1
|
Shen Y, Bao RH, Ren QR, Sun YQ, Liu YL, Ye XY, Du JM, Ye TW, Zhang QL, Wu YB, Qin LP, Zhang QY. Monotropein synergizes with methotrexate to attenuate synovial inflammation in adjuvant-induced arthritis mice and fibroblast-like synoviocyte via GSK-3β. Int Immunopharmacol 2025; 158:114817. [PMID: 40349405 DOI: 10.1016/j.intimp.2025.114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/12/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Methotrexate (MTX) is the preferred drug for the treatment of rheumatoid arthritis (RA), but the toxic effects of long-term use limited its widespread clinical practice. The combination therapy of MTX with natural products is an effective strategy to reduce the toxic effects of MTX and enhance the therapeutic efficacy. Monotropein (MON), an iridoid glycosides, has potential therapeutic effects in inflammatory bone loss and osteoarthritis, and liver injury caused by MTX. However, whether MON can increase the therapeutic effects of MTX on RA and the related mechanism is not clear. PURPOSE This study aimed to clarify the MON enhancement on MTX in the treatment of RA, and also explore the target and mechanism of MON in anti-RA. METHODS The adjuvant-induced arthritis (AA) mice and RA-fibroblast-like synoviocytes (RA-FLSs) were used to evaluate the alleviating effects of MON, MTX and their combination on RA. The network pharmacology analysis, molecular docking and surface plasmon resonance (SPR) were utilized to predict the potential therapeutic targets and mechanism of MON on RA. The interference RNA was used to knockdown the target gene in TNF-α-stimulated FLSs and AA mice to validate the mechanism of MON on RA. RESULTS MON synergizes with MTX to suppress synovial inflammation in AA mice and inhibit TNF-α-induced FLSs proliferation, migration, inflammatory factors production, as well as the activation of NF-κB and JAK2/STAT3 signaling pathways. Network pharmacology predicted GSK-3β as a potential target of MON, and the molecular docking, CETSA, and SPR assays exhibited that MON had a good affinity with GSK-3β. Furthermore, GSK-3β knockdown suppressed TNF-α-induced FLSs proliferation, migration, matrix metalloproteinase 2 (MMP2) and MMP3 expression, and the activation of NF-κB and STAT3 signaling, while MON lost its inhibitory effects in GSK-3β knockdown FLSs. In addition, joint tissue-specific GSK-3β knockdown in AA mice alleviated synovial inflammation, decreased paw swelling and arthritis score, suppressed the phosphorylation of p65 and STAT3 of joint tissue in AA mice, while MON lost efficacy in GSK-3β-knockdown mice. CONCLUSION MON synergizes with MTX to inhibit synovial inflammation in AA mice and RA-FLSs inflammation by targeting GSK-3β to suppress NF-κB and STAT3 pathways.
Collapse
Affiliation(s)
- Yi Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Rong-Hua Bao
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou 311400, China
| | - Qiu-Ru Ren
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi-Qi Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yu-Ling Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xin-Yuan Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jin-Man Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Tian-Wen Ye
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Quan-Long Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yan-Bin Wu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lu-Ping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Qiao-Yan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Babaahmadi M, Tayebi B, Gholipour NM, Kamardi MT, Heidari S, Baharvand H, Eslaminejad MB, Hajizadeh-Saffar E, Hassani SN. Rheumatoid arthritis: the old issue, the new therapeutic approach. Stem Cell Res Ther 2023; 14:268. [PMID: 37741991 PMCID: PMC10518102 DOI: 10.1186/s13287-023-03473-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 08/24/2023] [Indexed: 09/25/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease of unknown etiology. The most common form of this disease is chronic inflammatory arthritis, which begins with inflammation of the synovial membrane of the affected joints and eventually leads to disability of the affected limb. Despite significant advances in RA pharmaceutical therapies and the availability of a variety of medicines on the market, none of the available medicinal therapies has been able to completely cure the disease. In addition, a significant percentage (30-40%) of patients do not respond appropriately to any of the available medicines. Recently, mesenchymal stromal cells (MSCs) have shown promising results in controlling inflammatory and autoimmune diseases, including RA. Experimental studies and clinical trials have demonstrated the high power of MSCs in modulating the immune system. In this article, we first examine the mechanism of RA disease, the role of cytokines and existing medicinal therapies. We then discuss the immunomodulatory function of MSCs from different perspectives. Our understanding of how MSCs work in suppressing the immune system will lead to better utilization of these cells as a promising tool in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Mahnaz Babaahmadi
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Behnoosh Tayebi
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Nima Makvand Gholipour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Mehrnaz Tayebi Kamardi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Sahel Heidari
- Department of Immunology, School of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran.
