tissue injury. Fibrotic diseases affect all vital organs and are characterized by a high rate of morbidity and mortality in the developed world. Until recently, there were no approved antifibrotic therapies. In recent years, high levels of interleukin-17 (IL-17) have been associated with chronic inflammatory diseases with fibrotic complications that culminate in organ failure. In this review, we provide an update on the role of IL-17 in fibrotic diseases, with particular attention to the most recent lines of research in the therapeutic field represented by the epigenetic mechanisms that control IL-17 levels in fibrosis. A better knowledge of the IL-17 signaling pathway implications in fibrosis could design new strategies for therapeutic benefits.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | | |
Collapse
|
14
|
Tümerdem BŞ, Akbaba TH, Batu ED, Akkaya-Ulum YZ, Mutlu P, Ozen S, Balci-Peynircioğlu B. Drug metabolism and inflammation related distinct miRNA signature of colchicine resistant familial Mediterranean fever patients. Int Immunopharmacol 2023; 124:111011. [PMID: 37844462 DOI: 10.1016/j.intimp.2023.111011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
OBJECTIVE Colchicine is the primary treatment for familial Mediterranean fever (FMF). Although colchicine is safe and effective in FMF patients, around 5-10% of patients show resistance to the drug. This study investigates the possibility of a link between colchicine resistance and the distinct miRNA profiles in colchicine resistant FMF patients. METHODS Differentially expressed miRNAs in colchicine resistant FMF patients were detected by Affymetrix 4.0 miRNA array analysis. These miRNAs were then categorized based on the role of their target genes in drug metabolism and inflammation related pathways. qRT-PCR was used to validate candidate miRNAs selected by Enrichr, a gene enrichment analysis system based on the relevance of possible target genes in drug metabolism pathways. Expression levels of these miRNAs' potential target genes were investigated by qRT-PCR. Then, a colchicine resistant hepatoblastoma cell line (HEPG2) was established, and the differentially expressed miRNAs and genes identified in patients were also analyzed in this colchicine-resistant cell line. RESULTS 25 differentially expressed miRNAs were detected in colchicine resistant FMF patients. miR-183-5p, miR-15b-5p, miR-505-5p, and miR-125a-5p were identified to be associated with drug resistance and inflammatory pathways and thus chosen for further validation. miR-183-5p, miR-15b-5p, miR-505-5p miRNAs showed significantly differential expression in qRT-PCR. NFKB1, NR3C1, PPARα - drug absorption, distribution, metabolism, and excretion (ADME) genes were predicted to be targeted by these miRNAs. Among these targets, NFKB1 and NR3C1 were differentially over expressed in colchicine resistant FMF patients. These findings were validated in the colchicine resistant hepatoblastoma cell line (HEPG2). CONCLUSION This is the first study evaluating the role of miRNAs in colchicine resistant patients with FMF. Their differential expression may result in resistance to standard colchicine treatment by affecting the expression of genes that take place in drug absorption, distribution, metabolism, and excretion (ADME) or nuclear receptors that regulate ADME genes, thus potentially playing a role in both drug metabolism and inflammation.
Collapse
Affiliation(s)
- Bilgesu Şafak Tümerdem
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Tayfun Hilmi Akbaba
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ezgi Deniz Batu
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Pelin Mutlu
- Institute of Biotechnology, Ankara University, Ankara, Turkey
| | - Seza Ozen
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
15
|
Athanasopoulou K, Chondrou V, Xiropotamos P, Psarias G, Vasilopoulos Y, Georgakilas GK, Sgourou A. Transcriptional repression of lncRNA and miRNA subsets mediated by LRF during erythropoiesis. J Mol Med (Berl) 2023; 101:1097-1112. [PMID: 37486375 PMCID: PMC10482784 DOI: 10.1007/s00109-023-02352-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Non-coding RNA (ncRNA) species, mainly long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been currently imputed for lesser or greater involvement in human erythropoiesis. These RNA subsets operate within a complex circuit with other epigenetic components and transcription factors (TF) affecting chromatin remodeling during cell differentiation. Lymphoma/leukemia-related (LRF) TF exerts higher occupancy on DNA CpG rich sites and is implicated in several differentiation cell pathways and erythropoiesis among them and also directs the epigenetic regulation of hemoglobin transversion from fetal (HbF) to adult (HbA) form by intervening in the γ-globin gene repression. We intended to investigate LRF activity in the evolving landscape of cells' commitment to the erythroid lineage and specifically during HbF to HbA transversion, to qualify this TF as potential repressor of lncRNAs and miRNAs. Transgenic human erythroleukemia cells, overexpressing LRF and further induced to erythropoiesis, were subjected to expression analysis in high LRF occupancy genetic loci-producing lncRNAs. LRF abundance in genetic loci transcribing for studied lncRNAs was determined by ChIP-Seq data analysis. qPCRs were performed to examine lncRNA expression status. Differentially expressed miRNA pre- and post-erythropoiesis induction were assessed by next-generation sequencing (NGS), and their promoter regions were charted. Expression levels of lncRNAs were correlated with DNA methylation status of flanked CpG islands, and contingent co-regulation of hosted miRNAs was considered. LRF-binding sites were overrepresented in LRF overexpressing cell clones during erythropoiesis induction and exerted a significant suppressive effect towards lncRNAs and miRNA collections. Based on present data interpretation, LRF's multiplied binding capacity across genome is suggested to be transient and associated with higher levels of DNA methylation. KEY MESSAGES: During erythropoiesis, LRF displays extensive occupancy across genetic loci. LRF significantly represses subsets of lncRNAs and miRNAs during erythropoiesis. Promoter region CpG islands' methylation levels affect lncRNA expression. MiRNAs embedded within lncRNA loci show differential regulation of expression.
Collapse
Affiliation(s)
- Katerina Athanasopoulou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Vasiliki Chondrou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Panagiotis Xiropotamos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Georgios Psarias
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Georgios K. Georgakilas
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
| | - Argyro Sgourou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| |
Collapse
|
16
|
Liou LB, Tsai PH, Fang YF, Chen YF, Chen CC, Lai JH. Sialic-Acid-Related Enzymes of B Cells and Monocytes as Novel Markers to Discriminate Improvement Categories and to Fulfill Two Remission Definitions in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:12998. [PMID: 37629178 PMCID: PMC10455111 DOI: 10.3390/ijms241612998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The enzymes α-2,6-sialyltransferase 1 (ST6Gal1), neuraminidase 1 (Neu1), α-2,3-sialyltransferase 1 (ST3Gal1), and neuraminidase 3 (Neu3) are known to affect immune cell function. However, it is not known whether the levels of these enzymes relate to remission definitions or differentiate American College of Rheumatology (ACR), European League Against Rheumatism (EULAR), and Simplified Disease Activity Index (SDAI) responses in patients with rheumatoid arthritis (RA). We measured the ST6Gal1, Neu1, ST3Gal1, and Neu3 levels of B cells and monocytes in RA patients and correlated the cells' enzyme levels/ratios with the improvement in the ACR, EULAR and SDAI responses and with the two remission definitions. The difference in the B-cell Neu1 levels differed between the ACR 70% improvement and non-improvement groups (p = 0.043), between the EULAR good major response (improvement) and non-good response groups (p = 0.014), and also between the SDAI 50% or 70% improvement and non-improvement groups (p = 0.001 and 0.018, respectively). The same held true when the RA patients were classified by positive rheumatoid factor or the use of biologics. The B-cell Neu1 levels significantly indicated 2005 modified American Rheumatism Association and 2011 ACR/EULAR remission definitions (area under the curve (AUC) = 0.674 with p = 0.001, and AUC = 0.682 with p < 0.001, respectively) in contrast to the CRP and ESR (all AUCs < 0.420). We suggest that B-cell Neu1 is superior for discriminating ACR, EULAR, and SDAI improvement and is good for predicting two kinds of remission definitions.
Collapse
Affiliation(s)
- Lieh-Bang Liou
- Division of Rheumatology, Allergy and Immunology, New Taipei Municipal Tucheng Hospital, New Taipei City 236, Taiwan; (P.-H.T.); (C.-C.C.)
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (Y.-F.F.); (Y.-F.C.); (J.-H.L.)
- School of Medicine, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Ping-Han Tsai
- Division of Rheumatology, Allergy and Immunology, New Taipei Municipal Tucheng Hospital, New Taipei City 236, Taiwan; (P.-H.T.); (C.-C.C.)
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (Y.-F.F.); (Y.-F.C.); (J.-H.L.)
| | - Yao-Fan Fang
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (Y.-F.F.); (Y.-F.C.); (J.-H.L.)
| | - Yen-Fu Chen
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (Y.-F.F.); (Y.-F.C.); (J.-H.L.)
| | - Chih-Chieh Chen
- Division of Rheumatology, Allergy and Immunology, New Taipei Municipal Tucheng Hospital, New Taipei City 236, Taiwan; (P.-H.T.); (C.-C.C.)
