1
|
Huang Z, Luo S, Li Y, Li Z, Yi C, Zhang Y, Hu Y, Chen B. Impact of Maternal Metabolic Status on Human Milk Oligosaccharide Composition: A Population-Based Cross-Sectional Study in Central South China. Nutrients 2025; 17:1480. [PMID: 40362789 PMCID: PMC12073883 DOI: 10.3390/nu17091480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Human milk oligosaccharides (HMOs) serve as critical bioactive components supporting infant growth and development. However, the influence of maternal metabolic factors during lactation on HMOs remains to be fully elucidated. This study aimed to investigate the association between maternal metabolic factors and HMOs, as well as the potential mediating effects of these factors. Methods: An observational cross-sectional study was conducted in Central South China, enrolling 196 lactating mothers. HMOs were quantified using liquid chromatography-tandem mass spectrometry. Maternal metabolic factors were assessed through physical examinations. Associations between metabolic factors and HMOs were analyzed using linear regression, and mediation effects were evaluated. Results: HMOs from Central South China were predominantly composed of neutral fucosylated HMOs. Significant differences were observed in the levels of several HMOs across maternal age groups and lactation periods. The concentration of 3'-sialyllactose (3'-SL) exhibited a negative association with the pre-pregnancy body mass index (BMI) (β = -0.16, 95% CI: -0.29, -0.03; p = 0.02), while a positive association was found with maternal heart rate (β = 0.14, 95% CI: 0.01, 0.27; p = 0.04). However, these associations were different between secretor and non-secretor mothers. Associations of 3'-SL with pre-pregnancy BMI and maternal HR were only found in the secretor mothers. Triglycerides and low-density lipoprotein cholesterol mediated the associations between maternal pre-pregnancy BMI and 3'-sialyllactose (3'-SL). Conclusions: The variations of several HMOs among mothers from Central South China were associated with maternal age and lactation period. The concentration of 3'-SL was negatively correlated with maternal pre-pregnancy BMI. The potential mechanism underlying the influence of maternal BMI on 3'-SL levels may involve maternal lipid metabolism and genetic factors.
Collapse
Affiliation(s)
- Zhi Huang
- School of Medical Laboratory, Hunan University of Medicine, Jinxi Road No. 492, Huaihua 418000, China; (Z.H.); (Y.Z.)
| | - Shurong Luo
- School of Chemistry & Chemical Engineering, Hunan Normal University, Lu Mountain Road No. 286, Changsha 410081, China;
| | - Yuxin Li
- Hunan Institute for Drug Control, Jinxing Middle Road No. 469, Yuelu District, Changsha 410001, China;
| | - Ziming Li
- The Department of Toxicology, Hunan Provincial Center for Disease Control and Prevention, Xinglian Road No. 861, Laodaohe Street, Kaifu District, Changsha 410005, China; (Z.L.); (C.Y.)
| | - Chuanzhu Yi
- The Department of Toxicology, Hunan Provincial Center for Disease Control and Prevention, Xinglian Road No. 861, Laodaohe Street, Kaifu District, Changsha 410005, China; (Z.L.); (C.Y.)
| | - Yan Zhang
- School of Medical Laboratory, Hunan University of Medicine, Jinxi Road No. 492, Huaihua 418000, China; (Z.H.); (Y.Z.)
| | - Yuming Hu
- The Department of Toxicology, Hunan Provincial Center for Disease Control and Prevention, Xinglian Road No. 861, Laodaohe Street, Kaifu District, Changsha 410005, China; (Z.L.); (C.Y.)
| | - Bo Chen
- School of Chemistry & Chemical Engineering, Hunan Normal University, Lu Mountain Road No. 286, Changsha 410081, China;
| |
Collapse
|
2
|
Mahamud AGMSU, Tanvir IA, Kabir ME, Samonty I, Chowdhury MAH, Rahman MA. Gerobiotics: Exploring the Potential and Limitations of Repurposing Probiotics in Addressing Aging Hallmarks and Chronic Diseases. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10501-w. [PMID: 40029460 DOI: 10.1007/s12602-025-10501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
As unhealthy aging continues to rise globally, there is a pressing need for effective strategies to promote healthy aging, extend health span, and address aging-related complications. Gerobiotics, an emerging concept in geroscience, offers a novel approach to repurposing selective probiotics, postbiotics, and parabiotics to modulate key aging processes and enhance systemic health. This review explores recent advancements in gerobiotics research, focusing on their role in targeting aging hallmarks, regulating longevity-associated pathways, and reducing risks of multiple age-related chronic conditions. Despite their promise, significant challenges remain, including optimizing formulations, ensuring safety and efficacy across diverse populations, and achieving successful clinical translation. Addressing these gaps through rigorous research, well-designed clinical trials, and advanced biotechnologies can establish gerobiotics as a transformative intervention for healthy aging and chronic disease prevention.
