1
|
Mausset-Bonnefont AL, Toupet K, Jorgensen C, Noël D. Longitudinal assessment of structural and locomotor deficits as a prediction of severity in the collagenase-induced mouse model of osteoarthritis. Arthritis Res Ther 2025; 27:42. [PMID: 40011919 DOI: 10.1186/s13075-025-03507-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/15/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND The aim of this study was to provide an in-depth longitudinal locomotor and structural characterisation of the collagenase-induced osteoarthritis (CIOA) mouse model, using the most relevant and up-to-date non-invasive locomotor phenotyping and imaging methods. The ultimate goal of this study was to predict histological scores, the gold standard parameter in osteoarthritis (OA), based on locomotor or structural deficits. METHODS The CIOA model was induced in C57BL/6 male mice, which were then maintained in their home cage with or without a running wheel for 6 weeks. Both global and fine locomotor effects were measured using the open field and Catwalk™ tests. Imaging of bone and cartilage was performed using either µCT, contrast-enhanced µCT or confocal laser scanning microscopy (CLSM) at different time points. Correlations between functional or structural changes and histological scores were sought in order to provide tools for predicting histological degradation. RESULTS Locomotor deficits were observed at early time points (days 3 to 9) but did not persist to the end of the experiment. Signs of inflammation appeared as early as day 9. They worsened on day 28 as the disease progressed and meniscal calcifications were observed by µCT. The early functional and structural changes correlated with the histological scores measured post mortem and some specific locomotor or structural parameters were identified as predictors of histological changes. Free exercise (voluntary running wheel activity) did not seem to influence the severity of the observed changes. CONCLUSIONS Open-field quantification of kinetic parameters is a simple and timely relevant test to detect early locomotor changes and predict histological changes. Meniscal calcifications and osteophyte formation, which can be observed by µCT at early time points, are also highly predictive of OA severity. These two non-invasive techniques are very useful for longitudinal monitoring of mice and OA score prediction.
Collapse
Affiliation(s)
| | - Karine Toupet
- IRMB, University of Montpellier, INSERM, 80 Avenue Augustin Fliche, Montpellier, France
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, 80 Avenue Augustin Fliche, Montpellier, France
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, 80 Avenue Augustin Fliche, Montpellier, France.
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, France.
| |
Collapse
|
2
|
El-Haddad ME, El-Refaie WM, Hammad GO, El-Massik MA. Targeted non-invasive Metformin-Curcumin co-loaded nanohyaluosomes halt osteoarthritis progression and improve articular cartilage structure: A preclinical study. Int J Pharm 2024; 666:124845. [PMID: 39427700 DOI: 10.1016/j.ijpharm.2024.124845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Osteoarthritis (OA) is a degenerative disease that affects the quality of life in elderly and young populations. Current therapies using corticosteroids and non-steroidal anti-inflammatory drugs via parenteral or oral routes show limited ability to retard progression of the disease and achieve long term effectiveness and safety. Herein, the potential of MT-Cur combinatorial nano-formulations in OA management was explored for the first time. MT-Cur loaded nanohyaluosomes (MT-Cur-HL1) were designed for topical administration of the combined therapy in OA. The optimized MT-Cur-HL1 showed particle size 247.7 ± 3.7 nm, zeta potential -37.3 ± 0.4 mV; and entrapment efficiency (%EE) 70.22 %±0.303 and 76.7 %±0.077 for MT and Cur, respectively. MT-Cur-HL1 exhibited sustained drug release over 24 h and were stable over 3 months at 4 °C in terms of P.S., ZP and %EE. A detailed preclinical study, using MIA-induced osteoarthritis rat model, revealed the most significant anti-arthritic effect and halted OA progression of MT-Cur-HL1. This was proved to be mainly through the potentiation of p-AMPK signaling that ultimately led to suppression of its downstream TLR4/ NF-κB signaling pathway with subsequent reduction in MMP13 and ADAMTS5 induced chondrocytes degeneration. This study proved that this trajectory effectively promotes a significant improvement in the articular cartilage structure and reinforcement of joint mobility with an efficient antinociceptive effect. In conclusion, the novel MT-Cur coloaded nanohyaluosomes offer a promising non-invasive approach for the local management of OA.
Collapse
Affiliation(s)
- Mennatallah E El-Haddad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Wessam M El-Refaie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Ghada O Hammad
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Magda A El-Massik
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
3
|
Noorwali A, Aljoud F, Alghamdi A, Sattami N, Bashah T, Noorwali A, Pushparaj PN, Gauthaman K. Evaluation of serum biomarkers after intra-articular injection of rat bone marrow-derived mesenchymal stem cells in a rat model of knee osteoarthritis. Heliyon 2024; 10:e39940. [PMID: 39553645 PMCID: PMC11565378 DOI: 10.1016/j.heliyon.2024.e39940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Background Osteoarthritis (OA) is a prevalent joint disorder characterized by joint pain, functional impairment, and disability. The current study investigated the therapeutic effects of intra-articular injection of rat bone marrow-derived mesenchymal stem cells (rBM-MSCs) in rats with knee OA. Methods Fourty five male Wistar rats were randomly divided into three groups (A-C) and received either an intra-articular injection of normal saline (NS) or rBM-MSCs. The normal control group (A, n = 15) received NS, the OA control group (B, n = 15) received NS, and the OA treated group (C, n = 15) received rBM-MSCs (0.5 × 106 cells in 25 μL NS). Knee OA was induced using monosodium iodoacetate (MIA). rBM-MSCs were sourced from female Wistar rats and their stem cells were characterized using flow cytometry. Histomorphometric analyses were performed on knee sections from both normal and OA knee. Serum biomarkers, including hyaluronic acid (HA), cross-linked N-telopeptide of type I collagen-1 (NTX-1), NGF, calcitonin gene-related peptide (CGRP), matrix metalloproteinase-3 (MMP-3), oligomeric cartilage matrix protein COMP, interleukin-6 (IL-6), and soluble IL-6 receptor (sIL-6R), were analyzed using ELISA kits. Ingenuity Pathway Analysis (IPA) was used to determine the genes regulated by MSCs in OA, and the protective mechanisms were determined using the Molecular Activity Predictor (MAP). Results rBM-MSCs were positive for CD29 and CD90 and negative for CD45 surface markers. OA biomarkers were significantly elevated in the untreated OA group but decreased after treatment with intra-articular MSCs. The OA group treated with MSCs showed significant repair of the damaged cartilage compared to the control group. Conclusions Cartilage damage leads to an increase in inflammatory cytokine levels and is associated with an increase in serum biomarkers related to cartilage degradation. Intra-articular administration of MSCs showed beneficial effects, including regeneration of damaged cartilage and a reduction in inflammation-related serum biomarker levels.