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (Y.-F.F.); (Y.-F.C.); (J.-H.L.)
| | - Jenn-Haung Lai
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (Y.-F.F.); (Y.-F.C.); (J.-H.L.)
| |
Collapse
|
17
|
Pelassa S, Raggi F, Rossi C, Bosco MC. MicroRNAs in Juvenile Idiopathic Arthritis: State of the Art and Future Perspectives. BIOLOGY 2023; 12:991. [PMID: 37508421 PMCID: PMC10376583 DOI: 10.3390/biology12070991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Juvenile Idiopathic Arthritis (JIA) represents the most common chronic pediatric arthritis in Western countries and a leading cause of disability in children. Despite recent clinical achievements, patient management is still hindered by a lack of diagnostic/prognostic biomarkers and targeted treatment protocols. MicroRNAs (miRNAs) are short non-coding RNAs playing a key role in gene regulation, and their involvement in many pathologies has been widely reported in the literature. In recent decades, miRNA's contribution to the regulation of the immune system and the pathogenesis of autoimmune diseases has been demonstrated. Furthermore, miRNAs isolated from patients' biological samples are currently under investigation for their potential as novel biomarkers. This review aims to provide an overview of the state of the art on miRNA investigation in JIA. The literature addressing the expression of miRNAs in different types of biological samples isolated from JIA patients was reviewed, focusing in particular on their potential application as diagnostic/prognostic biomarkers. The role of miRNAs in the regulation of immune responses in affected joints will also be discussed along with their potential utility as markers of patients' responses to therapeutic approaches. This information will be of value to investigators in the field of pediatric rheumatology, encouraging further research to increase our knowledge of miRNAs' potential for future clinical applications in JIA.
Collapse
Affiliation(s)
- Simone Pelassa
- UOC Rheumatology and Autoinflammatory Diseases, Department of Pediatric Sciences, Istituto Giannina Gaslini, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 16147 Genova, Italy
| | - Federica Raggi
- UOC Rheumatology and Autoinflammatory Diseases, Department of Pediatric Sciences, Istituto Giannina Gaslini, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 16147 Genova, Italy
| | - Chiara Rossi
- UOC Rheumatology and Autoinflammatory Diseases, Department of Pediatric Sciences, Istituto Giannina Gaslini, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 16147 Genova, Italy
| | - Maria Carla Bosco
- UOC Rheumatology and Autoinflammatory Diseases, Department of Pediatric Sciences, Istituto Giannina Gaslini, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 16147 Genova, Italy
| |
Collapse
|
18
|
Gao Y, Yong F, Yan M, Wei Y, Wu X. miR-361 and miR-34a suppress foot-and-mouth disease virus proliferation by activating immune response signaling in PK-15 cells. Vet Microbiol 2023; 280:109725. [PMID: 36996618 DOI: 10.1016/j.vetmic.2023.109725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023]
Abstract
Foot-and-mouth disease (FMD) severely impacts cloven-hoofed live-stock production, leading to serious economic losses and international restriction on the trade of animals and animal products worldwide. MiRNAs serve key roles in viral immunity and regulation. However, the knowledge about miRNAs regulation in FMDV infection is still limited. In this study, we found that FMDV infection caused rapid cytopathic in PK-15 cell. To investigate the miRNAs' function in FMDV infection, we performed knockdown of endogenous Dgcr8 using its specific siRNA and found that interference of Dgcr8 inhibited cellular miRNA expression and increased FMDV production, including viral capsid proteins expression, viral genome copies and virus titer, suggesting that miRNAs play an important role in FMDV infection. To obtain a full perspective on miRNA expression profiling after FMDV infection, we performed miRNA sequencing and found that FMDV infection caused inhibition of miRNA expression in PK-15 cells. Together with the target prediction result, miR-34a and miR-361 were screened for further study. Function study showed that no matter plasmid or mimics-mediated overexpression of miR-34a and miR-361 both suppressed FMDV replication, while inhibition of endogenous miR-34a and miR-361 expression using specific inhibitors significantly increased FMDV replication. Further study showed that miR-34a and miR-361 stimulated IFN-β promoter activity and activated interferon-stimulated response element (ISRE). In addition, ELISA test found that miR-361 and miR-34a increased secretion level of IFN-β and IFN-γ, which may contribute to repression of FMDV replication. This study preliminary revealed that miR-361 and miR-34a inhibited FMDV proliferation via stimulating immune response.
Collapse
|
19
|
Ravaei A, Pulsatelli L, Assirelli E, Ciaffi J, Meliconi R, Salvarani C, Govoni M, Rubini M. MTHFR c.665C>T and c.1298A>C Polymorphisms in Tailoring Personalized Anti-TNF-α Therapy for Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24044110. [PMID: 36835522 PMCID: PMC9962934 DOI: 10.3390/ijms24044110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease with a prevalence of 1%. Currently, RA treatment aims to achieve low disease activity or remission. Failure to achieve this goal causes disease progression with a poor prognosis. When treatment with first-line drugs fails, treatment with tumor necrosis factor-α (TNF-α) inhibitors may be prescribed to which many patients do not respond adequately, making the identification of response markers urgent. This study investigated the association of two RA-related genetic polymorphisms, c.665C>T (historically referred to as C677T) and c.1298A>C, in the MTHFR gene as response markers to an anti-TNF-α therapy. A total of 81 patients were enrolled, 60% of whom responded to the therapy. Analyses showed that both polymorphisms were associated with a response to therapy in an allele dose-dependent manner. The association for c.665C>T was significant for a rare genotype (p = 0.01). However, the observed opposite trend of association for c.1298A>C was not significant. An analysis revealed that c.1298A>C, unlike c.665C>T, was also significantly associated with the drug type (p = 0.032). Our preliminary results showed that the genetic polymorphisms in the MTHFR gene were associated with a response to anti-TNF-α therapy, with a potential significance for the anti-TNF-α drug type. This evidence suggests a role for one-carbon metabolism in anti-TNF-α drug efficacy and contributes to further personalized RA interventions.
Collapse
Affiliation(s)
- Amin Ravaei
- Medical Genetics Laboratory, Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Lia Pulsatelli
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Elisa Assirelli
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Jacopo Ciaffi
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Riccardo Meliconi
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Carlo Salvarani
- Division of Rheumatology, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
- University-Hospital of Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Marcello Govoni
- Section of Hematology and Rheumatology, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Rheumatology Unit, Sant’Anna University Hospital, 44124 Ferrara, Italy
| | - Michele Rubini
- Medical Genetics Laboratory, Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-974473
| |
Collapse
|
20
|
Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct Target Ther 2023; 8:68. [PMID: 36797236 PMCID: PMC9935929 DOI: 10.1038/s41392-023-01331-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is an incurable systemic autoimmune disease. Disease progression leads to joint deformity and associated loss of function, which significantly impacts the quality of life for sufferers and adds to losses in the labor force. In the past few decades, RA has attracted increased attention from researchers, the abnormal signaling pathways in RA are a very important research field in the diagnosis and treatment of RA, which provides important evidence for understanding this complex disease and developing novel RA-linked intervention targets. The current review intends to provide a comprehensive overview of RA, including a general introduction to the disease, historical events, epidemiology, risk factors, and pathological process, highlight the primary research progress of the disease and various signaling pathways and molecular mechanisms, including genetic factors, epigenetic factors, summarize the most recent developments in identifying novel signaling pathways in RA and new inhibitors for treating RA. therapeutic interventions including approved drugs, clinical drugs, pre-clinical drugs, and cutting-edge therapeutic technologies. These developments will hopefully drive progress in new strategically targeted therapies and hope to provide novel ideas for RA treatment options in the future.
Collapse
|
21
|
Doghish AS, Ismail A, El-Mahdy HA, Elkhawaga SY, Elsakka EGE, Mady EA, Elrebehy MA, Khalil MAF, El-Husseiny HM. miRNAs insights into rheumatoid arthritis: Favorable and detrimental aspects of key performers. Life Sci 2023; 314:121321. [PMID: 36574943 DOI: 10.1016/j.lfs.2022.121321] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) is a severe autoimmune inflammation that mostly affects the joints. It's a multifactorial disease. Its clinical picture depends on genetic and epigenetic factors such as miRNAs. The miRNAs are small noncoding molecules that are able to negatively or positively modulate their target gene expression. In RA, miRNAs are linked to its pathogenesis. They disrupt immunity balance by controlling granulocytes, triggering the release of several proinflammatory cytokines such as interleukin-6 and tumor necrosis factor-α, finally leading to synovium hyperplasia and inflammation. Besides, they also may trigger activation of some pathways as nuclear factor kappa-β disrupts the balance between osteoclast and osteoblast activity, leading to increased bone destruction. Moreover, miRNAs are also applied with efficiency in RA diagnosis and prognosis. Besides the significant association between miRNAs and RA response to treatment, they are also applied as a choice for treatment based on their effects on the immune system and inflammatory cytokines. Hence, the review aims to present an updated overview of miRNAs, their biogenesis, implications in RA pathogenesis, and finally, the role of miRNAs in RA treatment.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Eman A Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukfh, Elqaliobiya 13736, Egypt; Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A F Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| |
Collapse
|
22
|
Peng X, Wang Q, Li W, Ge G, Peng J, Xu Y, Yang H, Bai J, Geng D. Comprehensive overview of microRNA function in rheumatoid arthritis. Bone Res 2023; 11:8. [PMID: 36690624 PMCID: PMC9870909 DOI: 10.1038/s41413-023-00244-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs), a class of endogenous single-stranded short noncoding RNAs, have emerged as vital epigenetic regulators of both pathological and physiological processes in animals. They direct fundamental cellular pathways and processes by fine-tuning the expression of multiple genes at the posttranscriptional level. Growing evidence suggests that miRNAs are implicated in the onset and development of rheumatoid arthritis (RA). RA is a chronic inflammatory disease that mainly affects synovial joints. This common autoimmune disorder is characterized by a complex and multifaceted pathogenesis, and its morbidity, disability and mortality rates remain consistently high. More in-depth insights into the underlying mechanisms of RA are required to address unmet clinical needs and optimize treatment. Herein, we comprehensively review the deregulated miRNAs and impaired cellular functions in RA to shed light on several aspects of RA pathogenesis, with a focus on excessive inflammation, synovial hyperplasia and progressive joint damage. This review also provides promising targets for innovative therapies of RA. In addition, we discuss the regulatory roles and clinical potential of extracellular miRNAs in RA, highlighting their prospective applications as diagnostic and predictive biomarkers.
