1
|
Cai R, Jiang Q, Chen D, Feng Q, Liang X, Ouyang Z, Liao W, Zhang R, Fang H. Identification of osteoblastic autophagy-related genes for predicting diagnostic markers in osteoarthritis. iScience 2024; 27:110130. [PMID: 38952687 PMCID: PMC11215306 DOI: 10.1016/j.isci.2024.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024] Open
Abstract
The development of osteoarthritis (OA) involves subchondral bone lesions, but the role of osteoblastic autophagy-related genes (ARGs) in osteoarthritis is unclear. Through integrated analysis of single-cell dataset, Bulk RNA dataset, and 367 ARGs extracted from GeneCards, 40 ARGs were found. By employing multiple machine learning algorithms and PPI networks, three key genes (DDIT3, JUN, and VEGFA) were identified. Then the RF model constructed from these genes indicated great potential as a diagnostic tool. Furthermore, the model's effectiveness in predicting OA has been confirmed through external validation datasets. Moreover, the expression of ARGs was examined in osteoblasts subject to excessive mechanical stress, human and mouse tissues. Finally, the role of ARGs in OA was confirmed through co-culturing explants and osteoblasts. Thus, osteoblastic ARGs could be crucial in OA development, providing potential diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Rulong Cai
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qijun Jiang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Urology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Dongli Chen
- Department of Ultrasound, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Qi Feng
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xinzhi Liang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhaoming Ouyang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Weijian Liao
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Rongkai Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hang Fang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
2
|
Che X, Jin X, Park NR, Kim HJ, Kyung HS, Kim HJ, Lian JB, Stein JL, Stein GS, Choi JY. Cbfβ Is a Novel Modulator against Osteoarthritis by Maintaining Articular Cartilage Homeostasis through TGF-β Signaling. Cells 2023; 12:cells12071064. [PMID: 37048137 PMCID: PMC10093452 DOI: 10.3390/cells12071064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
TGF-β signaling is a vital regulator for maintaining articular cartilage homeostasis. Runx transcription factors, downstream targets of TGF-β signaling, have been studied in the context of osteoarthritis (OA). Although Runx partner core binding factor β (Cbfβ) is known to play a pivotal role in chondrocyte and osteoblast differentiation, the role of Cbfβ in maintaining articular cartilage integrity remains obscure. This study investigated Cbfβ as a novel anabolic modulator of TGF-β signaling and determined its role in articular cartilage homeostasis. Cbfβ significantly decreased in aged mouse articular cartilage and human OA cartilage. Articular chondrocyte-specific Cbfb-deficient mice (Cbfb△ac/△ac) exhibited early cartilage degeneration at 20 weeks of age and developed OA at 12 months. Cbfb△ac/△ac mice showed enhanced OA progression under the surgically induced OA model in mice. Mechanistically, forced expression of Cbfβ rescued Type II collagen (Col2α1) and Runx1 expression in Cbfβ-deficient chondrocytes. TGF-β1-mediated Col2α1 expression failed despite the p-Smad3 activation under TGF-β1 treatment in Cbfβ-deficient chondrocytes. Cbfβ protected Runx1 from proteasomal degradation through Cbfβ/Runx1 complex formation. These results indicate that Cbfβ is a novel anabolic regulator for cartilage homeostasis, suggesting that Cbfβ could protect OA development by maintaining the integrity of the TGF-β signaling pathway in articular cartilage.