Collapse
Affiliation(s)
- Abdulwahab Noorwali
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fadwa Aljoud
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Scientific Research Center, Dar Al-Hekma University, Jeddah, 22246, Saudi Arabia
| | - Amani Alghamdi
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Noora Sattami
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Taghreed Bashah
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdulsalam Noorwali
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Peter Natesan Pushparaj
- Institute of Genomic Medicine Sciences (IGMS) and Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Kalamegam Gauthaman
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
- Pharmaceutical Division, Nibblen Life Sciences Private Limited, Chennai, 600061, India
| |
Collapse
|
4
|
Otis C, Cristofanilli KA, Frezier M, Delsart A, Martel-Pelletier J, Pelletier JP, Beaudry F, Lussier B, Boyer A, Troncy E. Predictive and concurrent validity of pain sensitivity phenotype, neuropeptidomics and neuroepigenetics in the MI-RAT osteoarthritic surgical model in rats. Front Cell Dev Biol 2024; 12:1400650. [PMID: 39175874 PMCID: PMC11338919 DOI: 10.3389/fcell.2024.1400650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Background Micro-RNAs could provide great insights about the neuropathological mechanisms associated with osteoarthritis (OA) pain processing. Using the validated Montreal Induction of Rat Arthritis Testing (MI-RAT) model, this study aimed to characterize neuroepigenetic markers susceptible to correlate with innovative pain functional phenotype and targeted neuropeptide alterations. Methods Functional biomechanical, somatosensory sensitization (peripheral-via tactile paw withdrawal threshold; central-via response to mechanical temporal summation), and diffuse noxious inhibitory control (via conditioned pain modulation) alterations were assessed sequentially in OA (n = 12) and Naïve (n = 12) rats. Joint structural, targeted spinal neuropeptides and differential expression of spinal cord micro-RNAs analyses were conducted at the sacrifice (day (D) 56). Results The MI-RAT model caused important structural damages (reaching 35.77% of cartilage surface) compared to the Naïve group (P < 0.001). This was concomitantly associated with nociceptive sensitization: ipsilateral weight shift to the contralateral hind limb (asymmetry index) from -55.61% ± 8.50% (D7) to -26.29% ± 8.50% (D35) (P < 0.0001); mechanical pain hypersensitivity was present as soon as D7 and persisting until D56 (P < 0.008); central sensitization was evident at D21 (P = 0.038); pain endogenous inhibitory control was distinguished with higher conditioned pain modulation rate (P < 0.05) at D7, D21, and D35 as a reflect of filtrated pain perception. Somatosensory profile alterations of OA rats were translated in a persistent elevation of pro-nociceptive neuropeptides substance P and bradykinin, along with an increased expression of spinal miR-181b (P = 0.029) at D56. Conclusion The MI-RAT OA model is associated, not only with structural lesions and static weight-bearing alterations, but also with a somatosensory profile that encompasses pain centralized sensitization, associated to active endogenous inhibitory/facilitatory controls, and corresponding neuropeptidomic and neuroepigenetic alterations. This preliminary neuroepigenetic research confirms the crucial role of pain endogenous inhibitory control in the development of OA chronic pain (not only hypersensitivity) and validates the MI-RAT model for its study.
Collapse
Affiliation(s)
- Colombe Otis
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Katrine-Ann Cristofanilli
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Marilyn Frezier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Aliénor Delsart
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Johanne Martel-Pelletier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| | - Jean-Pierre Pelletier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et L’apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| | - Bertrand Lussier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| | - Alexandre Boyer
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Département de Biomédecine Vétérinaire, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Eric Troncy
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| |
Collapse
|
5
|
Mlost J, Białoń M, Kędziora M, Wąsik A, Michalec Ż, Starowicz K. Network analysis of monoamines involved in anxiety-like behavior in a rat model of osteoarthritis. Pharmacol Rep 2024; 76:72-85. [PMID: 38180634 PMCID: PMC10830664 DOI: 10.1007/s43440-023-00562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Chronic pain is a major health problem that affects a significant number of patients, resulting in personal suffering and substantial health care costs. One of the most commonly reported causal conditions is osteoarthritis (OA). In addition to sensory symptoms, chronic pain shares an inherent overlap with mood or anxiety disorders. The involvement of the frontal cortex, striatum and nucleus accumbens, in the affective processing of pain is still poorly understood. METHODS Male Wistar rats were divided into two groups: MIA (monoiodoacetate injected into the knee-model of OA) and sham (NaCl). Behavioral tests assessing pain, anxiety, and depressive behavior were performed at week 1, 3, 4, 6, 8, and 10. Neurochemical assays were conducted at weeks 3, 6, and 10 post-MIA injection, followed by the neurotransmitters and their metabolites correlation matrix and network analysis. RESULTS OA animals developed rapid pain phenotype, whereas anxiety-like behavior accompanied the development of a pain phenotype from 6 week post-MIA injection. We did not detect any depressive-like behavior. Instead, immobility time measured in the forced swimming test transiently decreased at 3 weeks post-MIA in the OA group. We detected changes in noradrenaline and serotonin levels in analyzed structures at distinct time points. Network analysis revealed noradrenaline and serotonin neurotransmission changes in the nucleus accumbens, confirming it to be the key structure affected by chronic pain. CONCLUSION Animals with chronic pain exhibit symptoms of anxiety-like behavior and we identified underlying neurochemical changes using network analysis.
Collapse
Affiliation(s)
- Jakub Mlost
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Ul. Smętna 12, 31-343, Kraków, Poland
| | - Magdalena Białoń
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Ul. Smętna 12, 31-343, Kraków, Poland
| | - Marta Kędziora
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Ul. Smętna 12, 31-343, Kraków, Poland
| | - Agnieszka Wąsik
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Ul. Smętna 12, 31-343, Kraków, Poland
| | - Żaneta Michalec
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Ul. Smętna 12, 31-343, Kraków, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Ul. Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
6
|
Otis C, Bouet E, Keita-Alassane S, Frezier M, Delsart A, Guillot M, Bédard A, Pelletier JP, Martel-Pelletier J, Lussier B, Beaudry F, Troncy E. Face and Predictive Validity of MI-RAT ( Montreal Induction of Rat Arthritis Testing), a Surgical Model of Osteoarthritis Pain in Rodents Combined with Calibrated Exercise. Int J Mol Sci 2023; 24:16341. [PMID: 38003530 PMCID: PMC10671647 DOI: 10.3390/ijms242216341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Validating animal pain models is crucial to enhancing translational research and response to pharmacological treatment. This study investigated the effects of a calibrated slight exercise protocol alone or combined with multimodal analgesia on sensory sensitivity, neuroproteomics, and joint structural components in the MI-RAT model. Joint instability was induced surgically on day (D) 0 in female rats (N = 48) distributed into sedentary-placebo, exercise-placebo, sedentary-positive analgesic (PA), and exercise-PA groups. Daily analgesic treatment (D3-D56) included pregabalin and carprofen. Quantitative sensory testing was achieved temporally (D-1, D7, D21, D56), while cartilage alteration (modified Mankin's score (mMs)) and targeted spinal pain neuropeptide were quantified upon sacrifice. Compared with the sedentary-placebo (presenting allodynia from D7), the exercise-placebo group showed an increase in sensitivity threshold (p < 0.04 on D7, D21, and D56). PA treatment was efficient on D56 (p = 0.001) and presented a synergic anti-allodynic effect with exercise from D21 to D56 (p < 0.0001). Histological assessment demonstrated a detrimental influence of exercise (mMs = 33.3%) compared with sedentary counterparts (mMs = 12.0%; p < 0.001), with more mature transformations. Spinal neuropeptide concentration was correlated with sensory sensitization and modulation sites (inflammation and endogenous inhibitory control) of the forced mobility effect. The surgical MI-RAT OA model coupled with calibrated slight exercise demonstrated face and predictive validity, an assurance of higher clinical translatability.
Collapse
Affiliation(s)
- Colombe Otis
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Emilie Bouet
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Sokhna Keita-Alassane
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Marilyn Frezier
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Aliénor Delsart
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Martin Guillot
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Agathe Bédard
- Charles River Laboratories Montreal ULC, Senneville, QC H9X 1C1, Canada;
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
| | - Bertrand Lussier
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
- Centre de Recherche sur le Cerveau et L’Apprentissage (CIRCA), Université de Montréal, Montréal, QC H3T 1P1, Canada
| | - Eric Troncy
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
- Centre de Recherche sur le Cerveau et L’Apprentissage (CIRCA), Université de Montréal, Montréal, QC H3T 1P1, Canada
| |
Collapse
|
7
|
Kung Y, Chien WC, Shen HH, Chen SL, Yu WL, Wang YC, Chen WS, Wu CH. Potential of thermoresponsive hydrogel as an alternative therapy for rat knee osteoarthritis. J Biomater Appl 2023; 38:707-718. [PMID: 37867223 DOI: 10.1177/08853282231208506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Osteoarthritis is a degenerative condition that is highly prevalent and primarily affects the joints. The knee is the most commonly affected site, impacting the lives of over 300 million individuals worldwide. This study presents a potential solution to address the unmet need for a minimally invasive technique in the treatment of osteoarthritis: a biocompatible, injectable, and thermoresponsive hydrogel. In comparison to commercially available products such as lyophilized platelets, dextrose, and triamcinolone, the thermoresponsive hydrogel exhibits significantly superior performance in dynamic behaviors, including print area, stability, and step cycle, when tested on rats with knee osteoarthritis. However, it demonstrates similar treatment efficacy to these products in static behaviors, as observed through histopathological and immunohistochemical analysis. Therefore, the thermoresponsive hydrogel holds promise as an effective alternative therapy for osteoarthritis. Moreover, by blending the hydrogel with drugs, controlled and sustained release can be achieved, thereby facilitating the long-term management of osteoarthritis symptoms.