Collapse
Affiliation(s)
- Xiaole Peng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Qing Wang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Wenming Li
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Gaoran Ge
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiachen Peng
- grid.413390.c0000 0004 1757 6938Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, P. R. China
| | - Yaozeng Xu
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Huilin Yang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiaxiang Bai
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Dechun Geng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| |
Collapse
|
23
|
Fujiwara Y, Ding C, Sanada Y, Yimiti D, Ishikawa M, Nakasa T, Kamei N, Imaizumi K, Lotz MK, Akimoto T, Miyaki S, Adachi N. miR-23a/b clusters are not essential for the pathogenesis of osteoarthritis in mouse aging and post-traumatic models. Front Cell Dev Biol 2023; 10:1043259. [PMID: 36684425 PMCID: PMC9846268 DOI: 10.3389/fcell.2022.1043259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Osteoarthritis (OA), the most prevalent aging-related joint disease, is characterized by insufficient extracellular matrix synthesis and articular cartilage degradation and is caused by various risk factors including aging and traumatic injury. Most microRNAs (miRNAs) have been associated with pathogenesis of osteoarthritis (OA) using in vitro models. However, the role of many miRNAs in skeletal development and OA pathogenesis is uncharacterized in vivo using genetically modified mice. Here, we focused on miR-23-27-24 clusters. There are two paralogous miR-23-27-24 clusters: miR-23a-27a-24-2 (miR-23a cluster) and miR-23b-27b-24-1 (miR-23b cluster). Each miR-23a/b, miR-24, and miR-27a/b is thought to function coordinately and complementary to each other, and the role of each miR-23a/b, miR-24, and miR-27a/b in OA pathogenesis is still controversial. MiR-23a/b clusters are highly expressed in chondrocytes and the present study examined their role in OA. We analyzed miRNA expression in chondrocytes and investigated cartilage-specific miR-23a/b clusters knockout (Col2a1-Cre; miR-23a/bflox/flox: Cart-miR-23clus KO) mice and global miR-23a/b clusters knockout (CAG-Cre; miR-23a/bflox/flox: Glob-miR-23clus KO) mice. Knees of Cart- and Glob-miR-23a/b clusters KO mice were evaluated by histological grading systems for knee joint tissues using aging model (12 and/or 18 month-old) and surgically-induced OA model. miR-23a/b clusters were among the most highly expressed miRNAs in chondrocytes. Skeletal development of Cart- and Glob-miR-23clus KO mice was grossly normal although Glob-miR-23clus KO had reduced body weight, adipose tissue and bone density. In the aging model and surgically-induced OA model, Cart- and Glob-miR-23clus KO mice exhibited mild OA-like changes such as proteoglycan loss and cartilage fibrillation. However, the histological scores were not significantly different in terms of the severity of OA in Cart- and Glob-miR-23clus KO mice compared with control mice. Together, miR-23a/b clusters, composed of miR-23a/b, miR-24, miR-27a/b do not significantly contribute to OA pathogenesis.
Collapse
Affiliation(s)
- Yusuke Fujiwara
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chenyang Ding
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Sanada
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Department of Artificial Joints and Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Martin K. Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, United States
| | | | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan,*Correspondence: Shigeru Miyaki,
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
24
|
Yang J, Li Z, Wang L, Yun X, Zeng Y, Ng JP, Lo H, Wang Y, Zhang K, Law BYK, Wong VKW. The role of non-coding RNAs (miRNA and lncRNA) in the clinical management of rheumatoid arthritis. Pharmacol Res 2022; 186:106549. [DOI: 10.1016/j.phrs.2022.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
25
|
miRNA-Mediated Epigenetic Regulation of Treatment Response in RA Patients—A Systematic Review. Int J Mol Sci 2022; 23:ijms232112989. [PMID: 36361779 PMCID: PMC9657910 DOI: 10.3390/ijms232112989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed to evaluate the role of microRNAs (miRNA) as biomarkers of treatment response in rheumatoid arthritis (RA) patients through a systematic review of the literature. The MEDLINE and Embase databases were searched for studies including RA-diagnosed patients treated with disease-modifying antirheumatic drugs (DMARDs) that identify miRNAs as response predictors. Review inclusion criteria were met by 10 studies. The main outcome of the study was the response to treatment, defined according to EULAR criteria. A total of 839 RA patients and 67 healthy donors were included in the selected studies. RA patients presented seropositivity for the rheumatoid factor of 74.7% and anti-citrullinated C-peptide antibodies of 63.6%. After revision, 15 miRNAs were described as treatment response biomarkers for methotrexate, anti-tumour necrosis factor (TNF), and rituximab. Among treatments, methotrexate presented the highest number of predictor miRNAs: miR-16, miR-22, miR-132, miR-146a and miR-155. The most polyvalent miRNAs were miR-146a, predicting response to methotrexate and anti-TNF, and miR-125b, which predicts response to infliximab and rituximab. Our data support the role of miRNAs as biomarkers of treatment response in RA and point to DMARDs modifying the miRNAs expression. Nevertheless, further studies are needed since a meta-analysis that allows definitive conclusions is not possible due to the lack of studies in this field.
Collapse
|
26
|
Prajzlerová K, Šenolt L, Filková M. Is there a potential of circulating miRNAs as biomarkers in rheumatic diseases? Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
27
|
-Omic Approaches and Treatment Response in Rheumatoid Arthritis. Pharmaceutics 2022; 14:pharmaceutics14081648. [PMID: 36015273 PMCID: PMC9412998 DOI: 10.3390/pharmaceutics14081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disorder characterized by an aberrant activation of innate and adaptive immune cells. There are different drugs used for the management of RA, including disease-modifying antirheumatic drugs (DMARDs). However, a significant percentage of RA patients do not initially respond to DMARDs. This interindividual variation in drug response is caused by a combination of environmental, genetic and epigenetic factors. In this sense, recent -omic studies have evidenced different molecular signatures involved in this lack of response. The aim of this review is to provide an updated overview of the potential role of -omic approaches, specifically genomics, epigenomics, transcriptomics, and proteomics, to identify molecular biomarkers to predict the clinical efficacy of therapies currently used in this disorder. Despite the great effort carried out in recent years, to date, there are still no validated biomarkers of response to the drugs currently used in RA. -Omic studies have evidenced significant differences in the molecular profiles associated with treatment response for the different drugs used in RA as well as for different cell types. Therefore, global and cell type-specific -omic studies analyzing response to the complete therapeutical arsenal used in RA, including less studied therapies, such as sarilumab and JAK inhibitors, are greatly needed.
Collapse
|
28
|
Dominguez-Mozo MI, Casanova I, De Torres L, Aladro-Benito Y, Perez-Perez S, Garcia-Martínez A, Gomez P, Abellan S, De Antonio E, Lopez-De-Silanes C, Alvarez-Lafuente R. microRNA Expression and Its Association With Disability and Brain Atrophy in Multiple Sclerosis Patients Treated With Glatiramer Acetate. Front Immunol 2022; 13:904683. [PMID: 35774792 PMCID: PMC9239306 DOI: 10.3389/fimmu.2022.904683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background MicroRNAs are small non-coding RNA that regulate gene expression at a post-transcriptional level affecting several cellular processes including inflammation, neurodegeneration and remyelination. Different patterns of miRNAs expression have been demonstrated in multiple sclerosis compared to controls, as well as in different courses of the disease. For these reason they have been postulated as promising biomarkers candidates in multiple sclerosis. Objective to correlate serum microRNAs profile expression with disability, cognitive functioning and brain volume in patients with remitting-relapsing multiple sclerosis. Methods cross-sectional study in relapsing-remitting multiple sclerosis patients treated with glatiramer acetate. Disability was measured with Expanded Disability Status Scale (EDSS) and cognitive function was studied with Symbol Digit Modalities Test (SDMT). Brain volume was analyzed with automatic software NeuroQuant®. Results We found an association between miR.146a.5p (rs:0.434, p=0.03) and miR.9.5p (rs:0.516, p=0.028) with EDSS; and miR-146a.5p (rs:-0.476, p=0.016) and miR-126.3p (rs:-0.528, p=0.007) with SDMT. Regarding to the brain volume, miR.9.5p correlated with thalamus (rs:-0.545, p=0.036); miR.200c.3p with pallidum (rs:-0.68, p=0.002) and cerebellum (rs:-0.472, p=0.048); miR-138.5p with amygdala (rs:0.73, p=0.016) and pallidum (rs:0.64, p=0.048); and miR-223.3p with caudate (rs:0.46, p=0.04). Conclusions These data support the hypothesis of microRNA as potential biomarkers in this disease. More studies are needed to validate these results and to better understand the role of microRNAs in the pathogenesis, monitoring and therapeutic response of multiple sclerosis.
