1
|
Smolinska V, Klimova D, Danisovic L, Harsanyi S. Synovial Fluid Markers and Extracellular Vesicles in Rheumatoid Arthritis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1945. [PMID: 39768826 PMCID: PMC11678482 DOI: 10.3390/medicina60121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
In recent years, numerous potential prognostic biomarkers for rheumatoid arthritis (RA) have been investigated. Despite these advancements, clinical practice primarily relies on autoantibody tests-for rheumatoid factor (RF) and anti-citrullinated protein antibody (anti-CCP)-alongside inflammatory markers, such as the erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP). Expanding the repertoire of diagnostic and therapeutic biomarkers is critical for improving clinical outcomes in RA. Emerging evidence highlights the significance of synovial fluid biomarkers, including aggrecan, matrix metalloproteinases, glucosyl-galactosyl-pyridinoline, hyaluronic acid, S100 proteins, calprotectin, and various cytokines, as well as immunological markers. Additionally, specific components of extracellular vesicles, such as non-coding RNAs, heat shock proteins, and lipids, are gaining attention. This review focuses on molecular markers found in synovial fluid and extracellular vesicles, excluding clinical and imaging biomarkers, and explores their potential applications in the diagnosis and management of RA.
Collapse
Affiliation(s)
- Veronika Smolinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
- National Institute of Rheumatic Diseases, Nábrežie Ivana Krasku 4, 921 12 Piestany, Slovakia
| | - Daniela Klimova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
- National Institute of Rheumatic Diseases, Nábrežie Ivana Krasku 4, 921 12 Piestany, Slovakia
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
| |
Collapse
|
2
|
Shanthamallu US, Kilpatrick C, Jones A, Rubin J, Saleh A, Barabási AL, Akmaev VR, Ghiassian SD. A Network-Based Framework to Discover Treatment-Response-Predicting Biomarkers for Complex Diseases. J Mol Diagn 2024; 26:917-930. [PMID: 39067570 DOI: 10.1016/j.jmoldx.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
The potential of precision medicine to transform complex autoimmune disease treatment is often challenged by limited data availability and inadequate sample size when compared with the number of molecular features found in high-throughput multi-omics data sets. To address this issue, the novel framework PRoBeNet (Predictive Response Biomarkers using Network medicine) was developed. PRoBeNet operates under the hypothesis that the therapeutic effect of a drug propagates through a protein-protein interaction network to reverse disease states. PRoBeNet prioritizes biomarkers by considering i) therapy-targeted proteins, ii) disease-specific molecular signatures, and iii) an underlying network of interactions among cellular components (the human interactome). PRoBeNet helped discover biomarkers predicting patient responses to both an established autoimmune therapy (infliximab) and an investigational compound (a mitogen-activated protein kinase 3/1 inhibitor). The predictive power of PRoBeNet biomarkers was validated with retrospective gene-expression data from patients with ulcerative colitis and rheumatoid arthritis and prospective data from tissues from patients with ulcerative colitis and Crohn disease. Machine-learning models using PRoBeNet biomarkers significantly outperformed models using either all genes or randomly selected genes, especially when data were limited. These results illustrate the value of PRoBeNet in reducing features and for constructing robust machine-learning models when data are limited. PRoBeNet may be used to develop companion and complementary diagnostic assays, which may help stratify suitable patient subgroups in clinical trials and improve patient outcomes.
Collapse
Affiliation(s)
- Uday S Shanthamallu
- Department of Data Science and Network Medicine, Scipher Medicine, Waltham, Massachusetts
| | - Casey Kilpatrick
- Department of Therapeutics, Scipher Medicine, Waltham, Massachusetts
| | - Alex Jones
- Department of Data Science and Network Medicine, Scipher Medicine, Waltham, Massachusetts
| | | | - Alif Saleh
- Department of Data Science and Network Medicine, Scipher Medicine, Waltham, Massachusetts
| | - Albert-László Barabási
- Center for Complex Network Research, Northeastern University, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Viatcheslav R Akmaev
- Department of Data Science and Network Medicine, Scipher Medicine, Waltham, Massachusetts
| | - Susan D Ghiassian
- Department of Data Science and Network Medicine, Scipher Medicine, Waltham, Massachusetts.