Collapse
Affiliation(s)
| | | | - Md Ehsanul Kabir
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - Ismam Samonty
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Anamul Hasan Chowdhury
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Md Ashikur Rahman
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| |
Collapse
|
3
|
Kipp ZA, Badmus OO, Stec DE, Hall B, Hinds TD. Bilirubin bioconversion to urobilin in the gut-liver-kidney axis: A biomarker for insulin resistance in the Cardiovascular-Kidney-Metabolic (CKM) Syndrome. Metabolism 2025; 163:156081. [PMID: 39580049 DOI: 10.1016/j.metabol.2024.156081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/17/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
The rising rates of obesity worldwide have increased the incidence of cardiovascular disease (CVD), making it the number one cause of death. Higher plasma bilirubin levels have been shown to prevent metabolic dysfunction and CVD. However, reducing levels leads to deleterious outcomes, possibly due to reduced bilirubin half-life that escalates the production of its catabolized product, urobilinogen, produced by gut bacteria and naturally oxidized to urobilin. Recent findings suggest that the involvement of the microbiome catabolism of bilirubin to urobilin and its absorption via the hepatic portal vein contributes to CVD, suggesting a liver-gut axis involvement. We discuss the studies that demonstrate that urobilin is frequently raised in the urine of persons with CVD and its probable role in acquiring the disease. Urobilin is excreted from the kidneys into the urine and may serve as a biomarker for Cardiovascular-Kidney-Metabolic (CKM) Syndrome. We deliberate on the newly discovered bilirubin reductase (BilR) bacterial enzyme that produces urobilin. We discuss the bacterial species expressing BilR, how they impact CVD, and whether suppressing urobilin production and increasing bilirubin may provide new therapeutic strategies for CKM. Possible therapeutic mechanisms for achieving this goal are discussed.
Collapse
Affiliation(s)
- Zachary A Kipp
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Olufunto O Badmus
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Brantley Hall
- Center for Bioinformatics and Computational Biology, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, USA
| | - Terry D Hinds
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
4
|
López-Yerena A, de Santisteban Villaplana V, Badimon L, Vilahur G, Padro T. Probiotics: A Potential Strategy for Preventing and Managing Cardiovascular Disease. Nutrients 2024; 17:52. [PMID: 39796486 PMCID: PMC11722674 DOI: 10.3390/nu17010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Probiotics are gaining recognition as a viable strategy for mitigating cardiovascular risk factors. Specifically, recent studies highlight their potential benefits in managing cholesterol levels, blood pressure, and inflammation, which are critical components in the prevention of cardiovascular diseases (CVD). This comprehensive review aims to elucidate the impact of probiotic consumption on major cardiovascular risk factors, including individuals with hypertension, type II diabetes mellitus, metabolic syndrome, hypercholesterolemia, and in secondary prevention in coronary artery disease. Scientific evidence based on human studies suggests that probiotic consumption is associated with positive effects on anthropometric measures, inflammation markers, blood pressure, glucose metabolism markers, lipid profiles, and endothelial function. However, these findings should be interpreted pragmatically and acknowledge the significant variability in results. This variability may be attributed to factors such as probiotic composition (single strain or multiple strains), the characteristics of the delivery matrix (food, capsules, and sachets), the duration of the intervention, the dosage regimen, and baseline health profiles of the participants. Incorporating probiotics as part of a comprehensive and healthy lifestyle approach can be considered a feasible strategy for both the prevention and management of CVD. However, further research is needed on factors influencing the effect of probiotics, such as: (i) optimal probiotic strain(s), (ii) appropriate dosage, (iii) duration of treatment, (iv) optimal delivery vehicle, and (v) sex-specific differences.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Institut Recerca Sant Pau, Sant Quinti 77-79, 08041 Barcelona, Spain; (A.L.-Y.); (V.d.S.V.); (L.B.); (G.V.)
| | - Victoria de Santisteban Villaplana
- Institut Recerca Sant Pau, Sant Quinti 77-79, 08041 Barcelona, Spain; (A.L.-Y.); (V.d.S.V.); (L.B.); (G.V.)