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran.
| |
Collapse
|
3
|
Ghezzi P, Fantuzzi G, Dinarello CA. Perspective: Daniela Novick, cytokines and their receptors. Front Immunol 2023; 14:1160651. [PMID: 37251377 PMCID: PMC10213776 DOI: 10.3389/fimmu.2023.1160651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
This Perspective highlights the work of Dr. Daniela Novick in the field of cytokine biology. Using affinity chromatography to characterize cytokine-binding proteins, she identified soluble forms of the receptors as well as binding proteins for several cytokines, including tumor necrosis factor, interleukin (IL) 6, IL-18 and IL-32. Importantly, her work has been key in the development of monoclonal antibodies against interferons and cytokines. This Perspective discusses her contribution to the field and highlights her recent review on this topic.
Collapse
Affiliation(s)
- Pietro Ghezzi
- Department of Biomolecular Sciences, Università di Urbino, Urbino, Italy
| | - Giamila Fantuzzi
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, United States
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
4
|
Tai Y, Huang B, Guo PP, Wang Z, Zhou ZW, Wang MM, Sun HF, Hu Y, Xu SL, Zhang LL, Wang QT, Wei W. TNF-α impairs EP4 signaling through the association of TRAF2-GRK2 in primary fibroblast-like synoviocytes. Acta Pharmacol Sin 2022; 43:401-416. [PMID: 33859345 PMCID: PMC8791952 DOI: 10.1038/s41401-021-00654-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/13/2021] [Indexed: 02/06/2023]
Abstract
Our previous study showed that chronic treatment with tumor necrosis factor-α (TNF-α) decreased cAMP concentration in fibroblast-like synoviocytes (FLSs) of collagen-induced arthritis (CIA) rats. In this study we investigated how TNF-α impairs cAMP homeostasis, particularly clarifying the potential downstream molecules of TNF-α and prostaglandin receptor 4 (EP4) signaling that would interact with each other. Using a cAMP FRET biosensor PM-ICUE3, we demonstrated that TNF-α (20 ng/mL) blocked ONO-4819-triggered EP4 signaling, but not Butaprost-triggered EP2 signaling in normal rat FLSs. We showed that TNF-α (0.02-20 ng/mL) dose-dependently reduced EP4 membrane distribution in normal rat FLS. TNF-α significantly increased TNF receptor 2 (TNFR2) expression and stimulated proliferation in human FLS (hFLS) via ecruiting TNF receptor-associated factor 2 (TRAF2) to cell membrane. More interestingly, we revealed that TRAF2 interacted with G protein-coupled receptor kinase (GRK2) in the cytoplasm of primary hFLS and helped to bring GRK2 to cell membrane in response of TNF-α stimulation, the complex of TRAF2 and GRK2 then separated on the membrane, and translocated GRK2 induced the desensitization and internalization of EP4, leading to reduced production of intracellular cAMP. Silencing of TRAF2 by siRNA substantially diminished TRAF2-GRK2 interaction, blocked the translocation of GRK2, and resulted in upregulated expression of membrane EP4 and intracellular cAMP. In CIA rats, administration of paroxetine to inhibit GRK2 effectively improved the symptoms and clinic parameters with significantly reduced joint synovium inflammation and bone destruction. These results elucidate a novel form of cross-talk between TNFR (a cytokine receptor) and EP4 (a typical G protein-coupled receptor) signaling pathways. The interaction between TRAF2 and GRK2 may become a potential new drug target for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yu Tai
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Bei Huang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China ,Department of Pharmacy, Maanshan Hospital of Traditional Chinese Medicine, Maanshan, 243000 China
| | - Pai-pai Guo
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Zhen Wang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Zheng-wei Zhou
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Man-man Wang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Han-fei Sun
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Yong Hu
- grid.412679.f0000 0004 1771 3402Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
| | - Sheng-lin Xu
- grid.412679.f0000 0004 1771 3402Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