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Type 1 interferons (IFN-I) are of increasing interest across a wide range of autoimmune rheumatic diseases. Historically, research into their role in rheumatoid arthritis (RA) has been relatively neglected, but recent work continues to highlight a potential contribution to RA pathophysiology. RECENT FINDINGS We emphasise the importance of disease stage when examining IFN-I in RA and provide an overview on how IFN-I may have a direct role on a variety of relevant cellular functions. We explore how clinical trajectory may be influenced by increased IFN-I signalling, and also, the limitations of scores composed of interferon response genes. Relevant environmental triggers and inheritable RA genetic risk relating to IFN-I signalling are explored with emphasis on intriguing data potentially linking IFN-I exposure, epigenetic changes, and disease relevant processes. Whilst these data cumulatively illustrate a likely role for IFN-I in RA, they also highlight the knowledge gaps, particularly in populations at risk for RA, and suggest directions for future research to both better understand IFN-I biology and inform targeted therapeutic strategies.
Collapse
Affiliation(s)
- Chung M A Lin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Faye A H Cooles
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
4
|
Barriola S, Delgado-García LM, Cartas-Cejudo P, Iñigo-Marco I, Fernández-Irigoyen J, Santamaría E, López-Mascaraque L. Orosomucoid-1 Arises as a Shared Altered Protein in Two Models of Multiple Sclerosis. Neuroscience 2023; 535:203-217. [PMID: 37949310 DOI: 10.1016/j.neuroscience.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Multiple sclerosis (MS) is a complex autoimmune and neurodegenerative disorder that affects the central nervous system (CNS). It is characterized by a heterogeneous disease course involving demyelination and inflammation. In this study, we utilized two distinct animal models, cuprizone (CPZ)-induced demyelination and experimental autoimmune encephalomyelitis (EAE), to replicate various aspects of the disease. We aimed to investigate the differential CNS responses by examining the proteomic profiles of EAE mice during the peak disease (15 days post-induction) and cuprizone-fed mice during the acute phase (38 days). Specifically, we focused on two different regions of the CNS: the dorsal cortex (Cx) and the entire spinal cord (SC). Our findings revealed varied glial, synaptic, dendritic, mitochondrial, and inflammatory responses within these regions for each model. Notably, we identified a single protein, Orosomucoid-1 (Orm1), also known as Alpha-1-acid glycoprotein 1 (AGP1), that consistently exhibited alterations in both models and regions. This study provides insights into the similarities and differences in the responses of these regions in two distinct demyelinating models.
Collapse
Affiliation(s)
- Sonsoles Barriola
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain; Ph.D. Program in Neuroscience, Autónoma de Madrid University-Cajal Institute, Madrid 28029, Spain
| | - Lina María Delgado-García
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain; Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo UNIFESP, São Paulo 04039032, Brazil
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Ignacio Iñigo-Marco
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Laura López-Mascaraque
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain.
| |
Collapse
|
5
|
Lilja S, Li X, Smelik M, Lee EJ, Loscalzo J, Marthanda PB, Hu L, Magnusson M, Sysoev O, Zhang H, Zhao Y, Sjöwall C, Gawel D, Wang H, Benson M. Multi-organ single-cell analysis reveals an on/off switch system with potential for personalized treatment of immunological diseases. Cell Rep Med 2023; 4:100956. [PMID: 36858042 PMCID: PMC10040389 DOI: 10.1016/j.xcrm.2023.100956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/30/2022] [Accepted: 02/03/2023] [Indexed: 03/03/2023]
Abstract
Prioritization of disease mechanisms, biomarkers, and drug targets in immune-mediated inflammatory diseases (IMIDs) is complicated by altered interactions between thousands of genes. Our multi-organ single-cell RNA sequencing of a mouse IMID model, namely collagen-induced arthritis, shows highly complex and heterogeneous expression changes in all analyzed organs, even though only joints showed signs of inflammation. We organized those into a multi-organ multicellular disease model, which shows predicted molecular interactions within and between organs. That model supports that inflammation is switched on or off by altered balance between pro- and anti-inflammatory upstream regulators (URs) and downstream pathways. Meta-analyses of human IMIDs show a similar, but graded, on/off switch system. This system has the potential to prioritize, diagnose, and treat optimal combinations of URs on the levels of IMIDs, subgroups, and individual patients. That potential is supported by UR analyses in more than 600 sera from patients with systemic lupus erythematosus.