Collapse
Affiliation(s)
- María I. Dominguez-Mozo
- Research Group in Environmental Factors of Neurodegenerative Diseases, Health Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Ignacio Casanova
- Department of Neurology, Hospital Universitario de Torrejón, Madrid, Spain
- School of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Laura De Torres
- Department of Neurology, Hospital Universitario de Torrejón, Madrid, Spain
| | | | - Silvia Perez-Perez
- Research Group in Environmental Factors of Neurodegenerative Diseases, Health Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Angel Garcia-Martínez
- Research Group in Environmental Factors of Neurodegenerative Diseases, Health Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Patricia Gomez
- Department of Neurology, Hospital Universitario de Torrejón, Madrid, Spain
- School of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Sara Abellan
- Department of Neurology, Hospital Universitario de Torrejón, Madrid, Spain
| | - Esther De Antonio
- Department of Radiology, Hospital Universitario de Torrejón, Madrid, Spain
| | - Carlos Lopez-De-Silanes
- Department of Neurology, Hospital Universitario de Torrejón, Madrid, Spain
- School of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Roberto Alvarez-Lafuente
- Research Group in Environmental Factors of Neurodegenerative Diseases, Health Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
29
|
MicroRNAs (miRNAs) in Cardiovascular Complications of Rheumatoid Arthritis (RA): What Is New? Int J Mol Sci 2022; 23:ijms23095254. [PMID: 35563643 PMCID: PMC9101033 DOI: 10.3390/ijms23095254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/08/2023] Open
Abstract
Rheumatoid Arthritis (RA) is among the most prevalent and impactful rheumatologic chronic autoimmune diseases (AIDs) worldwide. Within a framework that recognizes both immunological activation and inflammatory pathways, the exact cause of RA remains unclear. It seems however, that RA is initiated by a combination between genetic susceptibility, and environmental triggers, which result in an auto-perpetuating process. The subsequently, systemic inflammation associated with RA is linked with a variety of extra-articular comorbidities, including cardiovascular disease (CVD), resulting in increased mortality and morbidity. Hitherto, vast evidence demonstrated the key role of non-coding RNAs such as microRNAs (miRNAs) in RA, and in RA-CVD related complications. In this descriptive review, we aim to highlight the specific role of miRNAs in autoimmune processes, explicitly on their regulatory roles in the pathogenesis of RA, and its CV consequences, their main role as novel biomarkers, and their possible role as therapeutic targets.
Collapse
|
30
|
Chang C, Xu L, Zhang R, Jin Y, Jiang P, Wei K, Xu L, Shi Y, Zhao J, Xiong M, Guo S, He D. MicroRNA-Mediated Epigenetic Regulation of Rheumatoid Arthritis Susceptibility and Pathogenesis. Front Immunol 2022; 13:838884. [PMID: 35401568 PMCID: PMC8987113 DOI: 10.3389/fimmu.2022.838884] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/02/2022] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in regulating the transcriptome and development of rheumatoid arthritis (RA). Currently, a comprehensive map illustrating how miRNAs regulate transcripts, pathways, immune system differentiation, and their interactions with terminal cells such as fibroblast-like synoviocytes (FLS), immune-cells, osteoblasts, and osteoclasts are still laking. In this review, we summarize the roles of miRNAs in the susceptibility, pathogenesis, diagnosis, therapeutic intervention, and prognosis of RA. Numerous miRNAs are abnormally expressed in cells involved in RA and regulate target genes and pathways, including NF-κB, Fas-FasL, JAK-STAT, and mTOR pathways. We outline how functional genetic variants of miR-499 and miR-146a partly explain susceptibility to RA. By regulating gene expression, miRNAs affect T cell differentiation into diverse cell types, including Th17 and Treg cells, thus constituting promising gene therapy targets to modulate the immune system in RA. We summarize the diagnostic and prognostic potential of blood-circulating and cell-free miRNAs, highlighting the opportunity to combine these miRNAs with antibodies to cyclic citrullinated peptide (ACCP) to allow accurate diagnosis and prognosis, particularly for seronegative patients. Furthermore, we review the evidence implicating miRNAs as promising biomarkers of efficiency and response of, and resistance to, disease-modifying anti-rheumatic drugs and immunotherapy. Finally, we discuss the autotherapeutic effect of miRNA intervention as a step toward the development of miRNA-based anti-RA drugs. Collectively, the current evidence supports miRNAs as interesting targets to better understand the pathogenetic mechanisms of RA and design more efficient therapeutic interventions.
Collapse
Affiliation(s)
- Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Runrun Zhang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yehua Jin
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Momiao Xiong
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center, Houston, TX, United States
| | - Shicheng Guo
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
31
|
Barghbani M, Sarookhani MR, Abbasi M, Maali A, Hajiaghaei M, Keshavarz Shahbaz S, Foroughi F. Evaluation of serum level of miR-155 and TNF-α in rheumatoid arthritis patients. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Gunter S, Michel FS, Fourie SS, Singh M, le Roux R, Manilall A, Mokotedi LP, Millen AME. The effect of TNF-α inhibitor treatment on microRNAs and endothelial function in collagen induced arthritis. PLoS One 2022; 17:e0264558. [PMID: 35213638 PMCID: PMC8880872 DOI: 10.1371/journal.pone.0264558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic inflammation causes dysregulated expression of microRNAs. Aberrant microRNA expression is associated with endothelial dysfunction. In this study we determined whether TNF-α inhibition impacted the expression of miRNA-146a-5p and miRNA-155-5p, and whether changes in the expression of these miRNAs were related to inflammation-induced changes in endothelial function in collagen-induced arthritis (CIA). Sixty-four Sprague-Dawley rats were divided into control (n = 24), CIA (n = 24) and CIA+etanercept (n = 16) groups. CIA and CIA+etanercept groups were immunized with bovine type-II collagen, emulsified in incomplete Freund’s adjuvant. Upon signs of arthritis, the CIA+etanercept group received 10mg/kg of etanercept intraperitoneally, every three days. After six weeks of treatment, mesenteric artery vascular reactivity was assessed using wire-myography. Serum concentrations of TNF-α, C-reactive protein, interleukin-6, vascular adhesion molecule-1 (VCAM-1) and pentraxin-3 (PTX-3) were measured by ELISA. Relative expression of circulating miRNA-146a-5p and miRNA-155-5p were determined using RT-qPCR. Compared to controls, circulating miRNA-155-5p, VCAM-1 and PTX-3 concentrations were increased, and vessel relaxation was impaired in the CIA (all p<0.05), but not in the CIA+etanercept (all p<0.05) groups. The CIA group had greater miRNA-146a-5p expression compared to the CIA+etanercept group (p = 0.005). Independent of blood pressure, miRNA-146a-5p expression was associated with increased PTX-3 concentrations (p = 0.03), while miRNA-155-5p expression was associated with impaired vessel relaxation (p = 0.01). In conclusion, blocking circulating TNF-α impacted systemic inflammation-induced increased expression of miRNA-146a-5p and miRNA-155-5p, which were associated with endothelial inflammation and impaired endothelial dependent vasorelaxation, respectively.