| | - Ling-ling Zhang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Qing-tong Wang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Wei Wei
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| |
Collapse
|
5
|
Pires IS, Hammond PT, Irvine DJ. Engineering Strategies for Immunomodulatory Cytokine Therapies - Challenges and Clinical Progress. ADVANCED THERAPEUTICS 2021; 4:2100035. [PMID: 34734110 PMCID: PMC8562465 DOI: 10.1002/adtp.202100035] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Cytokines are immunoregulatory proteins involved in many pathological states with promising potential as therapeutic agents. A diverse array of cytokines have been studied in preclinical disease models since the 1950s, some of which became successful biopharmaceutical products with the advancement of recombinant protein technology in the 1980s. However, following these early approvals, clinical translation of these natural immune signaling molecules has been limited due to their pleiotropic action in many cell types, and the fact that they have evolved to act primarily locally in tissues. These characteristics, combined with poor pharmacokinetics, have hindered the delivery of cytokines via systemic administration routes due to dose-limiting toxicities. However, given their clinical potential and recent clinical successes in cancer immunotherapy, cytokines continue to be extensively pursued in preclinical and clinical studies, and a range of molecular and formulation engineering strategies are being applied to reduce treatment toxicity while maintaining or enhancing therapeutic efficacy. This review provides a brief background on the characteristics of cytokines and their history as clinical therapeutics, followed by a deeper discussion on the engineering strategies developed for cytokine therapies with a focus on the translational relevance of these approaches.
Collapse
Affiliation(s)
- Ivan S Pires
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
6
|
Shimizu T, Koga T, Furukawa K, Horai Y, Fujikawa K, Okada A, Okamoto M, Endo Y, Tsuji S, Takatani A, Umeda M, Fukui S, Sumiyoshi R, Kawashiri SY, Iwamoto N, Igawa T, Ichinose K, Tamai M, Sakamoto N, Nakamura H, Origuchi T, Mukae H, Kuwana M, Kawakami A. IL-15 is a biomarker involved in the development of rapidly progressive interstitial lung disease complicated with polymyositis/dermatomyositis. J Intern Med 2021; 289:206-220. [PMID: 32691471 DOI: 10.1111/joim.13154] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Polymyositis/dermatomyositis (PM/DM) is an autoimmune disease that is sometimes complicated with rapidly progressive interstitial lung disease (RPILD). However, serum and lung biomarkers that can predict RPILD development remain unclear. OBJECTIVES To determine potential serum and lung biomarkers that can predict RPILD development in patients with PM/DM-ILD. METHODS In total, 49 patients with PM/DM-ILD were enrolled. We measured the serum levels of 41 cytokines/chemokines, ferritin and anti-MDA5 antibody, compared them between the RPILD (n = 23) and non-RPILD (n = 26) groups, and ranked them by their importance through random forest analysis. To distinguish the two groups, we determined biomarker combinations by logistic regression analysis. We also measured the bronchoalveolar lavage fluid (BALF) levels of 41 cytokines/chemokines. Using immunohistochemistry, we examined IL-15 expression in lung tissues. The IL-15 production was also investigated using A549 and BEAS-2B cells. RESULTS The RPILD group had significantly higher IL-15, IL-1RA, IL-6, CXCL10, VCAM-1, anti-MDA5 antibody and ferritin serum levels than the non-RPILD group, but it had a significantly low CCL22 level. Meanwhile, anti-MDA5 antibody, IL-15, CXCL8, CCL22, IL-1RA and ferritin were the best combination to distinguish the two groups. IL-15 and CCL22 were also predictive marker for RPILD development in anti-MDA5 antibody-positive patients. Additionally, the RPILD group had significantly high IL-15 levels in BALF. The lung tissues expressed IL-15, which increased after cytokine stimulation in the A549 cells. CONCLUSION This study identified a combination of biomarkers predicting PM/DM-RPILD progression, and IL-15 is an important cytokine for predicting RPILD development and reflecting ILD severity.