Collapse
|
3
|
Zhang H, Sun H, Zhang W, Xu Y, Geng D. Identification of Key Genes and Potential Mechanisms Based on the Autophagy Regulatory Network in Osteoclasts Using a Murine Osteoarthritis Model. J Inflamm Res 2022; 15:2333-2347. [PMID: 35437349 PMCID: PMC9013268 DOI: 10.2147/jir.s354824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/29/2022] [Indexed: 01/01/2023] Open
Abstract
Background Osteoarthritis (OA) is a degenerative joint disease that acts as a major cause of early disability in the old population. However, the molecular mechanisms of autophagy in osteoclasts involved in OA remain unclear. Methods The gene expression profiles were downloaded from the Gene Expression Omnibus (GEO) repository. The NCBI GEO2R and ScanGEO analysis tool were used to identify differentially expressed genes (DEGs). The protein-protein interaction (PPI) network was predicted by the STRING website and visualized with Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed to enrich GO terms and signaling pathways using Metascape database. To predict LC3-interacting region (LIR) motif among these DEGs, the iLIR database was selected to assess specific short linear sequences. To obtain potential upstream miRNA targets of these DEGs, the mRNA-miRNA interaction networks were predicted by miRWalk database. The knee OA model was performed in mice, and autophagy related mRNAs of osteoclasts were identified. Experimental specimens were further verified with histopathological staining. Results Becn1, Atg3, Atg12, Pik3c3, and Gabarapl2 were obtained as coexpressed differential genes. PPI network was constructed and deduced the other 60 related genes. GO and KEGG enrichment networks indicated that autophagy-animal, selective autophagy, and mitophagy mainly participated in autophagy regulation in osteoclasts. The possible LIR sequences were collected to predict motifs. The mRNA–miRNA interaction networks suggested that many miRNAs could regulate autophagy-related genes individually and collectively. The RT–PCR results suggested that these five genes were upregulated in the OA group. Histopathological staining revealed that osteoclasts were increased in subchondral bone, and higher expression of these DEGs in the OA group was compared to the sham group. Conclusion Our results reveal that the role of autophagy in osteoclasts could be a regulatory mechanism in OA and that these autophagy-related genes might be targets for the intervention of OA disease. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/ZZ91COavgjA
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou City, People’s Republic of China
| | - Houyi Sun
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou City, People’s Republic of China
| | - Wei Zhang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou City, People’s Republic of China
| | - Yaozeng Xu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou City, People’s Republic of China
| | - Dechun Geng
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou City, People’s Republic of China
- Correspondence: Dechun Geng; Yaozeng Xu, Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou City, People’s Republic of China, Tel +86 512-67780999; +86 512-67780249, Email ;
| |
Collapse
|
4
|
Costa MQ, Murray MM, Sieker JT, Karamchedu NP, Proffen BL, Fleming BC. Peripheral shift in the viable chondrocyte population of the medial femoral condyle after anterior cruciate ligament injury in the porcine knee. PLoS One 2021; 16:e0256765. [PMID: 34437631 PMCID: PMC8389427 DOI: 10.1371/journal.pone.0256765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/15/2021] [Indexed: 11/21/2022] Open
Abstract
Anterior cruciate ligament injuries result in posttraumatic osteoarthritis in the medial compartment of the knee, even after surgical treatment. How the chondrocyte distribution within the articular cartilage changes early in this process is currently unknown. The study objective was to investigate the chondrocyte distribution within the medial femoral condyle after an anterior cruciate ligament transection in a preclinical model. Forty-two adolescent Yucatan minipigs were allocated to receive unilateral anterior cruciate ligament surgery (n = 36) or no surgery (n = 6). Central coronal sections of the medial femoral condyle were obtained at 1- and 4 weeks after surgery, and the chondrocyte distribution was measured via whole slide imaging and a cell counting batch processing tool utilized in ImageJ. Ki-67 immunohistochemistry was performed to identify proliferating cells. Empty lacunae, karyolysis, karyorrhexis, and pyknosis were used to identify areas of irreversible cell injury. The mean area of irreversible cell injury was 0% in the intact controls, 13.4% (95% confidence interval: 6.4, 20.3) at 1-week post-injury and 19.3% (9.7, 28.9) at 4 weeks post-injury (p < .015). These areas occurred closest to the femoral intra-articular notch. The remaining areas containing viable chondrocytes had Ki-67-positive cells (p < .02) and increased cell density in the middle (p < .03) and deep zones (p = .001). For the entire section, the total chondrocyte number did not change significantly post-operatively; however, the density of cells in the peripheral regions of the medial femoral condyle increased significantly at 1- and 4 weeks post-injury relative to the intact control groups (p = .032 and .004, respectively). These data demonstrate a peripheral shift in the viable chondrocyte population of the medial femoral condyle after anterior cruciate ligament injury and further suggest that chondrocytes with the capacity to proliferate are not confined to one particular cartilage layer.