Collapse
Affiliation(s)
- Sulè Gunter
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Frederic S. Michel
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Serena S. Fourie
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mikayra Singh
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Regina le Roux
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ashmeetha Manilall
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lebogang P. Mokotedi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aletta M. E. Millen
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
33
|
Han JJ, Wang XQ, Zhang XA. Functional Interactions Between lncRNAs/circRNAs and miRNAs: Insights Into Rheumatoid Arthritis. Front Immunol 2022; 13:810317. [PMID: 35197980 PMCID: PMC8858953 DOI: 10.3389/fimmu.2022.810317] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases that affect synovitis, bone, cartilage, and joint. RA leads to bone and cartilage damage and extra-articular disorders. However, the pathogenesis of RA is still unclear, and the lack of effective early diagnosis and treatment causes severe disability, and ultimately, early death. Accumulating evidence revealed that the regulatory network that includes long non-coding RNAs (lncRNAs)/circular RNAs (circRNAs), micro RNAs (miRNAs), and messenger RNAs (mRNA) plays important roles in regulating the pathological and physiological processes in RA. lncRNAs/circRNAs act as the miRNA sponge and competitively bind to miRNA to regulate the expression mRNA in synovial tissue, FLS, and PBMC, participate in the regulation of proliferation, apoptosis, invasion, and inflammatory response. Thereby providing new strategies for its diagnosis and treatment. In this review, we comprehensively summarized the regulatory mechanisms of lncRNA/circRNA-miRNA-mRNA network and the potential roles of non-coding RNAs as biomarkers and therapeutic targets for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Juan-Juan Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| | - Xin-An Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| |
Collapse
|
34
|
Kmiołek T, Paradowska-Gorycka A. miRNAs as Biomarkers and Possible Therapeutic Strategies in Rheumatoid Arthritis. Cells 2022; 11:cells11030452. [PMID: 35159262 PMCID: PMC8834522 DOI: 10.3390/cells11030452] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Within the past years, more and more attention has been devoted to the epigenetic dysregulation that provides an additional window for understanding the possible mechanisms involved in the pathogenesis of autoimmune rheumatic diseases. Rheumatoid arthritis (RA) is a heterogeneous disease where a specific immunologic and genetic/epigenetic background is responsible for disease manifestations and course. In this field, microRNAs (miRNA; miR) are being identified as key regulators of immune cell development and function. The identification of disease-associated miRNAs will introduce us to the post-genomic era, providing the real probability of manipulating the genetic impact of autoimmune diseases. Thereby, different miRNAs may be good candidates for biomarkers in disease diagnosis, prognosis, treatment and other clinical applications. Here, we outline not only the role of miRNAs in immune and inflammatory responses in RA, but also present miRNAs as diagnostic/prognostic biomarkers. Research into miRNAs is still in its infancy; however, investigation into these novel biomarkers could progress the use of personalized medicine in RA treatment. Finally, we discussed the possibility of miRNA-based therapy in RA patients, which holds promise, given major advances in the therapy of patients with inflammatory arthritis.
Collapse
|
35
|
Ibáñez-Costa A, Perez-Sanchez C, Patiño-Trives AM, Luque-Tevar M, Font P, Arias de la Rosa I, Roman-Rodriguez C, Abalos-Aguilera MC, Conde C, Gonzalez A, Pedraza-Arevalo S, Del Rio-Moreno M, Blazquez-Encinas R, Segui P, Calvo J, Ortega Castro R, Escudero-Contreras A, Barbarroja N, Aguirre MA, Castaño JP, Luque RM, Collantes-Estevez E, Lopez-Pedrera C. Splicing machinery is impaired in rheumatoid arthritis, associated with disease activity and modulated by anti-TNF therapy. Ann Rheum Dis 2022; 81:56-67. [PMID: 34625402 PMCID: PMC8762032 DOI: 10.1136/annrheumdis-2021-220308] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/18/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To characterise splicing machinery (SM) alterations in leucocytes of patients with rheumatoid arthritis (RA), and to assess its influence on their clinical profile and therapeutic response. METHODS Leucocyte subtypes from 129 patients with RA and 29 healthy donors (HD) were purified, and 45 selected SM elements (SME) were evaluated by quantitative PCR-array based on microfluidic technology (Fluidigm). Modulation by anti-tumour necrosis factor (TNF) therapy and underlying regulatory mechanisms were assessed. RESULTS An altered expression of several SME was found in RA leucocytes. Eight elements (SNRNP70, SNRNP200, U2AF2, RNU4ATAC, RBM3, RBM17, KHDRBS1 and SRSF10) were equally altered in all leucocytes subtypes. Logistic regressions revealed that this signature might: discriminate RA and HD, and anti-citrullinated protein antibodies (ACPAs) positivity; classify high-disease activity (disease activity score-28 (DAS28) >5.1); recognise radiological involvement; and identify patients showing atheroma plaques. Furthermore, this signature was altered in RA synovial fluid and ankle joints of K/BxN-arthritic mice. An available RNA-seq data set enabled to validate data and identified distinctive splicing events and splicing variants among patients with RA expressing high and low SME levels. 3 and 6 months anti-TNF therapy reversed their expression in parallel to the reduction of the inflammatory profile. In vitro, ACPAs modulated SME, at least partially, by Fc Receptor (FcR)-dependent mechanisms. Key inflammatory cytokines further altered SME. Lastly, induced SNRNP70-overexpression and KHDRBS1-overexpression reversed inflammation in lymphocytes, NETosis in neutrophils and adhesion in RA monocytes and influenced activity of RA synovial fibroblasts. CONCLUSIONS Overall, we have characterised for the first time a signature comprising eight dysregulated SME in RA leucocytes from both peripheral blood and synovial fluid, linked to disease pathophysiology, modulated by ACPAs and reversed by anti-TNF therapy.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adult
- Alternative Splicing/drug effects
- Animals
- Anti-Citrullinated Protein Antibodies/pharmacology
- Antirheumatic Agents/pharmacology
- Arthritis, Rheumatoid/blood
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Case-Control Studies
- Cell Cycle Proteins/genetics
- Cells, Cultured
- Citrullination
- Cytokines/pharmacology
- DNA-Binding Proteins/genetics
- Female
- Gene Expression/drug effects
- Humans
- Lymphocytes
- Male
- Mice
- Middle Aged
- Monocytes
- Neutrophils
- RNA/blood
- RNA/metabolism
- RNA Splicing Factors/genetics
- RNA, Small Nuclear/genetics
- RNA-Binding Proteins/genetics
- Repressor Proteins/genetics
- Ribonucleoprotein, U1 Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/genetics
- Sequence Analysis, RNA
- Serine-Arginine Splicing Factors/genetics
- Spliceosomes
- Splicing Factor U2AF/genetics
- Synovial Fluid/metabolism
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
Collapse
Affiliation(s)
- Alejandro Ibáñez-Costa
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Carlos Perez-Sanchez
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Alejandra María Patiño-Trives
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Maria Luque-Tevar
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Pilar Font
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Ivan Arias de la Rosa
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Cristobal Roman-Rodriguez
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Mª Carmen Abalos-Aguilera
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Carmen Conde
- Laboratorio de Investigación 8, Instituto de Investigación Sanitaria (IDIS), Hospital Clinico de Santiago (CHUS), Santiago de Compostela, Spain
| | - Antonio Gonzalez
- Experimental and Observational Rheumatology, Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain
| | - Sergio Pedraza-Arevalo
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba and CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Cordoba, Spain
| | - Mercedes Del Rio-Moreno
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba and CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Cordoba, Spain
| | - Ricardo Blazquez-Encinas
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba and CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Cordoba, Spain
| | - Pedro Segui
- Radiology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Jerusalem Calvo
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Rafaela Ortega Castro
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Alejandro Escudero-Contreras
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Nuria Barbarroja
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Mª Angeles Aguirre
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Justo P Castaño
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba and CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Cordoba, Spain
| | - Raul M Luque
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba and CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Cordoba, Spain
| | - Eduardo Collantes-Estevez
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Chary Lopez-Pedrera
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| |
Collapse
|
36
|
Saad El-Din S, Ahmed Rashed L, Eissa M, Eldemery AB, Abdelkareem Mohammed O, Abdelgwad M. Potential Role of circRNA-HIPK3/microRNA-124a Crosstalk in the Pathogenesis of Rheumatoid Arthritis. Rep Biochem Mol Biol 2022; 10:527-536. [PMID: 35291619 PMCID: PMC8903361 DOI: 10.52547/rbmb.10.4.527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Circular RNA-HIPK3 (CircHIPK3) has been shown to be aberrantly expressed in a variety of diseases, contributing to disease initiation and progression. The aim of the present study is to investigate the role of the circHIPK3 RNA/microRNA-124a interaction in the pathogenesis of rheumatoid arthritis (RA). METHODS This study included 79 RA patients and 30 control individuals. The patients involved were classified according to the disease activity score (DAS28) into mild (24 patients), moderate (24 patients), and severe (31 patients). Serum samples were collected to estimate the relative gene expression of circHIPK3 RNA and its target gene microRNA-124a by quantitative real time-PCR. Moreover, ELISA was used to detect the serum levels of monocyte chemoattractant protein-1 (MCP-1). Routine laboratory estimation of erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and rheumatoid factor (RF) was also done. RESULTS In all grades of RA groups, there was a significantly substantial elevation of circHIPK3 RNA gene expression, with subsequent downregulation of miRNA-124a when compared to the control group. CircHIPK3 and microRNA-124a expression have been established to be inversely linked. Also, estimation of serum levels of MCP-1, ESR, CRP, and RF exhibited a significant increase in all grades of RA as compared to the control group. CONCLUSION CircHIPK3 and microRNA-124a might be regarded as key players in the pathogenesis of RA. The cross-talk between them appears to be responsible for inducing joint inflammation by increasing MCP-1 production. Targeting circHIPK3 and microRNA-124a, and their downstream adaptor molecules, poses a new challenge for RA therapy.