Collapse
Affiliation(s)
- Sandra Lilja
- Department of Pediatrics, Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden; Mavatar, Inc, Vasagatan, 11120 Stockholm, Sweden
| | - Xinxiu Li
- Department of Pediatrics, Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden; Medical Digital Twin Research Group, Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Martin Smelik
- Department of Pediatrics, Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden; Medical Digital Twin Research Group, Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Eun Jung Lee
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Ganwong 26460, Korea
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pratheek Bellur Marthanda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Lang Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Mattias Magnusson
- The National Board of Health and Welfare, Socialstyrelsen, 11259 Stockholm, Sweden
| | - Oleg Sysoev
- Department of Computer and Information Science, Linköping University, 58183 Linköping, Sweden
| | - Huan Zhang
- Department of Pediatrics, Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Yelin Zhao
- Department of Pediatrics, Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden; Medical Digital Twin Research Group, Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Christopher Sjöwall
- Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, 58183 Linköping, Sweden
| | - Danuta Gawel
- Mavatar, Inc, Vasagatan, 11120 Stockholm, Sweden
| | - Hui Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Mikael Benson
- Department of Pediatrics, Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden; Medical Digital Twin Research Group, Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17165 Stockholm, Sweden.
| |
Collapse
|
6
|
Rheumatoid arthritis and non-coding RNAs; how to trigger inflammation. Life Sci 2023; 315:121367. [PMID: 36639050 DOI: 10.1016/j.lfs.2023.121367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic and chronic inflammatory disease categorized by continuous synovitis in the joints and systemic inflammatory responses that can cause lifelong disability. The major cause of RA is the dysregulation of the immune response. The development of RA disease includes multiplex association of several interleukins and cells, which leads to synovial cell growth, cartilage and bone damage. The primary stage of RA disease is related to the modification of both the innate and adaptive immune systems, which leads to the formation of autoantibodies. This process results in many damaged molecules and epitope spreading. Both the innate (e.g., dendritic cells, macrophages, and neutrophils) and acquired immune cells (e.g., T and B lymphocytes) will increase and continue the chronic inflammatory condition in the next stages of the RA disease. In recent years, non-coding RNAs have been proved as significant controllers of biological functions, especially immune cell expansion and reactions. Non-coding RNAs were primarily containing microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). Various studies confirmed non-coding RNAs as hopeful markers for diagnosing and curing RA. This review will describe and cover existing knowledge about RA pathogenesis, which might be favorable for discovering possible ncRNA markers for RA.
Collapse
|
7
|
Cooles FAH, Tarn J, Lendrem DW, Naamane N, Lin CM, Millar B, Maney NJ, Anderson AE, Thalayasingam N, Diboll J, Bondet V, Duffy D, Barnes MR, Smith GR, Ng S, Watson D, Henkin R, Cope AP, Reynard LN, Pratt AG, Isaacs JD. Interferon-α-mediated therapeutic resistance in early rheumatoid arthritis implicates epigenetic reprogramming. Ann Rheum Dis 2022; 81:1214-1223. [PMID: 35680389 PMCID: PMC9380486 DOI: 10.1136/annrheumdis-2022-222370] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES An interferon (IFN) gene signature (IGS) is present in approximately 50% of early, treatment naive rheumatoid arthritis (eRA) patients where it has been shown to negatively impact initial response to treatment. We wished to validate this effect and explore potential mechanisms of action. METHODS In a multicentre inception cohort of eRA patients (n=191), we examined the whole blood IGS (MxA, IFI44L, OAS1, IFI6, ISG15) with reference to circulating IFN proteins, clinical outcomes and epigenetic influences on circulating CD19+ B and CD4+ T lymphocytes. RESULTS We reproduced our previous findings demonstrating a raised baseline IGS. We additionally showed, for the first time, that the IGS in eRA reflects circulating IFN-α protein. Paired longitudinal analysis demonstrated a significant reduction between baseline and 6-month IGS and IFN-α levels (p<0.0001 for both). Despite this fall, a raised baseline IGS predicted worse 6-month clinical outcomes such as increased disease activity score (DAS-28, p=0.025) and lower likelihood of a good EULAR clinical response (p=0.034), which was independent of other conventional predictors of disease activity and clinical response. Molecular analysis of CD4+ T cells and CD19+ B cells demonstrated differentially methylated CPG sites and dysregulated expression of disease relevant genes, including PARP9, STAT1, and EPSTI1, associated with baseline IGS/IFNα levels. Differentially methylated CPG sites implicated altered transcription factor binding in B cells (GATA3, ETSI, NFATC2, EZH2) and T cells (p300, HIF1α). CONCLUSIONS Our data suggest that, in eRA, IFN-α can cause a sustained, epigenetically mediated, pathogenic increase in lymphocyte activation and proliferation, and that the IGS is, therefore, a robust prognostic biomarker. Its persistent harmful effects provide a rationale for the initial therapeutic targeting of IFN-α in selected patients with eRA.