Collapse
Affiliation(s)
- T Shimizu
- From the, Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Clinical Research Center, Nagasaki University Hospital, Nagasaki, Japan
| | - T Koga
- From the, Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - K Furukawa
- From the, Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Y Horai
- Department of Rheumatology, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - K Fujikawa
- Department of Rheumatology, Japan Community Health care Organization Isahaya General Hospital, Isahaya, Japan
| | - A Okada
- Department of Rheumatology, Japan Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - M Okamoto
- From the, Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Y Endo
- From the, Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - S Tsuji
- From the, Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - A Takatani
- From the, Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - M Umeda
- From the, Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - S Fukui
- From the, Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - R Sumiyoshi
- From the, Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Clinical Research Center, Nagasaki University Hospital, Nagasaki, Japan
| | - S-Y Kawashiri
- From the, Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - N Iwamoto
- From the, Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - T Igawa
- From the, Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Clinical Research Center, Nagasaki University Hospital, Nagasaki, Japan
| | - K Ichinose
- From the, Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - M Tamai
- From the, Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - N Sakamoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - H Nakamura
- From the, Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - T Origuchi
- From the, Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - H Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - M Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - A Kawakami
- From the, Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
7
|
Mesaros O, Jimbu L, Neaga A, Popescu C, Berceanu I, Tomuleasa C, Fetica B, Zdrenghea M. Macrophage Polarization in Chronic Lymphocytic Leukemia: Nurse-Like Cells Are the Caretakers of Leukemic Cells. Biomedicines 2020; 8:E516. [PMID: 33228048 PMCID: PMC7699370 DOI: 10.3390/biomedicines8110516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages are terminally differentiated innate immune cells. Through their activation, they can be polarized towards the pro-inflammatory M1 type or the wound healing-associated, anti-inflammatory M2 type macrophages. In the tumor microenvironment (TME), M2 is the dominant phenotype and these cells are referred to as tumor-associated macrophages (TAMs). TAMs secrete cytokines and chemokines, exerting an antiapoptotic, proliferative and pro-metastatic effect on the tumor cells. TAMs can be found in many cancers, including chronic lymphocytic leukemia (CLL), where they are called nurse-like cells (NLCs). Despite the generally indolent behavior of CLL, the proportion of treatment-refractory patients is significant. As with the majority of cancers, despite significant recent progress, CLL pathogenesis is poorly understood. The emerging role of the TME in nurturing the neoplastic process warrants the investigation of macrophages as a significant pathogenetic element of tumors. In this paper, we review the current knowledge on the role of stromal macrophages in CLL.
Collapse
Affiliation(s)
- Oana Mesaros
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Laura Jimbu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Alexandra Neaga
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
| | - Cristian Popescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Infectious Diseases, County Emergency Hospital Alba Iulia, 20 Decebal str., 510093 Alba-Iulia, Romania
| | - Iulia Berceanu
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Bogdan Fetica
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| |
Collapse
|
8
|
Chen L, Liu Y, Zheng XS, Zheng H, Liu PP, Yang XX, Liu Y. Alarmins from conjunctival fibroblasts up-regulate matrix metalloproteinases in corneal fibroblasts. Int J Ophthalmol 2020; 13:1031-1038. [PMID: 32685388 DOI: 10.18240/ijo.2020.07.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/20/2020] [Indexed: 01/10/2023] Open
Abstract
AIM To explore the effects of alarmins produced by necrotic human conjunctival fibroblasts on the release of matrix metalloproteinases (MMPs) by human corneal fibroblasts (HCFs). METHODS A necrotic cell supernatant (NHCS) was prepared by subjecting human conjunctival fibroblasts to three cycles of freezing and thawing. The amounts of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in NHCS were determined by enzyme-linked immunosorbent assays. HCFs exposed to NHCS or other agents in culture were assayed for the release of MMPs as well as for intracellular signaling by immunoblot analysis. The abundance of MMP mRNAs in HCFs was examined by reverse transcription and real-time polymerase chain reaction analysis. RESULTS NHCS increased the release of MMP-1 and MMP-3 by HCFs as well as the amounts of the corresponding mRNAs in the cells. NHCS also induced activation of mitogen-activated protein kinase (MAPK) signaling pathways mediated by extracellular signal-regulated kinase (ERK), p38, and c-Jun NH2-terminal kinase (JNK) as well as elicited that of the nuclear factor (NF)-κB signaling pathway by promoting phosphorylation of the endogenous NF-κB inhibitor IκB-α. Inhibitors of MAPK and NF-κB signaling as well as IL-1 and TNF-α receptor antagonists attenuated the NHCS-induced release of MMP-1 and MMP-3 by HCFs. Furthermore, IL-1β and TNF-α were both detected in NHCS, and treatment of HCFs with these cytokines induced the release of MMP-1 and MMP-3 in a concentration-dependent manner. CONCLUSION Alarmins, including IL-1β and TNF-α, produced by necrotic human conjunctival fibroblasts triggered MMP release in HCFs through activation of MAPK and NF-κB signaling. IL-1β and TNF-α are therefore potential therapeutic targets for the amelioration of corneal stromal degradation in severe ocular burns.