Collapse
Affiliation(s)
- Meggin Q. Costa
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, United States of America
| | - Martha M. Murray
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Jakob T. Sieker
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Naga Padmini Karamchedu
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, United States of America
| | - Benedikt L. Proffen
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Braden C. Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, United States of America
| |
Collapse
|
5
|
Co CM, Izuagbe S, Zhou J, Zhou N, Sun X, Borrelli J, Tang L. Click chemistry-based pre-targeting cell delivery for cartilage regeneration. Regen Biomater 2021; 8:rbab018. [PMID: 34211730 DOI: 10.1093/rb/rbab018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/25/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
A fraction of the OA patient population is affected by post-traumatic osteoarthritis (PTOA) following acute joint injuries. Stopping or reversing the progression of PTOA following joint injury could improve long-term functional outcomes, reduced disability, and medical costs. To more effectively treat articular cartilage injury, we have developed a novel cell-based therapy that involves the pre-targeting of apoptotic chondrocytes and the delivery of healthy, metabolically active chondrocytes using click chemistry. Specifically, a pre-targeting agent was prepared via conjugating apoptotic binding peptide (ApoPep-1) and trans-cyclooctene (TCO) onto polyethylene glycol (PEG) polymer carrier. The pre-targeting agent would be introduced to injured areas of articular cartilage, leading to the accumulation of TCO groups on the injured areas from actively binding to apoptotic chondrocytes. Subsequently, methyltetrazine (Tz)-bearing chondrocytes would be immobilized on the surface of TCO-coated injured cartilage via Tz-TCO click chemistry reaction. Using an ex vivo human cartilage explant PTOA model, the effectiveness of this new approach was evaluated. Our studies show that this novel approach (Tz-TCO click chemistry) significantly enhanced the immobilization of healthy and metabolically active chondrocytes to the areas of apoptotic chondrocytes. Histological analyses demonstrated that this treatment regimen would significantly reduce the area of cartilage degeneration and enhance ECM regeneration. The results support that Tz-TCO click chemistry-mediated cell delivery approach has great potential in clinical applications for targeting and treatment of cartilage injury.
Collapse
Affiliation(s)
- Cynthia M Co
- Department of Bioengineering, University of Texas at Arlington, PO Box 19138, Arlington, TX 76019, USA
| | - Samira Izuagbe
- Department of Bioengineering, University of Texas at Arlington, PO Box 19138, Arlington, TX 76019, USA
| | - Jun Zhou
- Department of Bioengineering, University of Texas at Arlington, PO Box 19138, Arlington, TX 76019, USA
| | - Ning Zhou
- Department of Radiology, University of Texas Southwestern Medical, Dallas, TX 75390, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical, Dallas, TX 75390, USA
| | - Joseph Borrelli
- Department of Bioengineering, University of Texas at Arlington, PO Box 19138, Arlington, TX 76019, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, PO Box 19138, Arlington, TX 76019, USA
| |
Collapse
|
6
|
Zhang D, Jin Q, Jiang C, Gao M, Ni Y, Zhang J. Imaging Cell Death: Focus on Early Evaluation of Tumor Response to Therapy. Bioconjug Chem 2020; 31:1025-1051. [PMID: 32150392 DOI: 10.1021/acs.bioconjchem.0c00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death plays a prominent role in the treatment of cancer, because most anticancer therapies act by the induction of cell death including apoptosis, necrosis, and other pathways of cell death. Imaging cell death helps to identify treatment responders from nonresponders and thus enables patient-tailored therapy, which will increase the likelihood of treatment response and ultimately lead to improved patient survival. By taking advantage of molecular probes that specifically target the biomarkers/biochemical processes of cell death, cell death imaging can be successfully achieved. In recent years, with the increased understanding of the molecular mechanism of cell death, a variety of well-defined biomarkers/biochemical processes of cell death have been identified. By targeting these established cell death biomarkers/biochemical processes, a set of molecular imaging probes have been developed and evaluated for early monitoring treatment response in tumors. In this review, we mainly present the recent advances in identifying useful biomarkers/biochemical processes for both apoptosis and necrosis imaging and in developing molecular imaging probes targeting these biomarkers/biochemical processes, with a focus on their application in early evaluation of tumor response to therapy.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|
7
|
Li S, Cong W, Hakamivala A, Huang Y, Borrelli J, Tang L. Hyaluronic Acid-Based Optical Probe for the Diagnosis of Human Osteoarthritic Cartilage. Nanotheranostics 2018; 2:347-359. [PMID: 30148052 PMCID: PMC6107780 DOI: 10.7150/ntno.26119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/15/2018] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis is typically caused by cartilage injury, followed by localized inflammatory responses and tissue deterioration. Early treatment of osteoarthritis is often impossible due to the lack of diagnostic options. Recent studies have supported that different imaging probes can be used for arthritis detection in mice. However, none of these diagnostic tools have been tested on human articular cartilage. To fill this gap, an optical imaging probe was developed to target activated macrophages and the accumulation of imaging probes on tissue was used to assess the severity of human osteoarthritis. Methods: The probe was fabricated using hyaluronic acid (HA) particles conjugated with near-infrared dye and folic acid (FA). The ability of the FA-HA probes to detect activated macrophages and quantify cartilage injury was evaluated using a cell culture model in vitro and human osteoarthritic cartilage explants ex vivo. Results: Our cell study results supported that the FA-HA probes are cell compatible (up to 0.5mg/mL) and can detect activated macrophages in 30 minutes. Using human articular cartilage, we verified the existence of activated macrophages on osteoarthritic cartilage with highly up-regulated expression of folate receptors (~13 folds by comparison with healthy control). In addition, we found that FA-HA probes had higher binding amounts (~3 folds) to osteoarthritic tissue than healthy ones. Histological analyses confirmed that there was a strong linear relationship (R=0.933) between the fluorescent intensity of tissue-associated probe and the extent of folate receptors on osteoarthritic cartilage. Finally, the co-localization of the imaging probe, folate receptors and cartilage degeneration on the tissue sections indicated the extraordinary accuracy and efficiency of this osteoarthritis diagnostic probe. Conclusions: Our results support the probe as an effective diagnostic tool to detect the area and severity of osteoarthritic human articular cartilage.