Collapse
Affiliation(s)
- Shimaa Saad El-Din
- The Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
- Corresponding author: Shimaa Saad El-Din; Tel: +201066002673; E-mail:
| | - Laila Ahmed Rashed
- The Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Mervat Eissa
- The Department of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Ahmed Bahgat Eldemery
- The Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, October 6: University, Cairo, Egypt.
| | - Omnia Abdelkareem Mohammed
- The Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, October 6: University, Cairo, Egypt.
| | - Marwa Abdelgwad
- The Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
37
|
miRNA Levels as a Biomarker for Anti-VEGF Response in Patients with Diabetic Macular Edema. J Pers Med 2021; 11:jpm11121297. [PMID: 34945769 PMCID: PMC8708164 DOI: 10.3390/jpm11121297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate whether miRNA levels in the circulation could serve as a predictive biomarker for responsiveness to anti-vascular endothelial growth factor (VEGF) therapy in patients with diabetic macular edema. METHODS Whole blood samples were collected at baseline from 135 patients who were included in the BRDME study, a randomized controlled comparative trial of monthly bevacizumab or ranibizumab treatment for 6 months in patients with diabetic macular edema (Trialregister.nl, NTR3247). Best corrected visual acuity letter score (BCVA) and retinal central area thickness (CAT) were measured monthly during the 6-month follow-up. Levels of selected miRNAs were quantified. RESULTS Following linear regression analysis, the levels of four miRNAs were negatively associated with baseline CAT. Multivariable regression analysis confirmed this association for miR-181a. No associations with changes in CAT after 3 or 6 months of anti-VEGF treatment were found. In addition, no associations with miRNA levels with baseline BCVA or change in BCVA after 3 or 6 months of anti-VEGF treatment were found. CONCLUSIONS Circulating miR-181a levels were negatively associated with CAT at baseline. However, no associations between miRNA levels and the response to anti-VEGF therapy were found.
Collapse
|
38
|
Exploring the Extracellular Vesicle MicroRNA Expression Repertoire in Patients with Rheumatoid Arthritis and Ankylosing Spondylitis Treated with TNF Inhibitors. DISEASE MARKERS 2021; 2021:2924935. [PMID: 34691284 PMCID: PMC8529175 DOI: 10.1155/2021/2924935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) and ankylosing spondylitis (AS) belong to the most common inflammatory rheumatic diseases. MicroRNAs (miRNAs) are small 18–22 RNA molecules that function as posttranscriptional regulators. They are abundantly present within extracellular vesicles (EVs), small intercellular communication vesicles that can be found in bodily fluids and that have key functions in pathological and physiological pathways. Recently, EVs have gained much interest because of their diagnostic and therapeutic potential. Using NanoString profiling technology, the miRNA repertoire of serum EVs was determined and compared in RA and AS patients before and after anti-TNF therapy to assess its potential use as a diagnostic and prognostic biomarker. Furthermore, possible functional effects of those miRNAs that were characterized by the most significant expression changes were evaluated using in silico prediction algorithms. The analysis revealed a unique profile of differentially expressed miRNAs in RA and AS patient serum EVs. We identified 12 miRNAs whose expression profiles enabled differentiation between RA and AS patients before induction of anti-TNF treatment, as well as 4 and 14 miRNAs whose repertoires were significantly changed during the treatment in RA and AS patients, respectively. In conclusion, our findings suggest that extracellular vesicle miRNAs could be used as potential biomarkers associated with RA and AS response to biological treatment.
Collapse
|
39
|
Lu H, Yao Y, Yang J, Zhang H, Li L. Microbiome-miRNA interactions in the progress from undifferentiated arthritis to rheumatoid arthritis: evidence, hypotheses, and opportunities. Rheumatol Int 2021; 41:1567-1575. [PMID: 33856544 PMCID: PMC8316166 DOI: 10.1007/s00296-021-04798-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/20/2021] [Indexed: 02/05/2023]
Abstract
The human microbiome has attracted attention for its potential utility in precision medicine. Increasingly, more researchers are recognizing changes in intestinal microbiome can upset the balance between pro- and anti-inflammatory factors of host immune system, potentially contributing to arthritis immunopathogenesis. Patients who develop rheumatoid arthritis from undifferentiated arthritis can face multiple irreversible joint lesions and even deformities. Strategies for identifying undifferentiated arthritis patients who have a tendency to develop rheumatoid arthritis and interventions to prevent rheumatoid arthritis development are urgently needed. Intestinal microbiome dysbiosis and shifts in the miRNA profile affect undifferentiated arthritis progression, and may play an important role in rheumatoid arthritis pathophysiologic process via stimulating inflammatory cytokines and disturbing host and microbial metabolic functions. However, a causal relationship between microbiome-miRNA interactions and rheumatoid arthritis development from undifferentiated arthritis has not been uncovered yet. Changes in the intestinal microbiome and miRNA profiles of undifferentiated arthritis patients with different disease outcomes should be studied together to uncover the role of the intestinal microbiome in rheumatoid arthritis development and to identify potential prognostic indicators of rheumatoid arthritis in undifferentiated arthritis patients. Herein, we discuss the possibility of microbiome-miRNA interactions contributing to rheumatoid arthritis development and describe the gaps in knowledge regarding their influence on undifferentiated arthritis prognosis that should be addressed by future studies.
Collapse
Affiliation(s)
- Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Yujun Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| |
Collapse
|
40
|
Olivieri F, Prattichizzo F, Giuliani A, Matacchione G, Rippo MR, Sabbatinelli J, Bonafè M. miR-21 and miR-146a: The microRNAs of inflammaging and age-related diseases. Ageing Res Rev 2021; 70:101374. [PMID: 34082077 DOI: 10.1016/j.arr.2021.101374] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The first paper on "inflammaging" published in 2001 paved the way for a unifying theory on how and why aging turns out to be the main risk factor for the development of the most common age-related diseases (ARDs). The most exciting challenge on this topic was explaining how systemic inflammation steeps up with age and why it shows different rates among individuals of the same chronological age. The "epigenetic revolution" in the past twenty years conveyed that the assessment of the individual genetic make-up is not enough to depict the trajectories of age-related inflammation. Accordingly, others and we have been focusing on the role of non-coding RNA, i.e. microRNAs (miRNAs), in inflammaging. The results obtained in the latest 10 years underpinned the key role of a miRNA subset that we have called inflammamiRs, owing to their ability to master (NF-κB)-driven inflammatory pathways. In this review, we will focus on two inflammamiRs, i.e. miR-21-5p and miR-146a-5p, which target a variety of molecules belonging to the NF-κB/NLRP3 pathways. The interplay between miR-146a-5p and IL-6 in the context of aging and ARDs will also be highlighted. We will also provide the most relevant evidence suggesting that circulating inflammamiRs, along with IL-6, can measure the degree of inflammaging.
Collapse
|
41
|
Wajda A, Sivitskaya L, Paradowska-Gorycka A. Application of NGS Technology in Understanding the Pathology of Autoimmune Diseases. J Clin Med 2021; 10:3334. [PMID: 34362117 PMCID: PMC8348854 DOI: 10.3390/jcm10153334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
NGS technologies have transformed clinical diagnostics and broadly used from neonatal emergencies to adult conditions where the diagnosis cannot be made based on clinical symptoms. Autoimmune diseases reveal complicate molecular background and traditional methods could not fully capture them. Certainly, NGS technologies meet the needs of modern exploratory research, diagnostic and pharmacotherapy. Therefore, the main purpose of this review was to briefly present the application of NGS technology used in recent years in the understanding of autoimmune diseases paying particular attention to autoimmune connective tissue diseases. The main issues are presented in four parts: (a) panels, whole-genome and -exome sequencing (WGS and WES) in diagnostic, (b) Human leukocyte antigens (HLA) as a diagnostic tool, (c) RNAseq, (d) microRNA and (f) microbiome. Although all these areas of research are extensive, it seems that epigenetic impact on the development of systemic autoimmune diseases will set trends for future studies on this area.
Collapse
Affiliation(s)
- Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Larysa Sivitskaya
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| |
Collapse
|
42
|
Liu W, Song J, Feng X, Yang H, Zhong W. LncRNA XIST is involved in rheumatoid arthritis fibroblast-like synoviocytes by sponging miR-126-3p via the NF-κB pathway. Autoimmunity 2021; 54:326-335. [PMID: 34165008 DOI: 10.1080/08916934.2021.1937608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The role and mechanism of lncRNA XIST (XIST) in the development of rheumatoid arthritis (RA) was explored in this study. RT-qPCRs were performed to detect the expression of XIST and miR-126-3p in synovial tissues and cells. Target gene prediction and luciferase gene reporter assay were used to validate downstream target genes of XIST. MTT assay, EdU staining and Annexin V/PI staining were performed to explore the effects of XIST and miR-126-3p on cell proliferation and apoptosis. Western blotting analysis was used to detect the expression of related proteins. We found that the expression levels of XIST in tissues and cells were significantly higher than that in normal tissues and cells. Down-regulation of XIST could inhibit cell proliferation rate and increase apoptosis rate. Luciferase gene reporter assay showed that miR-126-3p was a downstream target gene of XIST. Overexpression of miR-126-3p significantly inhibited RA-FLS cell proliferation and induced RA-FLS cell apoptosis. In addition, down-regulation of XIST could increase the ratio of caspase-3 and Bax/Bcl-2. In addition, overexpression of miR-126-3p could inhibit the NF-κB signalling pathway by reducing the expression levels of p-p65 and p-IκBα in RA-FLS cells. In conclusion, down-regulation of XIST can inhibit the proliferation of synovial fibroblasts by increasing the expression levels of miR-126-3p/NF-κB, thereby inhibiting the occurrence and development of RA.