Collapse
Affiliation(s)
- Lin Chen
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Ye Liu
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Xiao-Shuo Zheng
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Hui Zheng
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Ping-Ping Liu
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Xiu-Xia Yang
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Yang Liu
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| |
Collapse
|
9
|
Wang W, Yang YP, Tasneem S, Daniyal M, Zhang L, Jia YZ, Jian YQ, Li B. Lanostane tetracyclic triterpenoids as important sources for anti-inflammatory drug discovery. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020. [DOI: 10.4103/wjtcm.wjtcm_17_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Barbier L, Ferhat M, Salamé E, Robin A, Herbelin A, Gombert JM, Silvain C, Barbarin A. Interleukin-1 Family Cytokines: Keystones in Liver Inflammatory Diseases. Front Immunol 2019; 10:2014. [PMID: 31507607 PMCID: PMC6718562 DOI: 10.3389/fimmu.2019.02014] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
The pyrogenic property being the first activity described, members of the interleukin-1 superfamily (IL-1α, IL-1β, IL-18, and the newest members: IL-33, IL-36, IL-37, and IL-38) are now known to be involved in several inflammatory diseases such as obesity, atherosclerosis, cancer, viral and parasite infections, and auto-inflammatory syndromes as well as liver diseases. Inflammation processes are keystones of chronic liver diseases, of which the etiology may be viral or toxic, as in alcoholic or non-alcoholic liver diseases. Inflammation is also at stake in acute liver failure involving massive necrosis, and in ischemia-reperfusion injury in the setting of liver transplantation. The role of the IL-1 superfamily of cytokines and receptors in liver diseases can be either protective or pro-inflammatory, depending on timing and the environment. Our review provides an overview of current understanding of the IL-1 family members in liver inflammation, highlighting recent key investigations, and therapeutic perspectives. We have tried to apply the concept of trained immunity to liver diseases, based on the role of the members of the IL-1 superfamily, first of all IL-1β but also IL-18 and IL-33, in modulating innate lymphoid immunity carried by natural killer cells, innate lymphoid cells or innate T-αβ lymphocytes.
Collapse
Affiliation(s)
- Louise Barbier
- INSERM U1082, Poitiers, France.,Department of Digestive Surgery and Liver Transplantation, Trousseau University Hospital, Tours University, Tours, France
| | | | - Ephrem Salamé
- INSERM U1082, Poitiers, France.,Department of Digestive Surgery and Liver Transplantation, Trousseau University Hospital, Tours University, Tours, France
| | - Aurélie Robin
- INSERM U1082, Poitiers University Hospital, Poitiers, France
| | | | - Jean-Marc Gombert
- INSERM U1082, Poitiers, France.,Department of Immunology and Inflammation, Poitiers University Hospital, University of Poitiers, Poitiers, France
| | - Christine Silvain
- Department of Hepatology and Gastroenterology, Poitiers University Hospital, University of Poitiers, Poitiers, France
| | | |
Collapse
|
11
|
Zheng W, Gu X, Hu D, Hao Y. Co-culture with synovial tissue in patients with rheumatoid arthritis suppress cell proliferation by regulating MAPK pathway in osteoblasts. Am J Transl Res 2019; 11:3317-3327. [PMID: 31312346 PMCID: PMC6614653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
There is growing evidence that synovial tissue affects osteoblasts although the mechanisms behind the aberrant bone metabolism in rheumatoid arthritis (RA) are unclear. The aim of this study is to preliminarily establish a co-culture system of rheumatoid arthritis-derived synovial tissue (RAS) and osteoblasts in vitro and to investigate the potential mechanism of RAS on osteoblasts. A consistent volume of approximately 85 mm3 of RAS was cultured isolated and co-cultured with Hfob1.19 cells for up to 21 days. Equal volume of normal synovial tissue (NS) was co-cultured as a control group. Cell proliferation, cell cycle and bone markers were valued and the mechanisms underlying MAPK pathway have been fully delineated. Our findings suggested that co-cultures with RAS exhibited decreased proliferation of Hfob1.19 cells. Moreover, gene and protein expressions of GLUT3 in cells were suppressed, and the cell cycle was also down-regulated. The expressions of related proteins of MAPKs (JNK and p38) signaling pathway were found to be inhibited. Rescue experiments demonstrated that co-cultures with RAS could decrease the growth and cell cycle of Hfob1.19 cells, which were reversed by p-JNK and p-p38 over expression. In conclusion, this study suggested that synovial tissue in patients with RA may negatively regulate osteoblasts proliferation by declining MAPK pathway.