Collapse
Affiliation(s)
- Yi Kung
- Department of Biomechatronic Engineering, National Chiayi University, Chiayi, Taiwan
| | - Wei-Chun Chien
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsin-Hsin Shen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Sen-Lu Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wei-Lin Yu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Yu-Chi Wang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chueh-Hung Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| |
Collapse
|
8
|
Yun SY, Kim Y, Kim H, Lee BK. Effective Technical Protocol for Producing a Mono-Iodoacetate-Induced Temporomandibular Joint Osteoarthritis in a Rat Model. Tissue Eng Part C Methods 2023; 29:438-445. [PMID: 37345716 DOI: 10.1089/ten.tec.2023.0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
An animal model of osteoarthritis (OA) induced by monosodium iodoacetate (MIA) can be effectively adjusted based on the concentration of MIA to control the onset, progression, and severity of OA as required. The rat temporomandibular joint osteoarthritis (TMJOA) model using MIA is a useful tool for studying the effectiveness of disease-modifying OA drugs in TMJOA research. However, the intricate and complex anatomy of the rat TMJ often poses challenges in achieving consistent TMJOA induction during experiments. In the previous article, a reference point was established by drawing parallel lines based on the line connecting the external ear and the zygomatic arch. However, this is not suitable for the anatomical characteristics of the rat. We used the zygomatic arch as a reference, which is a technical protocol that considers it. In our protocol, we designated a point ∼1 mm away from the point where the zygomatic arch bends toward the ear as the injection site. To ensure precise injection of MIA and increase the likelihood of inducing OA, it is recommended to insert the needle at a 45° angle so that the needle tip contacts the joint projection. To confirm TMJOA induction, we identified changes in the condyle using in vivo microcomputed tomography (CT) in a rat model of MIA-induced OA and measured the degree of pain-related inflammation using head withdrawal threshold (HWT) measurements. Micro-CT scanning revealed typical OA-like lesions, including degenerative changes and subchondral bone remodeling induced by MIA in the TMJ. Pain, a major clinical feature of OA, showed an appropriate response corresponding to the structural changes shown in micro-CT scanning. In addition, the MIA concentration suitable for long-term observation of lesions was determined through ex vivo micro-CT imaging and HWT measurements. The 8 mg concentration exhibited a significant difference compared with others, confirming the sustained presence of lesions, particularly through changes in subchondral bone over an extended period. Consequently, we have successfully established a reliable rat TMJOA induction model and identified the MIA concentration suitable for long-term observation of subchondral bone research, which will greatly contribute to the study of TMJOA-an incurable disease lacking specific treatment options. The Clinical Trial Registration number is 2021-12-208.
Collapse
Affiliation(s)
- So-Yeon Yun
- Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Institute of Convergence Science and Technology, Seoul, Korea
| | - Yerin Kim
- Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Institute of Convergence Science and Technology, Seoul, Korea
| | - Hyunjeong Kim
- Asan Institute for Life Science, Biomedical Engineering Research Center, Asan Institute for Life Sciences, Seoul, Korea
| | - Bu-Kyu Lee
- Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Institute of Convergence Science and Technology, Seoul, Korea
- Asan Institute for Life Science, Biomedical Engineering Research Center, Asan Institute for Life Sciences, Seoul, Korea
- Department of Oral and Maxillofacial Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Jyothi VGS, Veerabomma H, Kumar R, Khatri DK, Singh SB, Madan J. Meloxicam emulgel potently suppressed cartilage degradation in knee osteoarthritis: Optimization, formulation, industrial scalability and pharmacodynamic analysis. Colloids Surf B Biointerfaces 2023; 228:113399. [PMID: 37348266 DOI: 10.1016/j.colsurfb.2023.113399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND AND OBJECTIVE Meloxicam (MLX) is prescribed for the management of pain and inflammation allied with osteoarthritis (OA). However, MLX causes intestinal damage in long term administration. Hence, meloxicam loaded emulgel (MLX-emulgel) was optimized, formulated and examined under stringent parameters in monosodium-iodoacetate (MIA) induced knee OA in Wistar rats. METHODS AND RESULTS Nanoemulsion of MLX was fabricated by ultrasonication and microfluidization method with a droplet size of 66.81 ± 5.31-nm and zeta potential of -24.6 ± 0.72-mV. Further, MLX nanoemulsion was optimized with centrifugation, heating-cooling cycles and transmittance parameters in addition to scale-up feasibility with microfluidizer. Post optimization, MLX-nanoemulsion was tailored as emulgel with Carbopol Ultrez 10 NF and assessed for pH, rheology, textural properties, assay and stability features. The in-vitro release study revealed the Korsmeyer-Peppas release kinetics and ex-vivo skin permeation was improved by 6.71-folds. The skin distribution of MLX-emulgel evinced the transfollicular mode of permeation. In-vivo study indicated the protective action of MLX-emulegl expressed in terms of inflammatory cyctokines level, X-ray analysis of knee joints of rats, histopathology and OARSI (Osteoarthritis Research Society International) scoring. MLX-emulgel treated group displayed lower (P < 0.001) level of COX-2 intensity as compared to positive control group. However, it was comparable (P > 0.05) to the normal control group, MLX oral dispersion, i.v. solution and etoricoxib gel groups. MLX-emulgel showcased an alternative to the long term usage of analgesics for relieving the symptoms of knee OA. CONCLUSION MLX-emulgel may be a potential candidate for translating in to a clinically viable dosage form in the management of knee OA.
Collapse
Affiliation(s)
- Vaskuri Gs Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Harithasree Veerabomma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
10
|
Jin H, Yang Y, Lei G, Zeng C, He K, Wang Y, Deng C, Wei J, Li X, Li H. Pain Intensity and Trajectory Following Intra-Articular Injection of Mono-Iodoacetate in Experimental Osteoarthritis: A Meta-Analysis of In Vivo Studies. Cartilage 2023; 14:86-93. [PMID: 36628407 PMCID: PMC10076896 DOI: 10.1177/19476035221144748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Although most frequently used in experimental osteoarthritis (OA) pain induction, intra-articular mono-iodoacetate (MIA) injection lacks concluded references for dose selection and timing of intervention. Herein, we aimed to compare the pain intensity of rats induced by different doses of MIA and explored the trajectory of pain. DESIGN PubMed, Embase, and Web of Science were searched up to June 2021 for literatures involving MIA experiments investigating OA pain. Pain intensity was measured based on weightbearing distribution (WBD) and paw withdrawal thresholds (PWT), and the pain trajectory was constructed by evaluating pain intensity at a series of time points after MIA injection. A conventional meta-analysis was conducted. RESULTS A total of 140 studies were included. Compared with saline, MIA injections caused significantly higher pain intensity for WBD and PWT. Dose-response relationships between different doses of MIA and pain intensity were observed (P-for-trend<0.05). A pronounced increase in pain occurred from day 0 to day 7, but the uptrend ceased between day 7 and day 14, after which the pain intensity continued to rise and reached the maximum by day 28. CONCLUSIONS Pain intensity after intra-articular MIA injection increased in a dose-dependent manner and the pain trajectory manifested a specific pattern consistent with the pathological mechanisms of MIA-induced pain, providing possible clues for proper dose selection and timing of specific OA pain interventions.