Collapse
Affiliation(s)
- Wei Liu
- Department of Rheumatology and Immunology, the First hospital of Qiqihar City, Qiqihar City, PR China
| | - Jing Song
- Department of Rheumatology and Immunology, the First hospital of Qiqihar City, Qiqihar City, PR China
| | - Xingyu Feng
- Department of Rheumatology and Immunology, the First hospital of Qiqihar City, Qiqihar City, PR China
| | - Haolong Yang
- Department of Orthopedics, the Third Affiliated Hospital of Qiqihar, Qiqihar City, PR China
| | - Wei Zhong
- Department of Rheumatology and Immunology, the First hospital of Qiqihar City, Qiqihar City, PR China
| |
Collapse
|
43
|
Lim MK, Yoo J, Sheen DH, Ihm C, Lee SK, Kim SA. Serum Exosomal miRNA-1915-3p Is Correlated With Disease Activity of Korean Rheumatoid Arthritis. In Vivo 2021; 34:2941-2945. [PMID: 32871836 DOI: 10.21873/invivo.12124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIM It has been found that microRNAs (miRNA) affect rheumatoid arthritis (RA) pathophysiology. This study aimed to identify novel serum exosomal miRNAs related to RA disease activity in patients with an inadequate treatment response. PATIENTS AND METHODS The sample population comprised clinical remission (CR) and non-clinical remission (non-CR) groups of RA patients. To identify potent miRNA markers for RA disease activity, miRNA array and qPCR were performed after patient serum exosomes preparation. RESULTS Has-miR-1915-3p and has-miR-6511b-5p were significantly higher in the serum exosomes of the CR group. The level of serum C-reactive protein (CRP) was negatively correlated with has-miR-1915-3p level in serum exosomes. CONCLUSION Has-miR-1915-3p may be a potential marker for Korean RA disease activity.
Collapse
Affiliation(s)
- Mi-Kyoung Lim
- Department of Internal Medicine, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Jihyung Yoo
- Department of Internal Medicine, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Dong-Hyuk Sheen
- Department of Internal Medicine, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Chunhwa Ihm
- Department of Laboratory Medicine, School of Medicine, Eulji University, Daejeon, Republic of Korea.,Eulji Medical Bio Research Center, Eulji University, Daejeon, Republic of Korea
| | - Sang Kwang Lee
- Eulji Medical Bio Research Center, Eulji University, Daejeon, Republic of Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea
| |
Collapse
|
44
|
Al-Rawaf HA, Alghadir AH, Gabr SA. Circulating microRNAs expression as predictors of clinical response in rheumatoid arthritis patients treated with green tea. J Herb Med 2021. [DOI: 10.1016/j.hermed.2020.100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Puentes-Osorio Y, Amariles P, Calleja MÁ, Merino V, Díaz-Coronado JC, Taborda D. Potential clinical biomarkers in rheumatoid arthritis with an omic approach. AUTOIMMUNITY HIGHLIGHTS 2021; 12:9. [PMID: 34059137 PMCID: PMC8165788 DOI: 10.1186/s13317-021-00152-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022]
Abstract
Objective To aid in the selection of the most suitable therapeutic option in patients with diagnosis of rheumatoid arthritis according to the phase of disease, through the review of articles that identify omics biological markers. Methods A systematic review in PubMed/Medline databases was performed. We searched articles from August 2014 to September 2019, in English and Spanish, filtered by title and full text; and using the terms "Biomarkers" AND “Rheumatoid arthritis". Results This article supplies an exhaustive review from research of objective measurement, omics biomarkers and how disease activity appraise decrease unpredictability in treatment determinations, and finally, economic, and clinical outcomes of treatment options by biomarkers’ potential influence. A total of 122 articles were included. Only 92 met the established criteria for review purposes and 17 relevant references about the topic were included as well. Therefore, it was possible to identify 196 potential clinical biomarkers: 22 non-omics, 20 epigenomics, 33 genomics, 21 transcriptomics, 78 proteomics, 4 glycomics, 1 lipidomics and 17 metabolomics. Conclusion A biomarker is a measurable indicator of some, biochemical, physiological, or morphological condition; evaluable at a molecular, biochemical, or cellular level. Biomarkers work as indicators of physiological or pathological processes, or as a result of a therapeutic management. In the last five years, new biomarkers have been identified, especially the omics, which are those that proceed from the investigation of genes (genomics), metabolites (metabolomics), and proteins (proteomics). These biomarkers contribute to the physician choosing the best therapeutic option in patients with rheumatoid arthritis.
Collapse
|
46
|
Mezghiche I, Yahia-Cherbal H, Rogge L, Bianchi E. Novel approaches to develop biomarkers predicting treatment responses to TNF-blockers. Expert Rev Clin Immunol 2021; 17:331-354. [PMID: 33622154 DOI: 10.1080/1744666x.2021.1894926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Chronic inflammatory diseases (CIDs) cause significant morbidity and are a considerable burden for the patients in terms of pain, impaired function, and diminished quality of life. Important progress in CID treatment has been obtained with biological therapies, such as tumor-necrosis-factor blockers. However, more than a third of the patients fail to respond to these inhibitors and are exposed to the side effects of treatment, without the benefits. Therefore, there is a strong interest in developing tools to predict response of patients to biologics. Areas covered: The authors searched PubMed for recent studies on biomarkers for disease assessment and prediction of therapeutic responses, focusing on the effect of TNF blockers on immune responses in spondyloarthritis (SpA), and other CID, in particular rheumatoid arthritis and inflammatory bowel disease. Conclusions will be drawn about the possible development of predictive biomarkers for response to treatment. Expert opinion: No validated biomarker is currently available to predict treatment response in CID. New insight could be generated through the development of new bioinformatic modeling approaches to combine multidimensional biomarkers that explain the different genetic, immunological and environmental determinants of therapeutic responses.
Collapse
Affiliation(s)
- Ikram Mezghiche
- Department of Immunology, Immunoregulation Unit, Institut Pasteur, Paris, France.,Université De Paris, Sorbonne Paris Cité, Paris, France
| | - Hanane Yahia-Cherbal
- Department of Immunology, Immunoregulation Unit, Institut Pasteur, Paris, France.,Fondation AP-HP, Paris, France
| | - Lars Rogge
- Department of Immunology, Immunoregulation Unit, Institut Pasteur, Paris, France.,Unité Mixte AP-HP/Institut Pasteur, Institut Pasteur, Paris, France
| | - Elisabetta Bianchi
- Department of Immunology, Immunoregulation Unit, Institut Pasteur, Paris, France.,Unité Mixte AP-HP/Institut Pasteur, Institut Pasteur, Paris, France
| |
Collapse
|
47
|
Heinicke F, Zhong X, Flåm ST, Breidenbach J, Leithaug M, Mæhlen MT, Lillegraven S, Aga AB, Norli ES, Mjaavatten MD, Haavardsholm EA, Zucknick M, Rayner S, Lie BA. MicroRNA Expression Differences in Blood-Derived CD19+ B Cells of Methotrexate Treated Rheumatoid Arthritis Patients. Front Immunol 2021; 12:663736. [PMID: 33897713 PMCID: PMC8062711 DOI: 10.3389/fimmu.2021.663736] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a complex disease with a wide range of underlying susceptibility factors. Recently, dysregulation of microRNAs (miRNAs) in RA have been reported in several immune cell types from blood. However, B cells have not been studied in detail yet. Given the autoimmune nature of RA with the presence of autoantibodies, CD19+ B cells are a key cell type in RA pathogenesis and alterations in CD19+ B cell subpopulations have been observed in patient blood. Therefore, we aimed to reveal the global miRNA repertoire and to analyze miRNA expression profile differences in homogenous RA patient phenotypes in blood-derived CD19+ B cells. Small RNA sequencing was performed on CD19+ B cells of newly diagnosed untreated RA patients (n=10), successfully methotrexate (MTX) treated RA patients in remission (MTX treated RA patients, n=18) and healthy controls (n=9). The majority of miRNAs was detected across all phenotypes. However, significant expression differences between MTX treated RA patients and controls were observed for 27 miRNAs, while no significant differences were seen between the newly diagnosed patients and controls. Several of the differentially expressed miRNAs were previously found to be dysregulated in RA including miR-223-3p, miR-486-3p and miR-23a-3p. MiRNA target enrichment analysis, using the differentially expressed miRNAs and miRNA-target interactions from miRTarBase as input, revealed enriched target genes known to play important roles in B cell activation, differentiation and B cell receptor signaling, such as STAT3, PRDM1 and PTEN. Interestingly, many of those genes showed a high degree of correlated expression in CD19+ B cells in contrast to other immune cell types. Our results suggest important regulatory functions of miRNAs in blood-derived CD19+ B cells of MTX treated RA patients and motivate for future studies investigating the interactive mechanisms between miRNA and gene targets, as well as the possible predictive power of miRNAs for RA treatment response.