- School of Pharmacy and Food Sciences, University of Barcelona (UB), 08036 Barcelona, Spain
| | - Lina Badimon
- Institut Recerca Sant Pau, Sant Quinti 77-79, 08041 Barcelona, Spain; (A.L.-Y.); (V.d.S.V.); (L.B.); (G.V.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Foundation for Health Prevention and Innovation (FICSI), 08017 Barcelona, Spain
| | - Gemma Vilahur
- Institut Recerca Sant Pau, Sant Quinti 77-79, 08041 Barcelona, Spain; (A.L.-Y.); (V.d.S.V.); (L.B.); (G.V.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Teresa Padro
- Institut Recerca Sant Pau, Sant Quinti 77-79, 08041 Barcelona, Spain; (A.L.-Y.); (V.d.S.V.); (L.B.); (G.V.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Shayista H, Prasad MN, Raj SN, Ranjini H, Manju K, Baker S. Mechanistic overview of gut microbiota and mucosal pathogens with respect to cardiovascular diseases. THE MICROBE 2024; 5:100160. [DOI: 10.1016/j.microb.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Islam MM, Mahbub NU, Hong ST, Chung HJ. Gut bacteria: an etiological agent in human pathological conditions. Front Cell Infect Microbiol 2024; 14:1291148. [PMID: 39439902 PMCID: PMC11493637 DOI: 10.3389/fcimb.2024.1291148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
Through complex interactions with the host's immune and physiological systems, gut bacteria play a critical role as etiological agents in a variety of human diseases, having an impact that extends beyond their mere presence and affects the onset, progression, and severity of the disease. Gaining a comprehensive understanding of these microbial interactions is crucial to improving our understanding of disease pathogenesis and creating tailored treatment methods. Correcting microbial imbalances may open new avenues for disease prevention and treatment approaches, according to preliminary data. The gut microbiota exerts an integral part in the pathogenesis of numerous health conditions, including metabolic, neurological, renal, cardiovascular, and gastrointestinal problems as well as COVID-19, according to recent studies. The crucial significance of the microbiome in disease pathogenesis is highlighted by this role, which is comparable to that of hereditary variables. This review investigates the etiological contributions of the gut microbiome to human diseases, its interactions with the host, and the development of prospective therapeutic approaches. To fully harness the benefits of gut microbiome dynamics for improving human health, future research should address existing methodological challenges and deepen our knowledge of microbial interactions.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
7
|
Namiot ED, Smirnovová D, Sokolov AV, Chubarev VN, Tarasov VV, Schiöth HB. Depression clinical trials worldwide: a systematic analysis of the ICTRP and comparison with ClinicalTrials.gov. Transl Psychiatry 2024; 14:315. [PMID: 39085220 PMCID: PMC11291508 DOI: 10.1038/s41398-024-03031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Major depressive disorder (MDD), commonly known as depression, affects over 300 million people worldwide as of 2018 and presents a wide range of clinical symptoms. The international clinical trials registry platform (ICTRP) introduced by WHO includes aggregated data from ClinicalTrials.gov and 17 other national registers, making it the largest clinical trial platform. Here we analysed data in ICTRP with the aim of providing comprehensive insights into clinical trials on depression. Applying a novel hidden duplicate identification method, 10,606 depression trials were identified in ICTRP, with ANZCTR being the largest non- ClinicalTrials.gov database at 1031 trials, followed by IRCT with 576 trials, ISRCTN with 501 trials, CHiCTR with 489 trials, and EUCTR with 351 trials. The top four most studied drugs, ketamine, sertraline, duloxetine, and fluoxetine, were consistent in both groups, but ClinicalTrials.gov had more trials for each drug compared to the non-ClinicalTrials.gov group. Out of 9229 interventional trials, 663 unique agents were identified, including approved drugs (74.5%), investigational drugs (23.2%), withdrawn drugs (1.8%), nutraceuticals (0.3%), and illicit substances (0.2%). Both ClinicalTrials.gov and non-ClinicalTrials.gov databases revealed that the largest categories were antidepressive agents (1172 in ClinicalTrials.gov and 659 in non-ClinicalTrials.gov) and nutrients, amino acids, and chemical elements (250 in ClinicalTrials.gov and 659 in non-ClinicalTrials.gov), indicating a focus on alternative treatments involving dietary supplements and nutrients. Additionally, 26 investigational antidepressive agents targeting 16 different drug targets were identified, with buprenorphine (opioid agonist), saredutant (NK2 antagonist), and seltorexant (OX2 antagonist) being the most frequently studied. This analysis addresses 40 approved drugs for depression treatment including new drug classes like GABA modulators and NMDA antagonists that are offering new prospects for treating MDD, including drug-resistant depression and postpartum depression subtypes.