Collapse
Affiliation(s)
- Hongyu Jin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanheng Yang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ke He
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
| | - Yilun Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Caifeng Deng
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wei
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxiao Li
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Analysis of the therapeutic efficacy of meloxicam-loaded solid lipid nanoparticles topical gel in Wistar rats knee osteoarthritis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Keita-Alassane S, Otis C, Bouet E, Guillot M, Frezier M, Delsart A, Moreau M, Bédard A, Gaumond I, Pelletier JP, Martel-Pelletier J, Beaudry F, Lussier B, Lecomte R, Marchand S, Troncy E. Estrogenic impregnation alters pain expression: analysis through functional neuropeptidomics in a surgical rat model of osteoarthritis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:703-715. [PMID: 35318491 DOI: 10.1007/s00210-022-02231-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE Several observational studies suggest that estrogens could bias pain perception. To evaluate the influence of estrogenic impregnation on pain expression, a prospective, randomized, controlled, blinded study was conducted in a Sprague-Dawley rat model of surgically induced osteoarthritis (OA). METHODS Female rats were ovariectomized and pre-emptive 17β-estradiol (0.025 mg, 90-day release time) or placebo pellets were installed subcutaneously during the OVX procedures. Thirty-five days after, OA was surgically induced on both 17β-estradiol (OA-E) and placebo (OA-P) groups. Mechanical hypersensitivity was assessed by static weight-bearing (SWB) and paw withdrawal threshold (PWT) tests. Mass spectrometry coupled with high-performance liquid chromatography (HPLC-MS) was performed to quantify the spinal pronociceptive neuropeptides substance P (SP), calcitonin gene-related peptide (CGRP), bradykinin (BK), somatostatin (SST), and dynorphin-A (Dyn-A). RESULTS Compared to control, ovariectomized rats presented higher SP (P = 0.009) and CGRP (P = 0.017) concentrations. OA induction increased the spinal level of SP (+ 33%, P < 0.020) and decreased the release of BK (- 20%, (P < 0.037)). The OA-E rats at functional assessment put more % body weight on the affected hind limb than OA-P rats at D7 (P = 0.027) and D56 (P = 0.033), and showed higher PWT at D56 (P = 0.009), suggesting an analgesic and anti-allodynic effect of 17β-estradiol. Interestingly, the 17β-estradiol treatment counteracted the increase of spinal concentration of Dyn-A (P < 0.016) and CGRP (P < 0.018). CONCLUSION These results clearly indicate that 17β-estradiol interfers with the development of central sensitization and confirm that gender dimorphism should be considered when looking at pain evaluation.
Collapse
Affiliation(s)
- Sokhna Keita-Alassane
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
| | - Colombe Otis
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Emilie Bouet
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
| | - Martin Guillot
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Charles River Laboratories Montreal ULC, Senneville, QC, Canada
| | - Marilyn Frezier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
| | - Aliénor Delsart
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
| | - Maxim Moreau
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Agathe Bédard
- Charles River Laboratories Montreal ULC, Senneville, QC, Canada
| | - Isabelle Gaumond
- Département de Chirurgie, Département d'anesthésie, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Francis Beaudry
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Bertrand Lussier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Roger Lecomte
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
| | - Serge Marchand
- Département de Chirurgie, Département d'anesthésie, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
| | - Eric Troncy
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada.
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada.
| |
Collapse
|
13
|
Sok D, Raval S, McKinney J, Drissi H, Mason A, Mautner K, Kaiser JM, Willett NJ. NSAIDs Reduce Therapeutic Efficacy of Mesenchymal Stromal Cell Therapy in a Rodent Model of Posttraumatic Osteoarthritis. Am J Sports Med 2022; 50:1389-1398. [PMID: 35420503 DOI: 10.1177/03635465221083610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Intra-articular injections of human mesenchymal stromal cells (hMSCs) have shown promise in slowing cartilage degradation in posttraumatic osteoarthritis (PTOA). Clinical use of cell therapies for osteoarthritis has accelerated in recent years without sufficient scientific evidence defining best-use practices. Common recommendations advise patients to avoid nonsteroidal anti-inflammatory drug (NSAID) use before and after cell injection over concerns that NSAIDs may affect therapeutic efficacy. Recommendations to restrict NSAID use are challenging for patients, and it is unclear if patients are compliant. HYPOTHESIS NSAIDs will reduce the efficacy of hMSC therapy in treating a preclinical model of PTOA. STUDY DESIGN Controlled laboratory study. METHODS Lewis rats underwent medial meniscal transection (MMT) surgery to induce PTOA or a sham (sham group) surgery that did not progress to PTOA. Rats received naproxen solution orally daily before (Pre-NSAID group) or after (Post-NSAID group) hMSC treatment, throughout the course of the experiment (Full-NSAID group), or received hMSCs without NSAIDs (No NSAID). Cartilage morphology and composition were quantified using contrast-enhanced micro-computed tomography and histology. Pain (secondary allodynia) was measured using a von Frey filament. RESULTS Injection of hMSCs attenuated cartilage degeneration associated with MMT. hMSCs prevented proteoglycan loss, maintained smooth cartilage surfaces, reduced cartilage lesions, reduced mineralized osteophyte formation, and reduced pain by week 7. The Pre-NSAID group had decreased proteoglycan levels compared with the hMSC group, although there were no other significant differences. Thus, pretreatment with NSAIDs had minimal effects on the therapeutic benefits of hMSC injections. The Post-NSAID and Full-NSAID groups, however, exhibited significantly worse osteoarthritis than the hMSC-only group, with greater proteoglycan loss, surface roughness, osteophyte volume, and pain. CONCLUSION Use of NSAIDs before hMSC injection minimally reduced the therapeutic benefits for PTOA, which included preservation of cartilage surface integrity as well as a reduction in osteophytes. Use of NSAIDs after injections, however, substantially reduced the therapeutic efficacy of cellular treatment. CLINICAL RELEVANCE Our data support the clinical recommendation of avoiding NSAID use after hMSC injection but suggest that using NSAIDs before treatment may not substantially diminish the therapeutic efficacy of cell treatment.
Collapse
Affiliation(s)
- Daniel Sok
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarvgna Raval
- Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Affairs Hospital, Atlanta, Georgia, USA
| | - Jay McKinney
- Emory University School of Medicine, Atlanta, Georgia, USA.,Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Hicham Drissi
- Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Affairs Hospital, Atlanta, Georgia, USA
| | - Amadeus Mason
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ken Mautner
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jarred M Kaiser
- Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Affairs Hospital, Atlanta, Georgia, USA
| | - Nick J Willett
- Emory University School of Medicine, Atlanta, Georgia, USA.,Georgia Institute of Technology, Atlanta, Georgia, USA.,Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| |
Collapse
|
14
|
Gao R, Ye T, Zhu Z, Li Q, Zhang J, Yuan J, Zhao B, Xie Z, Wang Y. Small extracellular vesicles from iPSC-derived mesenchymal stem cells ameliorate tendinopathy pain by inhibiting mast cell activation. Nanomedicine (Lond) 2022; 17:513-529. [PMID: 35289187 DOI: 10.2217/nnm-2022-0036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: This study aimed to explore the effect of small extracellular vesicles from induced pluripotent stem cell-derived mesenchymal stem cells (iMSC-sEVs) on acute pain and investigate the underlying mechanisms. Materials & methods: The pathology of tendons was accessed by hematoxylin and eosin staining, immunohistochemical and immunofluorescent staining. The pain degree was measured by pain-related behaviors. In vitro, we performed β-hexosaminidase release assay, RT-qPCR, toluidine blue staining, ELISA and RNA sequencing. Results: iMSC-sEVs effectively alleviated acute pain in tendinopathy as well as inhibiting activated mast cell infiltration and interactions with nerve fibers in vivo. In vitro, iMSC-sEVs reduced the degranulation of mast cells and the expression of proinflammatory cytokines and genes involved in the HIF-1 signaling pathway. Conclusion: This study demonstrated that iMSC-sEVs relieved tendinopathy-related pain through inhibiting mast cell activation via the HIF-1 signaling pathway.