Collapse
Affiliation(s)
- Fatima Heinicke
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Xiangfu Zhong
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Siri T Flåm
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Johannes Breidenbach
- Norwegian Institute for Bioeconomy Research, National Forest Inventory, Ås, Norway
| | - Magnus Leithaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marthe T Mæhlen
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Siri Lillegraven
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Anna-Birgitte Aga
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ellen S Norli
- Department of Rheumatology, Martina Hansens Hospital, Bærum, Norway
| | - Maria D Mjaavatten
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway
| | | | - Manuela Zucknick
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Simon Rayner
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Benedicte A Lie
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
48
|
Grillari J, Mäkitie RE, Kocijan R, Haschka J, Vázquez DC, Semmelrock E, Hackl M. Circulating miRNAs in bone health and disease. Bone 2021; 145:115787. [PMID: 33301964 DOI: 10.1016/j.bone.2020.115787] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
Abstract
microRNAs have evolved as important regulators of multiple biological pathways essential for bone homeostasis, and microRNA research has furthered our understanding of the mechanisms underlying bone health and disease. This knowledge, together with the finding that active or passive release of microRNAs from cells into the extracellular space enables minimal-invasive detection in biofluids (circulating miRNAs), motivated researchers to explore microRNAs as biomarkers in several pathologic conditions, including bone diseases. Thus, exploratory studies in cohorts representing different types of bone diseases have been performed. In this review, we first summarize important molecular basics of microRNA function and release and provide recommendations for best (pre-)analytical practices and documentation standards for circulating microRNA research required for generating high quality data and ensuring reproducibility of results. Secondly, we review how the genesis of bone-derived circulating microRNAs via release from osteoblasts and osteoclasts could contribute to the communication between these cells. Lastly, we summarize evidence from clinical research studies that have investigated the clinical utility of microRNAs as biomarkers in musculoskeletal disorders. While previous reviews have mainly focused on diagnosis of primary osteoporosis, we have also included studies exploring the utility of circulating microRNAs in monitoring anti-osteoporotic treatment and for diagnosis of other types of bone diseases, such as diabetic osteopathy, bone degradation in inflammatory diseases, and monogenetic bone diseases.
Collapse
Affiliation(s)
- Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria; Institute for Molecular Biotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Riikka E Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London, United Kingdom
| | - Roland Kocijan
- Hanusch Hospital of the WGKK and AUVA Trauma Center, 1st Medical Department at Hanusch Hospital, Ludwig Boltzmann Institute of Osteology, Vienna, Austria; Sigmund Freud University Vienna, School of Medicine, Metabolic Bone Diseases Unit, Austria
| | - Judith Haschka
- Hanusch Hospital of the WGKK and AUVA Trauma Center, 1st Medical Department at Hanusch Hospital, Ludwig Boltzmann Institute of Osteology, Vienna, Austria; Karl Landsteiner Institute for Rheumatology and Gastroenterology, Vienna, Austria
| | | | | | - Matthias Hackl
- Austrian Cluster for Tissue Regeneration, Austria; TAmiRNA GmbH, Vienna, Austria.
| |
Collapse
|
49
|
Wielinska J, Bogunia-Kubik K. miRNAs as potential biomarkers of treatment outcome in rheumatoid arthritis and ankylosing spondylitis. Pharmacogenomics 2021; 22:291-301. [PMID: 33769067 DOI: 10.2217/pgs-2020-0148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Common autoimmune, inflammatory rheumatic diseases including rheumatoid arthritis and ankylosing spondylitis can lead to structural and functional disability, an increase in mortality and a decrease in the quality of a patient's life. To date, the core of available therapy consists of nonsteroidal anti-inflammatory drugs, glucocorticoids and conventional synthetic disease-modifying antirheumatic drugs, like methotrexate. Nowadays, biological therapy including anti-TNF, IL-6 and IL-1 inhibitors, as well as antibodies targeting IL-17 and Janus kinase inhibitors have been found to be helpful in the management of rheumatic conditions. The review provides a summary of the current therapy strategies with a focus on miRNA, which is considered to be a potential biomarker and possible answer to the challenges in the prediction of treatment outcome in patients with rheumatoid arthritis and ankylosing spondylitis.
Collapse
Affiliation(s)
- Joanna Wielinska
- Laboratory of Clinical Immunogenetics & Pharmacogenetics, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics & Pharmacogenetics, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
50
|
Luque-Tévar M, Perez-Sanchez C, Patiño-Trives AM, Barbarroja N, Arias de la Rosa I, Abalos-Aguilera MC, Marin-Sanz JA, Ruiz-Vilchez D, Ortega-Castro R, Font P, Lopez-Medina C, Romero-Gomez M, Rodriguez-Escalera C, Perez-Venegas J, Ruiz-Montesinos MD, Dominguez C, Romero-Barco C, Fernandez-Nebro A, Mena-Vazquez N, Marenco JL, Uceda-Montañez J, Toledo-Coello MD, Aguirre MA, Escudero-Contreras A, Collantes-Estevez E, Lopez-Pedrera C. Integrative Clinical, Molecular, and Computational Analysis Identify Novel Biomarkers and Differential Profiles of Anti-TNF Response in Rheumatoid Arthritis. Front Immunol 2021; 12:631662. [PMID: 33833756 PMCID: PMC8022208 DOI: 10.3389/fimmu.2021.631662] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/15/2021] [Indexed: 12/29/2022] Open
Abstract
Background: This prospective multicenter study developed an integrative clinical and molecular longitudinal study in Rheumatoid Arthritis (RA) patients to explore changes in serologic parameters following anti-TNF therapy (TNF inhibitors, TNFi) and built on machine-learning algorithms aimed at the prediction of TNFi response, based on clinical and molecular profiles of RA patients. Methods: A total of 104 RA patients from two independent cohorts undergoing TNFi and 29 healthy donors (HD) were enrolled for the discovery and validation of prediction biomarkers. Serum samples were obtained at baseline and 6 months after treatment, and therapeutic efficacy was evaluated. Serum inflammatory profile, oxidative stress markers and NETosis-derived bioproducts were quantified and miRNomes were recognized by next-generation sequencing. Then, clinical and molecular changes induced by TNFi were delineated. Clinical and molecular signatures predictors of clinical response were assessed with supervised machine learning methods, using regularized logistic regressions. Results: Altered inflammatory, oxidative and NETosis-derived biomolecules were found in RA patients vs. HD, closely interconnected and associated with specific miRNA profiles. This altered molecular profile allowed the unsupervised division of three clusters of RA patients, showing distinctive clinical phenotypes, further linked to the TNFi effectiveness. Moreover, TNFi treatment reversed the molecular alterations in parallel to the clinical outcome. Machine-learning algorithms in the discovery cohort identified both, clinical and molecular signatures as potential predictors of response to TNFi treatment with high accuracy, which was further increased when both features were integrated in a mixed model (AUC: 0.91). These results were confirmed in the validation cohort. Conclusions: Our overall data suggest that: 1. RA patients undergoing anti-TNF-therapy conform distinctive clusters based on altered molecular profiles, which are directly linked to their clinical status at baseline. 2. Clinical effectiveness of anti-TNF therapy was divergent among these molecular clusters and associated with a specific modulation of the inflammatory response, the reestablishment of the altered oxidative status, the reduction of NETosis, and the reversion of related altered miRNAs. 3. The integrative analysis of the clinical and molecular profiles using machine learning allows the identification of novel signatures as potential predictors of therapeutic response to TNFi therapy.
Collapse
Affiliation(s)
- Maria Luque-Tévar
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Carlos Perez-Sanchez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Alejandra Mª Patiño-Trives
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Nuria Barbarroja
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Ivan Arias de la Rosa
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Mª Carmen Abalos-Aguilera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Juan Antonio Marin-Sanz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Desiree Ruiz-Vilchez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Rafaela Ortega-Castro
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Pilar Font
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Clementina Lopez-Medina
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain.,Hospital Universitario de Jaen, Jaén, Spain.,Hospital Universitario Virgen Macarena, Sevilla, Spain.,Hospital Clínico Universitario, Malaga, Spain.,Hospital Regional Universitario de Malaga, Malaga, Spain.,Hospital Universitario Virgen de Valme, Sevilla, Spain.,Hospital Universitario de Jerez de la Frontera, Cádiz, Spain
| | - Montserrat Romero-Gomez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | - M Angeles Aguirre
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Alejandro Escudero-Contreras
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Eduardo Collantes-Estevez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Chary Lopez-Pedrera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| |
Collapse
|