Collapse
Affiliation(s)
- Eugenia D Namiot
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Diana Smirnovová
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Aleksandr V Sokolov
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Vladimir N Chubarev
- Advanced Molecular Technologies, Limited Liability Company (LLC), Moscow, Russia
| | - Vadim V Tarasov
- Advanced Molecular Technologies, Limited Liability Company (LLC), Moscow, Russia
| | - Helgi B Schiöth
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
8
|
Jiang P, Di Z, Huang W, Xie L. Modulating the Gut Microbiota and Metabolites with Traditional Chinese Medicines: An Emerging Therapy for Type 2 Diabetes Mellitus and Its Complications. Molecules 2024; 29:2747. [PMID: 38930814 PMCID: PMC11206945 DOI: 10.3390/molecules29122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, an estimated 537 million individuals are affected by type 2 diabetes mellitus (T2DM), the occurrence of which is invariably associated with complications. Glucose-lowering therapy remains the main treatment for alleviating T2DM. However, conventional antidiabetic agents are fraught with numerous adverse effects, notably elevations in blood pressure and lipid levels. Recently, the use of traditional Chinese medicines (TCMs) and their constituents has emerged as a preferred management strategy aimed at curtailing the progression of diabetes and its associated complications with fewer adverse effects. Increasing evidence indicates that gut microbiome disturbances are involved in the development of T2DM and its complications. This regulation depends on various metabolites produced by gut microbes and their interactions with host organs. TCMs' interventions have demonstrated the ability to modulate the intestinal bacterial microbiota, thereby restoring host homeostasis and ameliorating metabolic disorders. This review delves into the alterations in the gut microbiota and metabolites in T2DM patients and how TCMs treatment regulates the gut microbiota, facilitating the management of T2DM and its complications. Additionally, we also discuss prospective avenues for research on natural products to advance diabetes therapy.
Collapse
Affiliation(s)
- Peiyan Jiang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhenghan Di
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Wenting Huang
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lan Xie
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Nayak G, Dimitriadis K, Pyrpyris N, Manti M, Kamperidis N, Kamperidis V, Ziakas A, Tsioufis K. Gut Microbiome and Its Role in Valvular Heart Disease: Not a "Gutted" Relationship. Life (Basel) 2024; 14:527. [PMID: 38672797 PMCID: PMC11051562 DOI: 10.3390/life14040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
The role of the gut microbiome (GM) and oral microbiome (OM) in cardiovascular disease (CVD) has been increasingly being understood in recent years. It is well known that GM is a risk factor for various CVD phenotypes, including hypertension, dyslipidemia, heart failure and atrial fibrillation. However, its role in valvular heart disease (VHD) is less well understood. Research shows that, direct, microbe-mediated and indirect, metabolite-mediated damage as a result of gut dysbiosis and environmental factors results in a subclinical, chronic, systemic inflammatory state, which promotes inflammatory cell infiltration in heart valves and subsequently, via pro-inflammatory molecules, initiates a cascade of reaction, resulting in valve calcification, fibrosis and dysfunction. This relationship between GM and VHD adds a pathophysiological link to the pathogenesis of VHD, which can be aimed therapeutically, in order to prevent or regress any risk for valvular pathologies. Therapeutic interventions include dietary modifications and lifestyle interventions, in order to influence environmental factors that can promote gut dysbiosis. Furthermore, the combination of probiotics and prebiotics, as well as fecal m transplantation and targeted treatment with inducers or inhibitors of microbial enzymes have showed promising results in animal and/or clinical studies, with the potential to reduce the inflammatory state and restore the normal gut flora in patients. This review, thus, is going to discuss the pathophysiological links behind the relationship of GM, CVD and VHD, as well as explore the recent data regarding the effect of GM-altering treatment in CVD, cardiac function and systemic inflammation.