Collapse
Affiliation(s)
- Faye A H Cooles
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Jessica Tarn
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Dennis W Lendrem
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Najib Naamane
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Chung Ma Lin
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Ben Millar
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Nicola J Maney
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Amy E Anderson
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Nishanthi Thalayasingam
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Julie Diboll
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Vincent Bondet
- Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France
| | - Darragh Duffy
- Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France
- Center for Translational Research, Institut Pasteur, Paris, France
| | - Michael R Barnes
- Centre for Translational Bioinformatics, William Harvey Research Institute, London, UK
| | - Graham R Smith
- Bioinformatics Support Unit, Newcastle University Faculty of Medical Sciences, Newcastle Upon Tyne, UK
| | - Sandra Ng
- Centre for Translational Bioinformatics, William Harvey Research Institute, London, UK
| | - David Watson
- Department of Statistical Science, University College London, London, UK
| | - Rafael Henkin
- Centre for Translational Bioinformatics, William Harvey Research Institute, London, UK
| | - Andrew P Cope
- Academic Department of Rheumatology, King's College London, London, UK
| | - Louise N Reynard
- Newcastle University Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Arthur G Pratt
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Musculoskeletal Research Group, The Freeman Hospital, Newcastle Upon Tyne, UK
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Musculoskeletal Research Group, The Freeman Hospital, Newcastle Upon Tyne, UK
| |
Collapse
|
8
|
Cooles FAH, Isaacs JD. The interferon gene signature as a clinically relevant biomarker in autoimmune rheumatic disease. THE LANCET. RHEUMATOLOGY 2022; 4:e61-e72. [PMID: 38288732 DOI: 10.1016/s2665-9913(21)00254-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022]
Abstract
The interferon gene signature (IGS) is derived from the expression of interferon-regulated genes and is classically increased in response to type I interferon exposure. A raised whole blood IGS has increasingly been reported in rheumatic diseases as sequencing technology has advanced. Although its role remains unclear, we explore how a raised IGS can function as a clinically relevant biomarker, independent of whether it is a bystander effect or a key pathological process. For example, a raised IGS can act as a diagnostic biomarker when predicting rheumatoid arthritis in patients with arthralgia and anti-citrullinated protein antibodies, or predicting systemic lupus erythematous (SLE) in those with antinuclear antibodies; a theragnostic biomarker when predicting response for patients receiving disease modifying therapy, such as rituximab in rheumatoid arthritis; a biomarker of disease activity (early rheumatoid arthritis, dermatomyositis, systemic sclerosis, SLE); or finally a predictor of clinical characteristics, such as lupus nephritis in SLE or disease burden in primary Sjögren's syndrome. A high IGS does not uniformly predict worse clinical phenotypes across all diseases, as demonstrated by a reduced disease burden in primary Sjögren's syndrome, nor does it predict a universally poorer response to all therapies, as shown in rheumatoid arthritis. This dichotomy highlights both the complexity of type I interferon signalling in vivo and the current lack of standardisation when calculating the IGS. The IGS as a biomarker warrants further exploration, with beneficial clinical applications anticipated in multiple rheumatic diseases.
Collapse
Affiliation(s)
- Faye A H Cooles
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - John D Isaacs
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
9
|
Ollewagen T, Myburgh KH, van de Vyver M, Smith C. Rheumatoid cachexia: the underappreciated role of myoblast, macrophage and fibroblast interplay in the skeletal muscle niche. J Biomed Sci 2021; 28:15. [PMID: 33658022 PMCID: PMC7931607 DOI: 10.1186/s12929-021-00714-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Although rheumatoid arthritis affects 1% of the global population, the role of rheumatoid cachexia, which occurs in up to a third of patients, is relatively neglected as research focus, despite its significant contribution to decreased quality of life in patients. A better understanding of the cellular and molecular processes involved in rheumatoid cachexia, as well as its potential treatment, is dependent on elucidation of the intricate interactions of the cells involved, such as myoblasts, fibroblasts and macrophages. Persistent RA-associated inflammation results in a relative depletion of the capacity for regeneration and repair in the satellite cell niche. The repair that does proceed is suboptimal due to dysregulated communication from the other cellular role players in this multi-cellular environment. This includes the incomplete switch in macrophage phenotype resulting in a lingering pro-inflammatory state within the tissues, as well as fibroblast-associated dysregulation of the dynamic control of the extracellular matrix. Additional to this endogenous dysregulation, some treatment strategies for RA may exacerbate muscle wasting and no multi-cell investigation has been done in this context. This review summarizes the most recent literature characterising clinical RA cachexia and links these features to the roles of and complex communication between multiple cellular contributors in the muscle niche, highlighting the importance of a targeted approach to therapeutic intervention.