Collapse
Affiliation(s)
- Renzhi Gao
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Teng Ye
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Zhaochen Zhu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Qing Li
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Juntao Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Ji Yuan
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Bizeng Zhao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Zongping Xie
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
15
|
Zhu Z, Gao R, Ye T, Feng K, Zhang J, Chen Y, Xie Z, Wang Y. The Therapeutic Effect of iMSC-Derived Small Extracellular Vesicles on Tendinopathy Related Pain Through Alleviating Inflammation: An in vivo and in vitro Study. J Inflamm Res 2022; 15:1421-1436. [PMID: 35256850 PMCID: PMC8898180 DOI: 10.2147/jir.s345517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
Background Tendinopathy is a common cause of tendon pain. However, there is a lack of effective therapies for managing tendinopathy pain, despite the pain being the most common complaint of patients. This study aimed to evaluate the therapeutic effect of small extracellular vesicles released from induced pluripotent stem cell-derived mesenchymal stem cells (iMSC-sEVs) on tendinopathy pain and explore the underlying mechanisms. Methods Rat tendinopathy model was established and underwent the injection of iMSC-sEVs to the quadriceps tendon one week after modeling. Pain-related behaviors were measured for the following four weeks. Tendon histology was assessed four weeks after the injection. To further investigate the potential mechanism, tenocytes were stimulated with IL-1β to mimic tendinopathy in vitro. The effect of iMSC-sEVs on tenocyte proliferation and the expression of proinflammatory cytokines were measured by CCK-8, RT-qPCR, and ELISA. RNA-seq was further performed to systematically analyze the related global changes and underlying mechanisms. Results Local injection of iMSC-sEVs was effective in alleviating pain in the tendinopathy rats compared with the vehicle group. Tendon histology showed ameliorated tendinopathy characteristics. Upon iMSC-sEVs treatment, significantly increased tenocyte proliferation and less expression of proinflammatory cytokines were observed. Transcriptome analysis revealed that iMSC-sEVs treatment upregulated the expression of genes involved in cell proliferation and downregulated the expression of genes involved in inflammation and collagen degeneration. Conclusion Collectively, this study demonstrated iMSC-sEVs protect tenocytes from inflammatory stimulation and promote cell proliferation as well as collagen synthesis, thereby relieving pain derived from tendinopathy. As a cell-free regenerative treatment, iMSC-sEVs might be a promising therapeutic candidate for tendinopathy.
Collapse
Affiliation(s)
- Zhaochen Zhu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Renzhi Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Teng Ye
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Kai Feng
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Juntao Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Yu Chen
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Zongping Xie
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Correspondence: Zongping Xie, Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600# Yishan Road, Shanghai, 200233, People’s Republic of China Email
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| |
Collapse
|
16
|
Chen HK, Li YZ, Ge AN, Zhu YB, Wu SJ, Bai X, Bai HH, Liu YN. Cbl-b modulated TrkA ubiquitination and function in the dorsal root ganglion of mice. Eur J Pharmacol 2022; 921:174876. [DOI: 10.1016/j.ejphar.2022.174876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
|
17
|
Characteristics of sensory innervation in synovium of rats within different knee osteoarthritis models and the correlation between synovial fibrosis and hyperalgesia. J Adv Res 2022; 35:141-151. [PMID: 35003798 PMCID: PMC8721247 DOI: 10.1016/j.jare.2021.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022] Open
Abstract
Synovial fibrosis was positively correlated with pain sensitivity in KOA rats. Synovial fibrosis was most prominent in DMM group 14 days after modeling. ACLT replaced DMM to be the most typical at 28 days after modeling. Increased synovial sensory innervation followed the same trend as fibrosis. ACLT is more applicable for KOA pain research.
Introduction Knee osteoarthritis (KOA) showed synovial fibrosis and hyperalgesia, although the correlation between the two is unclear. Besides, the specific changes of sensory innervation in animal models are still controversial, which makes it difficult to choose the modeling methods for KOA pain research. Objectives Study the characteristics of sensory innervation within three commonly used KOA rat models and the correlation between synovial fibrosis and hyperalgesia. Methods KOA models were induced by destabilization of medial meniscus (DMM), anterior cruciate ligament transection (ACLT), and monoiodoacetate (MIA), respectively. Mechanical, cold and thermal withdrawal threshold (MWT, CWT and TWT) were measured. The harvested tissues were used for pathological sections, immunofluorescence and quantitative analysis. Results KOA synovium showed more type I collagen deposition, increased expression of CD31, VEGF and TGF-β. These changes were most pronounced in surgical models, with DMM presenting the most prominent at Day 14 and ACLT at Day 28. Day 14, changes in mechanical hyperalgesia and cold hyperalgesia were most typical in DMM model and statistically different from MIA. There was a negative correlation between the percentage of type I collagen and MWT value (r = −0.88), as well as CWT value (r = −0.95). DMM synovium showed more axonal staining, upregulated CGRP, TRPV1, NGF and Netrin1 compared with MIA. Above changes were also observed at Day 28, but ACLT replaced DMM as the most typical. In DRG, only the levels of CGRP and NGF were different among KOA models at Day 14, and the highest in DMM, which was statistically different compared with MIA. Conclusions This study described the details of sensory innervation in different KOA model of rats, and the degree of synovial fibrosis was positively correlated with the pain sensitivity of KOA model rats. Additionally, surgical modeling especially ACLT method is more recommended for KOA pain research.
Collapse
Key Words
- ACLT, anterior cruciate ligament transection
- Animal models
- CGRP, calcitonin gene-related peptide
- CWT, cold withdrawal threshold
- DMM, destabilization of the medial meniscus
- ECM, extracellular matrix
- KOA, knee osteoarthritis
- Knee osteoarthritis
- MIA, monoiodoacetate
- MWT, mechanical withdrawal threshold
- NGF, nerve growth factor
- Pain
- Sensory innervation
- Synovial fibrosis
- TGF-β, transforming growth factor-β
- TRPV1, transient receptor potential vanilloid type 1
- TWT, thermal withdrawal threshold
- VEGF, vascular endothelial growth factor
Collapse
|
18
|
Zhang H, Lecker I, Collymore C, Dokova A, Pham MC, Rosen SF, Crawhall-Duk H, Zain M, Valencia M, Filippini HF, Li J, D'Souza AJ, Cho C, Michailidis V, Whissell PD, Patel I, Steenland HW, Virginia Lee WJ, Moayedi M, Sterley TL, Bains JS, Stratton JA, Matyas JR, Biernaskie J, Dubins D, Vukobradovic I, Bezginov A, Flenniken AM, Martin LJ, Mogil JS, Bonin RP. Cage-lid hanging behavior as a translationally relevant measure of pain in mice. Pain 2021; 162:1416-1425. [PMID: 33230005 PMCID: PMC8054539 DOI: 10.1097/j.pain.0000000000002127] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
ABSTRACT The development of new analgesic drugs has been hampered by the inability to translate preclinical findings to humans. This failure is due in part to the weak connection between commonly used pain outcome measures in rodents and the clinical symptoms of chronic pain. Most rodent studies rely on the use of experimenter-evoked measures of pain and assess behavior under ethologically unnatural conditions, which limits the translational potential of preclinical research. Here, we addressed this problem by conducting an unbiased, prospective study of behavioral changes in mice within a natural homecage environment using conventional preclinical pain assays. Unexpectedly, we observed that cage-lid hanging, a species-specific elective behavior, was the only homecage behavior reliably impacted by pain assays. Noxious stimuli reduced hanging behavior in an intensity-dependent manner, and the reduction in hanging could be restored by analgesics. Finally, we developed an automated approach to assess hanging behavior. Collectively, our results indicate that the depression of hanging behavior is a novel, ethologically valid, and translationally relevant pain outcome measure in mice that could facilitate the study of pain and analgesic development.