Collapse
Affiliation(s)
- Weiwei Zheng
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou 215008, PR China
| | - Xueping Gu
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou 215008, PR China
| | - Dan Hu
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou 215008, PR China
| | - Yuefeng Hao
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou 215008, PR China
| |
Collapse
|
12
|
Ruthenium pyridyl thiocyanate complex increased the production of pro-inflammatory TNFα and IL1β cytokines by the LPS stimulated mammalian macrophages in vitro. Mol Biol Rep 2018; 45:2307-2312. [PMID: 30284682 DOI: 10.1007/s11033-018-4392-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 01/11/2023]
Abstract
Every cell in our body depends on the electron transport processes in order to generate energy and function properly. Being able to regulate the metabolic activity of a cell would enable us altering its function and eventually lead us to a desired biological outcome at the cellular level and more desirably at a systemic level. Immunomodulatory or immunostimulatory molecules have been focus of the recent studies in order to regulate or boost the activities of the immune system cells and suppress or eliminate the disease conditions such as cancer, autoimmune reactions, inflammatory disorders as well as infections. In our study we used a ruthenium pyridyl thiocyanate complex, K330, to examine its effect on the activity of the innate immune system cells, macrophages in vitro. K330 was our candidate due to its application in the solar cells. Especially, due to its ability to get involved in electron transfer systems we hypothesized that it could change the activity of the immune system cells at cellular level, possibly by interfering the electron transfer reactions of the cells. Our results support our hypothesis since K330 lead to a significant increase in TNFα and IL1β cytokine production levels by LPS stimulated macrophages compared to only LPS treated control groups. Based on our in vitro results, K330 can also be utilized as an adjuvant candidate in vaccinations where the antigen itself is not sufficient to generate a proper immune response.
Collapse
|
13
|
Malaviya AN, Mehra NK. A fascinating story of the discovery & development of biologicals for use in clinical medicine. Indian J Med Res 2018; 148:263-278. [PMID: 30425216 PMCID: PMC6251261 DOI: 10.4103/ijmr.ijmr_1471_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 11/07/2022] Open
Abstract
A young physician starting a fresh career in medicine in this millennium would hardly stop to think about the genesis of a particular biological drug that he/she will be prescribing for a patient evaluated in the morning outpatient department. For him/her, this is now routine, and the question of 'Who', 'How' and 'When' about these biologicals would be the last thing on their mind. However, for those who came to the medical profession in the 1950s, 1960s and 1970s, these targeted drugs are nothing short of 'miracles'. It would be a fascinating story for the young doctor to learn about the long journey that the dedicated biomedical scientists of yesteryears took to reach the final destination of producing such wonder drugs. The story is much like an interesting novel, full of twists and turns, heart-breaking failures and glorious successes. The biologicals acting as 'targeted therapy' have not only changed the natural history of a large number of incurable/uncontrollable diseases but have also transformed the whole approach towards drug development. From the classical empirical process, there is now a complete shift towards understanding the disease pathobiology focusing on the dysregulated molecule(s), targeting them with greater precision and aiming for better results. Seminal advances in understanding the disease mechanism, development of remarkably effective new technologies, greater knowledge of the human genome and genetic medicine have all made it possible to reach the stage where artificially developed 'targeted' drugs are now therapeutically used in routine clinical medicine.
Collapse
Affiliation(s)
- Anand N. Malaviya
- Department of Rheumatology, ISIC Superspeciality Hospital, New Delhi, India
| | - Narinder K. Mehra
- Former Head, Department of Transplant Immunology & Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|