Collapse
Affiliation(s)
- T Ollewagen
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - K H Myburgh
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - M van de Vyver
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| | - C Smith
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.
| |
Collapse
|
10
|
Multivariate analysis reveals differentially expressed genes among distinct subtypes of diffuse astrocytic gliomas: diagnostic implications. Sci Rep 2020; 10:11270. [PMID: 32647207 PMCID: PMC7347847 DOI: 10.1038/s41598-020-67743-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 06/09/2020] [Indexed: 12/18/2022] Open
Abstract
Diagnosis and classification of gliomas mostly relies on histopathology and a few genetic markers. Here we interrogated microarray gene expression profiles (GEP) of 268 diffuse astrocytic gliomas-33 diffuse astrocytomas (DA), 52 anaplastic astrocytomas (AA) and 183 primary glioblastoma (GBM)-based on multivariate analysis, to identify discriminatory GEP that might support precise histopathological tumor stratification, particularly among inconclusive cases with II-III grade diagnosed, which have different prognosis and treatment strategies. Microarrays based GEP was analyzed on 155 diffuse astrocytic gliomas (discovery cohort) and validated in another 113 tumors (validation set) via sequential univariate analysis (pairwise comparison) for discriminatory gene selection, followed by nonnegative matrix factorization and canonical biplot for identification of discriminatory GEP among the distinct histological tumor subtypes. GEP data analysis identified a set of 27 genes capable of differentiating among distinct subtypes of gliomas that might support current histological classification. DA + AA showed similar molecular profiles with only a few discriminatory genes overexpressed (FSTL5 and SFRP2) and underexpressed (XIST, TOP2A and SHOX2) in DA vs AA and GBM. Compared to DA + AA, GBM displayed underexpression of ETNPPL, SH3GL2, GABRG2, SPX, DPP10, GABRB2 and CNTN3 and overexpression of CHI3L1, IGFBP3, COL1A1 and VEGFA, among other differentially expressed genes.
Collapse
|
11
|
Zhang Y, Wang S, Song S, Yang X, Jin G. Ginsenoside Rg3 Alleviates Complete Freund's Adjuvant-Induced Rheumatoid Arthritis in Mice by Regulating CD4 +CD25 +Foxp3 +Treg Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4893-4902. [PMID: 32275817 DOI: 10.1021/acs.jafc.0c01473] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ginsenoside Rg3 (GRg3) is one of the major bioactive ingredients of ginseng, which is not only used as a herbal medicine but also used as a functional food to support body functions. In this study, the beneficial effects of GRg3 on rheumatoid arthritis (RA) mice was evaluated from anti-inflammatory and immunosuppressive aspects. The footpad swelling rate, pathological changes of the ankle joint, and levels of tumor necrosis factor α, interleukin 6, interleukin 10, and tumor necrosis factor β were used to assess the anti-inflammatory effect of GRg3 on RA mice. Flow cytometric analysis of CD4+CD25+Foxp3+Treg cell percentage and metabolomic analysis based on gas chromatography-tandem mass spectrometry were used to assess the immunosuppressive effect and underlying mechanisms. GRg3 exhibited anti-inflammatory and immunosuppressive effects on RA mice. The potential mechanisms were related to regulate the pathways of oxidative phosphorylation and enhance the function of CD4+CD25+Foxp3+Treg cells to maintain peripheral immune tolerance of RA mice. These findings can provide a preliminary experimental basis to exploit GRg3 as a functional food or an effective complementary for the adjuvant therapy of RA.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
| | - Shuang Wang
- Graduate School, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
| | - Shuang Song
- Graduate School, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
| | - Xiaomei Yang
- Nutritional Department, Jilin Medical University Affiliated Hospital, Jilin 132013, People's Republic of China
| | - Gang Jin
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
| |
Collapse
|