Collapse
Affiliation(s)
- Hantao Zhang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Irene Lecker
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Chereen Collymore
- Division of Comparative Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Animal Care and Veterinary Services, University of Ottawa, Ottawa, ON, Canada
| | - Anastassia Dokova
- Departments of Psychology and Anesthesia, McGill University, Montreal, QC, Canada
| | | | - Sarah F. Rosen
- Departments of Psychology and Anesthesia, McGill University, Montreal, QC, Canada
| | - Hayley Crawhall-Duk
- Departments of Psychology and Anesthesia, McGill University, Montreal, QC, Canada
| | - Maham Zain
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Megan Valencia
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | | - Jerry Li
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Abigail J. D'Souza
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- The Centre for Phenogenomics, Toronto, ON, Canada
| | - Chulmin Cho
- Department of Psychology, University of Toronto at Mississauga, Mississauga, ON, Canada
| | - Vassilia Michailidis
- Department of Psychology, University of Toronto at Mississauga, Mississauga, ON, Canada
| | - Paul D. Whissell
- Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - Ingita Patel
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | | - Wai-Jane Virginia Lee
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Toni-Lee Sterley
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jaideep S. Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - John R. Matyas
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - David Dubins
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | | | | | | - Loren J. Martin
- Department of Psychology, University of Toronto at Mississauga, Mississauga, ON, Canada
- Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - Jeffrey S. Mogil
- Departments of Psychology and Anesthesia, McGill University, Montreal, QC, Canada
| | - Robert P. Bonin
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Cell and Systems Biology, University of Toronto Toronto, ON, Canada
- Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Khodir SA, Al-Gholam MA, Salem HR. L-Carnitine potentiates the anti-inflammatory and antinociceptive effects of diclofenac sodium in an experimentally-induced knee osteoarthritis rat model. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1035-1044. [PMID: 32952950 PMCID: PMC7478254 DOI: 10.22038/ijbms.2020.43136.10138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/09/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVES The aim of the present research is to investigate the efficacy of L-carnitine (LC) as a complementary therapy to diclofenac sodium (Dic) treatment in a mono-iodoacetate (MIA) induced knee osteoarthritis (OA) rat model, with respect to pain relief and the underlying pathology. MATERIALS AND METHODS Fifty adult male albino rats were randomly divided into five groups (n=10): Control, OA, OA/Dic, OA/LC, and OA/Dic+LC. Knee diameter and pain assessment tests were done weekly. After four weeks, serum malondialdehyde, reduced glutathione, interleukin 1-β, tumor necrosis factor-alpha, prostaglandin E2, and bone-specific alkaline phosphatase were measured. The injected knees were removed and processed for the histological and immunohistological study of matrix metalloproteinase-13 (MMP-13) and cyclooxygenase 2 (COX-2). Also, histological examination of dorsal root ganglia and calcitonin gene-related peptide (CGRP) expression in the spinal cord were assessed. RESULTS Treatment with Dic and/or LC significantly reduced knee swelling, improved pain-related behaviors, inflammatory and oxidative stress markers, attenuated the MIA-mediated histopathological alteration in the knee joint, and down-regulated expression of MMP-13 and COX-2 in the knee joint. It, also, significantly reduced CGRP expression, compared with the OA group. Dic+LC showed a better effect in improving some parameters than each treatment alone. CONCLUSION LC plus Dic is a more effective therapy than Dic alone for OA treatment.
Collapse
Affiliation(s)
- Suzan A Khodir
- Medical Physiology Department , Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Marwa A Al-Gholam
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Heba R Salem
- Medical Physiology Department , Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| |
Collapse
|
20
|
Relationship between Pain Behavior and Changes in KCNA2 Expression in the Dorsal Root Ganglia of Rats with Osteoarthritis. Pain Res Manag 2020. [DOI: 10.1155/2020/4636838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objective. To investigate the relationship between pain behavior and potassium voltage-gated channel subfamily A member 2 (KCNA2) expression in dorsal root ganglia (DRGs) of rats with osteoarthritis (OA). Methods. Male Sprague-Dawley rats were randomly divided into three groups: blank control group (group C), normal saline group (group S), and group OA. Paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) were measured one day before injection and one, two, four, and six weeks after injection. At one, two, four, and six weeks after injection, pathological knee joint changes and activated transcription factor-3 (ATF-3) and KCNA2 expressions in DRGs were analyzed. Results. Compared with preinjection, PWMT and PWTL at two, four, and six weeks after injection were significantly decreased in the group OA (P<0.05 or 0.01). Compared with group C, PWMT and PWTL at two, four, and six weeks after injection were significantly decreased in the group OA (P<0.05 or 0.01). In the group OA, slight local articular cartilage surface destruction was found at week one. The cartilage surface destruction gradually developed, and the exacerbation of cartilage matrix reduction and bone hyperplasia were increasingly aggravated and eventually evolved into advanced OA in the second to sixth weeks. Compared with group C, ATF-3 expression was significantly increased, and KCNA2 expression was significantly decreased in the group OA at two, four, and six weeks after injection (P<0.05 or 0.01). Compared to baseline, ATF-3 expression was significantly increased, and KCNA2 expression was significantly decreased in the group OA (P<0.05 or 0.01). Conclusion. Pain behavior in OA rats was associated with decreased KCNA2 expression in DRGs.
Collapse
|
21
|
Hanafy AS, El-Ganainy SO. Thermoresponsive Hyalomer intra-articular hydrogels improve monoiodoacetate-induced osteoarthritis in rats. Int J Pharm 2019; 573:118859. [PMID: 31778752 DOI: 10.1016/j.ijpharm.2019.118859] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/24/2019] [Accepted: 11/06/2019] [Indexed: 02/05/2023]
Abstract
Osteoarthritis (OA) is characterized by degenerative knees, fingers and hip joints. In OA joints, the concentration and polymerization of hyaluronic acid (HA) are changed; affecting the viscosity of the synovial fluid. Replenishing HA synovial fluid content, along with an anti-inflammatory drug could be a cost-effective strategy. As free drugs are rapidly cleared out of the synovial fluid, we aimed to prepare Hyalomer in situ forming gel for intra-articular (IA) injection. Hyalomer contains poloxamer 407 (PX) as thermogelling agent, HA, and diclofenac potassium (DK) as an anti-inflammatory. Hyalomer formulations were prepared and characterized in terms of sol-gel transition, gelation time, in vitro release and 3-month stability. The selected Hyalomer formula was injected IA in OA rat model, in comparison to its individual components. The optimized Hyalomer formulation showed 25% DK release after 24 h and 40% after 4 days. The gelation time was 40 ± 2.08 s and gelation temperature was 26 ± 1.87 °C. Hyalomer maintained the percentage drug release and DK content after 3-months storage. In OA rats, Hyalomer showed the highest anti-nociceptive and anti-edematous effect. Both radiography and histopathology revealed regenerated cartilage profile in Hyalomer-treated group. combining IA HA and diclofenac in thermoresponsive gel represents a promising therapeutic alternative for OA.
Collapse
Affiliation(s)
- Amira Sayed Hanafy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy & Drug Manufacturing, Pharos University in Alexandria (PUA), Alexandria, Egypt; Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy & Drug Manufacturing, Pharos University in Alexandria (PUA), Alexandria, Egypt.
| |
Collapse
|
22
|
Altarifi A, Alsalem M, Mustafa A. Effects of intraplantar administration of Complete Freund's Adjuvant (CFA) on rotarod performance in mice. Scand J Pain 2019; 19:805-811. [PMID: 31265434 DOI: 10.1515/sjpain-2018-0358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/04/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS Preclinical animal models are crucial to study pain mechanisms and assess antinociceptive effects of medications. One major problem with current animal behavioral models is their lack of face validity with human nociception and the vulnerability for false-positive results. Here, we evaluated the usefulness of rotarod as a new way to assess inflammatory nociception in rodents. METHODS Adult male mice were injected with saline or Complete Freund's Adjuvant (CFA) in the left hindpaws. Mechanical allodynia and rotarod performance were evaluated before and after the administration of CFA. Mechanical allodynia was measured using von Frey filaments. Long-term effect of CFA on rotarod performance was also assessed for 2 weeks. RESULTS Our results showed that CFA administration decreased pain threshold and increased sensitivity to von Frey filaments compared to control group. In rotarod experiments, the starting speed of the rod rotation started at four RPM, and accelerated until it reached 40 RPM in 5 min. Rotarod performance was enhanced from day to day in the control group. However, rotarod performance in CFA group was attenuated after CFA administration, which was significant after 24 h compared to vehicle. This attenuation was blocked by ibuprofen. Haloperidol administration (positive control) produced similar results to CFA administration. CFA did not produce significant attenuation of rotarod performance after 1 week post-injection. CONCLUSIONS Collectively, our findings could encourage the use of rotarod assay to measure acute (but not chronic) inflammatory nociception as a useful tool in rodents.