Collapse
Affiliation(s)
- Shuxin Li
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Wei Cong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA.,Department of Oral Anatomy, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Amirhossein Hakamivala
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - YiHui Huang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Joseph Borrelli
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
8
|
Li MH, Xiao R, Li JB, Zhu Q. Regenerative approaches for cartilage repair in the treatment of osteoarthritis. Osteoarthritis Cartilage 2017; 25:1577-1587. [PMID: 28705606 DOI: 10.1016/j.joca.2017.07.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/09/2017] [Accepted: 07/01/2017] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) as a debilitating affliction of joints currently affects millions of people and remains an unsolved problem. The disease involves multiple cellular and molecular pathways that converge on the progressive destruction of cartilage. Activation of cartilage regenerative potential and specific targeting pathogenic mediators have been the major focus of research efforts aimed at slowing the progression of cartilage degeneration and preserve joint function. This review will summarize recent key discoveries toward better understanding of the complex mechanisms behind OA development and highlight the latest advances in basic and clinical research in the approach for cartilage regeneration. Prospectively, more potent therapeutic strategies against progressive cartilage deterioration may use a combination of cytotherapy, pharmacotherapy, and bioscaffoldings for improved chondrogenic differentiation and stem/progenitor cell homing as well as the concomitant reduced enzymatic matrix degradation and inflammation. Further, treatments need to be provided with increased preciseness of targeted therapy. One might expect that the regenerative therapies could potentially control or even possibly cure OA if performed at early stages of the disease.
Collapse
Affiliation(s)
- M H Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - R Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - J B Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Q Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Blaker CL, Clarke EC, Little CB. Using mouse models to investigate the pathophysiology, treatment, and prevention of post-traumatic osteoarthritis. J Orthop Res 2017; 35:424-439. [PMID: 27312470 DOI: 10.1002/jor.23343] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) is defined by its development after joint injury. Factors contributing to the risk of PTOA occurring, the rate of progression, and degree of associated disability in any individual, remain incompletely understood. What constitutes an "OA-inducing injury" is not defined. In line with advances in the traumatic brain injury field, we propose the scope of PTOA-inducing injuries be expanded to include not only those causing immediate structural damage and instability (Type I), but also those without initial instability/damage from moderate (Type II) or minor (Type III) loading severity. A review of the literature revealed this full spectrum of potential PTOA subtypes can be modeled in mice, with 27 Type I, 6 Type II, and 4 Type III models identified. Despite limitations due to cartilage anatomy, joint size, and bio-fluid availability, mice offer advantages as preclinical models to study PTOA, particularly genetically modified strains. Histopathology was the most common disease outcome, cartilage more frequently studied than bone or synovium, and meniscus and ligaments rarely evaluated. Other methods used to examine PTOA included gene expression, protein analysis, and imaging. Despite the major issues reported by patients being pain and biomechanical dysfunction, these were the least commonly measured outcomes in mouse models. Informative correlations of simultaneously measured disease outcomes in individual animals, was rarely done in any mouse PTOA model. This review has identified knowledge gaps that need to be addressed to increase understanding and improve prevention and management of PTOA. Preclinical mouse models play a critical role in these endeavors. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:424-439, 2017.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
10
|
Marenzana M, Vande Velde G. Refine, reduce, replace: Imaging of fibrosis and arthritis in animal models. Best Pract Res Clin Rheumatol 2015; 29:715-40. [DOI: 10.1016/j.berh.2016.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|