Collapse
Affiliation(s)
- Ahmad Altarifi
- Department of Pharmacology, School of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan, Phone: +962 2 7201000/ext. 23864, Fax: +962 2 7095123
| | - Mohammad Alsalem
- Department of Anatomy and Histology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | | |
Collapse
|
23
|
Otis C, Guillot M, Moreau M, Pelletier JP, Beaudry F, Troncy E. Sensitivity of functional targeted neuropeptide evaluation in testing pregabalin analgesic efficacy in a rat model of osteoarthritis pain. Clin Exp Pharmacol Physiol 2019; 46:723-733. [PMID: 31046168 DOI: 10.1111/1440-1681.13100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/22/2019] [Accepted: 04/28/2019] [Indexed: 12/27/2022]
Abstract
The monosodium iodoacetate (MIA)-induced joint degeneration in rats is the most used animal model to screen analgesic drugs to alleviate osteoarthritis (OA) pain. This study aimed to evaluate the analgesic efficacy of pregabalin (PGB) in an MIA-induced OA model in rodents by using functional and neuroproteomic pain assessment methods. Treatment group included PGB in curative intent over 9 days compared to gold standard therapy (positive controls) and placebo (negative control). Functional assessments of pain (quantitative sensory testing and operant test) were performed concomitantly with spinal neuropeptides quantification. At day 21 post-OA induction, PGB in MIA rats reduced tactile allodynia (P = 0.028) and improved the place escape/avoidance behaviour (P = 0.04) compared to values recorded at last time-point before initiating analgesic therapy. All spinal neuropeptide concentrations, such as substance P, calcitonin gene-related peptide, bradykinin and somatostatin, came back to normal (non-affected) rat values, compared to their increase observed in MIA rats receiving the placebo (P < 0.0001). Initiated 13 days after chemical OA induction, repeated medication with PGB provided analgesia according to quantitative sensory testing, operant test and targeted neuropeptides pain assessment methods. This report highlights the interest of using reliable and sensitive methods like targeted neuropeptide quantification to detect the analgesic effects of a test article with concomitant functional assessments of pain when studying OA pain components.
Collapse
Affiliation(s)
- Colombe Otis
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Martin Guillot
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Maxim Moreau
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Jean-Pierre Pelletier
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Francis Beaudry
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Eric Troncy
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| |
Collapse
|
24
|
Allen PI, Conzemius MG, Evans RB, Kiefer K. Correlation between synovial fluid cytokine concentrations and limb function in normal dogs and in dogs with lameness from spontaneous osteoarthritis. Vet Surg 2019; 48:770-779. [PMID: 31032990 DOI: 10.1111/vsu.13212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/22/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To determine the relationship between synovial biomarker concentrations and severity of lameness and to assess the ability to differentiate normal from osteoarthritic joints with synovial biomarker concentrations. STUDY DESIGN Prospective clinical study. SAMPLE POPULATION Twelve hounds with no evidence of osteoarthritis (OA) and 27 client-owned dogs with unilateral lameness and joint pain in a single joint from naturally occurring OA. METHODS Enrollment in the OA group required a history of lameness, radiographic evidence of OA on orthogonal joint radiographs, and ≥6% gait asymmetry between contralateral limbs. The concentrations of 14 synovial OA biomarkers in synovial samples obtained after gait analysis were measured with enzyme-linked immunosorbent assays and compared between normal and OA joints. RESULTS Concentrations of monocyte chemoattractant protein (MCP)-1, substance P, interleukin (IL)-6, IL-8, KC-like, matrix metalloproteinase (MMP)-1, and MMP-3 were greater (P ≤ .05) in OA than in normal joints. The concentrations of bradykinin and tissue inhibitors of metalloproteinase-4 were decreased in OA compared with normal joints. Monocyte chemoattractant protein 1 was identified as the most accurate marker to distinguish OA from normal joints. No correlation was detected between any OA biomarker concentration, individually or in combination, and severity of gait asymmetry at the walk. CONCLUSION Differences in proinflammatory and anti-inflammatory biomarkers were detected between OA and normal joints, but no relationship was identified between biomarker concentrations and gait asymmetry in dogs with OA. CLINICAL IMPACT This information will help guide future studies to elucidate how factors such as disease chronicity, severity, and etiology affect these relationships.
Collapse
Affiliation(s)
- Philip I Allen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Michael G Conzemius
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Richard B Evans
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Kristina Kiefer
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| |
Collapse
|
25
|
Gervais JA, Otis C, Lussier B, Guillot M, Martel-Pelletier J, Pelletier JP, Beaudry F, Troncy E. Osteoarthritic pain model influences functional outcomes and spinal neuropeptidomics: A pilot study in female rats. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2019; 83:133-141. [PMID: 31097875 PMCID: PMC6450163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/13/2018] [Indexed: 06/09/2023]
Abstract
Osteoarthritis, the leading cause of chronic joint pain, is studied through different animal models, but none of them is ideal in terms of reliability and translational value. In this pilot study of female rats, 3 surgical models of osteoarthritic pain, i.e., destabilization of the medial meniscus (DMM), cranial cruciate ligament transection (CCLT), and the combination of both surgical models (COMBO) and 1 chemical model [intra-articular injection of monosodium iodoacetate (MIA)] were compared for their impact on functional pain outcomes [static weight-bearing (SWB) and punctate tactile paw withdrawal threshold (PWT)] and spinal neuropeptides [substance P (SP), calcitonin gene-related peptide (CGRP), bradykinin (BK), and somatostatin (SST)]. Six rats were assigned to each model group and a sham group. Both the chemical model (MIA) and surgical COMBO model induced functional alterations in SWB and PWT, with the changes being more persistent in the surgical combination group. Both models also produced an increase in levels of pro-nociceptive and anti-nociceptive neuropeptides at different timepoints. Pain comparison with the MIA model showed the advantage of a surgical model, especially the combination of the DMM and CCLT models, whereas each surgical model alone only led to temporary functional alterations and no change in neuropeptidomics.
Collapse
Affiliation(s)
- Julie Anne Gervais
- GREPAQ (Research Group in Animal Pharmacology of Quebec), Département de biomédecine vétérinaire (Gervais, Otis, Guillot, Beaudry, Troncy) and Département de sciences cliniques (Lussier), Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, Saint-Hyacinthe, Québec; Osteoarthritis Research Unit, Université de Montréal Hospital Research Centre (CRCHUM), Montreal, Quebec (Lussier, Martel-Pelletier, Pelletier, Troncy)
| | - Colombe Otis
- GREPAQ (Research Group in Animal Pharmacology of Quebec), Département de biomédecine vétérinaire (Gervais, Otis, Guillot, Beaudry, Troncy) and Département de sciences cliniques (Lussier), Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, Saint-Hyacinthe, Québec; Osteoarthritis Research Unit, Université de Montréal Hospital Research Centre (CRCHUM), Montreal, Quebec (Lussier, Martel-Pelletier, Pelletier, Troncy)
| | - Bertrand Lussier
- GREPAQ (Research Group in Animal Pharmacology of Quebec), Département de biomédecine vétérinaire (Gervais, Otis, Guillot, Beaudry, Troncy) and Département de sciences cliniques (Lussier), Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, Saint-Hyacinthe, Québec; Osteoarthritis Research Unit, Université de Montréal Hospital Research Centre (CRCHUM), Montreal, Quebec (Lussier, Martel-Pelletier, Pelletier, Troncy)
| | - Martin Guillot
- GREPAQ (Research Group in Animal Pharmacology of Quebec), Département de biomédecine vétérinaire (Gervais, Otis, Guillot, Beaudry, Troncy) and Département de sciences cliniques (Lussier), Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, Saint-Hyacinthe, Québec; Osteoarthritis Research Unit, Université de Montréal Hospital Research Centre (CRCHUM), Montreal, Quebec (Lussier, Martel-Pelletier, Pelletier, Troncy)
| | - Johanne Martel-Pelletier
- GREPAQ (Research Group in Animal Pharmacology of Quebec), Département de biomédecine vétérinaire (Gervais, Otis, Guillot, Beaudry, Troncy) and Département de sciences cliniques (Lussier), Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, Saint-Hyacinthe, Québec; Osteoarthritis Research Unit, Université de Montréal Hospital Research Centre (CRCHUM), Montreal, Quebec (Lussier, Martel-Pelletier, Pelletier, Troncy)
| | - Jean-Pierre Pelletier
- GREPAQ (Research Group in Animal Pharmacology of Quebec), Département de biomédecine vétérinaire (Gervais, Otis, Guillot, Beaudry, Troncy) and Département de sciences cliniques (Lussier), Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, Saint-Hyacinthe, Québec; Osteoarthritis Research Unit, Université de Montréal Hospital Research Centre (CRCHUM), Montreal, Quebec (Lussier, Martel-Pelletier, Pelletier, Troncy)
| | - Francis Beaudry
- GREPAQ (Research Group in Animal Pharmacology of Quebec), Département de biomédecine vétérinaire (Gervais, Otis, Guillot, Beaudry, Troncy) and Département de sciences cliniques (Lussier), Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, Saint-Hyacinthe, Québec; Osteoarthritis Research Unit, Université de Montréal Hospital Research Centre (CRCHUM), Montreal, Quebec (Lussier, Martel-Pelletier, Pelletier, Troncy)
| | - Eric Troncy
- GREPAQ (Research Group in Animal Pharmacology of Quebec), Département de biomédecine vétérinaire (Gervais, Otis, Guillot, Beaudry, Troncy) and Département de sciences cliniques (Lussier), Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, Saint-Hyacinthe, Québec; Osteoarthritis Research Unit, Université de Montréal Hospital Research Centre (CRCHUM), Montreal, Quebec (Lussier, Martel-Pelletier, Pelletier, Troncy)
| |
Collapse
|
26
|
Shenoy PA, Kuo A, Khan N, Gorham L, Nicholson JR, Corradini L, Vetter I, Smith MT. The Somatostatin Receptor-4 Agonist J-2156 Alleviates Mechanical Hypersensitivity in a Rat Model of Breast Cancer Induced Bone Pain. Front Pharmacol 2018; 9:495. [PMID: 29867498 PMCID: PMC5962878 DOI: 10.3389/fphar.2018.00495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
In the majority of patients with breast cancer in the advanced stages, skeletal metastases are common, which may cause excruciating pain. Currently available drug treatments for relief of breast cancer-induced bone pain (BCIBP) include non-steroidal anti-inflammatory drugs and strong opioid analgesics along with inhibitors of osteoclast activity such as bisphosphonates and monoclonal antibodies such as denosumab. However, these medications often lack efficacy and/or they may produce serious dose-limiting side effects. In the present study, we show that J-2156, a somatostatin receptor type 4 (SST4 receptor) selective agonist, reverses pain-like behaviors in a rat model of BCIBP induced by unilateral intra-tibial injection of Walker 256 breast cancer cells. Following intraperitoneal administration, the ED50 of J-2156 for the relief of mechanical allodynia and mechanical hyperalgesia in the ipsilateral hindpaws was 3.7 and 8.0 mg/kg, respectively. Importantly, the vast majority of somatosensory neurons in the dorsal root ganglia including small diameter C-fibers and medium-large diameter fibers, that play a crucial role in cancer pain hypersensitivities, expressed the SST4 receptor. J-2156 mediated pain relief in BCIBP-rats was confirmed by observations of a reduction in the levels of phosphorylated extracellular signal-regulated kinase (pERK), a protein essential for central sensitization and persistent pain, in the spinal dorsal horn. Our results demonstrate the potential of the SST4 receptor as a pharmacological target for relief of BCIBP and we anticipate the present work to be a starting point for further mechanism-based studies.
Collapse
Affiliation(s)
- Priyank A Shenoy
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andy Kuo
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nemat Khan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Louise Gorham
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Janet R Nicholson
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Laura Corradini
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Faculty of Health and Behavioural Sciences, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Maree T Smith
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Faculty of Health and Behavioural Sciences, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
27
|
Abstract
Failure of analgesic drugs in clinical development is common. Along with the current "reproducibility crisis" in pain research, this has led some to question the use of animal models. Experimental models tend to comprise genetically homogeneous groups of young, male rodents in restricted and unvarying environments, and pain-producing assays that may not closely mimic the natural condition of interest. In addition, typical experimental outcome measures using thresholds or latencies for withdrawal may not adequately reflect clinical pain phenomena pertinent to human patients. It has been suggested that naturally occurring disease in veterinary patients may provide more valid models for the study of painful disease. Many painful conditions in animals resemble those in people. Like humans, veterinary patients are genetically diverse, often live to old age, and enjoy a complex environment, often the same as their owners. There is increasing interest in the development and validation of outcome measures for detecting pain in veterinary patients; these include objective (eg, locomotor activity monitoring, kinetic evaluation, quantitative sensory testing, and bioimaging) and subjective (eg, pain scales and quality of life scales) measures. Veterinary subject diversity, pathophysiological similarities to humans, and diverse outcome measures could yield better generalizability of findings and improved translation potential, potentially benefiting both humans and animals. The Comparative Oncology Trial Consortium in dogs has pawed the way for translational research, surmounting the challenges inherent in veterinary clinical trials. This review describes numerous conditions similarly applicable to pain research, with potential mutual benefits for human and veterinary clinicians, and their respective patients.
Collapse
|
28
|
Otis C, Guillot M, Moreau M, Martel-Pelletier J, Pelletier JP, Beaudry F, Troncy E. Spinal neuropeptide modulation, functional assessment and cartilage lesions in a monosodium iodoacetate rat model of osteoarthritis. Neuropeptides 2017; 65:56-62. [PMID: 28456437 DOI: 10.1016/j.npep.2017.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/31/2017] [Accepted: 04/22/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Characterising the temporal evolution of changes observed in pain functional assessment, spinal neuropeptides and cartilage lesions of the joint after chemical osteoarthritis (OA) induction in rats. METHODS AND RESULTS On day (D) 0, OA was induced by an IA injection of monosodium iodoacetate (MIA). Rats receiving 2mg MIA were temporally assessed at D3, D7, D14 and D21 for the total spinal cord concentration of substance P (SP), calcitonin gene related-peptide (CGRP), bradykinin (BK) and somatostatin (STT), and for severity of cartilage lesions. At D21, the same outcomes were compared with the IA 1mg MIA, IA 2mg MIA associated with punctual IA injection of lidocaine at D7, D14 and D21, sham (sterile saline) and naïve groups. Tactile allodynia was sequentially assessed using a von Frey anaesthesiometer. Non-parametric and mixed models were applied for statistical analysis. Tactile allodynia developed in the 2mg MIA group as soon as D3 and was maintained up to D21. Punctual IA treatment with lidocaine counteracted it at D7 and D14. Compared to naïve, [STT], [BK] and [CGRP] reached a maximum as early as D7, which plateaued up to D21. For [SP], the increase was delayed up to D14 and maintained at D21. No difference in levels of neuropeptides was observed between MIA doses, except for higher [STT] in the 2mg MIA group (P=0.029). Neuropeptides SP and BK were responsive to lidocaine treatment. The increase in severity of cartilage lesions was significant only in the 2mg MIA groups (P=0.01). CONCLUSION In the MIA OA pain model, neuropeptide modulation appears early, and confirms the central nervous system to be an attractive target for OA pain quantification. The relationship of neuropeptide release with severity of cartilage lesions and functional assessment are promising and need further validation.
Collapse
Affiliation(s)
- Colombe Otis
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Martin Guillot
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Maxim Moreau
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Francis Beaudry
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Eric Troncy
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada.
| |
Collapse
|