Collapse
Affiliation(s)
- Gyanaranjan Nayak
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (G.N.); (N.P.); (K.T.)
| | - Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (G.N.); (N.P.); (K.T.)
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (G.N.); (N.P.); (K.T.)
| | - Magdalini Manti
- St Mark’s Hospital, Imperial College London, London HA1 3UJ, UK (N.K.)
| | | | - Vasileios Kamperidis
- First Cardiology Department, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54453 Thessaloniki, Greece; (V.K.); (A.Z.)
| | - Antonios Ziakas
- First Cardiology Department, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54453 Thessaloniki, Greece; (V.K.); (A.Z.)
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (G.N.); (N.P.); (K.T.)
| |
Collapse
|
10
|
Mohammadi F, Mohsenpour MA, Sohrabi Z, Niakousari M, Jeddi M, Hassanzadeh J, Ferns GA, Eftekhari MH. The effects of powdered drinks enriched with curcumin and probiotics on lipid profile and atherogenic indices in patients with metabolic syndrome: A randomized, double-blinded, placebo-controlled clinical trial. Food Sci Nutr 2024; 12:1257-1267. [PMID: 38370069 PMCID: PMC10867475 DOI: 10.1002/fsn3.3839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 02/20/2024] Open
Abstract
Cardiovascular disease is prevalent globally and is the most common complication of metabolic syndrome (MetS). Previous studies have suggested that curcumin and probiotics may improve the lipid profile, so we aimed to investigate the effects of the edible powder enriched with these substances on lipid profile level and atherogenic indices such as Atherogenic Coefficient (AC), Castelli Risk Index-I (CRI-I), Castelli Risk Index-II (CRI-II), and Atherogenic Index of Plasma (AIP). In the present parallel randomized double-blinded placebo-controlled clinical trial, 124 people with MetS with overweight or obesity were randomly allocated to 4 groups and were followed up for 8 weeks. The participants received a low-calorie diet and a daily sachet of enriched powder drink. The sachets contained either 109 CFU of probiotics or 1 g of curcumin, or probiotic + curcumin (pro + cur), or placebo, respectively. The fasting lipid profile and atherogenic indices were measured at the beginning and end of the study. One hundred and fourteen participants completed the study. At the end of the study, the within- and between-group comparisons showed no significant differences in lipid profile and atherogenic indices (p > .05). Based on the results of the current study, taking an oral powder containing 1 g curcumin and 109 CFU probiotics for 8 weeks had no effect on the lipid profile level and atherogenic indices; however, more studies are recommended.
Collapse
Affiliation(s)
- Farzaneh Mohammadi
- Department of Clinical Nutrition, School of Nutrition and Food SciencesShiraz University of Medical SciencesShirazIran
- Student Research Committee, School of Nutrition and Food SciencesShiraz University of Medical SciencesShirazIran
| | - Mohammad Ali Mohsenpour
- Department of Clinical Nutrition, School of Nutrition and Food SciencesShiraz University of Medical SciencesShirazIran
- Student Research Committee, School of Nutrition and Food SciencesShiraz University of Medical SciencesShirazIran
| | - Zahra Sohrabi
- Nutrition Research Center, School of Nutrition and Food SciencesShiraz University of Medical SciencesShirazIran
| | - Mehrdad Niakousari
- Department of Food Science and Technology, College of AgricultureShiraz UniversityShirazIran
| | - Marjan Jeddi
- Endocrinology and Metabolism Research CenterShiraz University of Medical SciencesShirazIran
| | - Jafar Hassanzadeh
- Department of Epidemiology, School of Health, Research Center for Health Sciences, Institute of HealthShiraz University of Medical SciencesShirazIran
| | - Gordon A. Ferns
- Department of Medical EducationBrighton & Sussex Medical SchoolBrightonUK
| | - Mohammad Hassan Eftekhari
- Department of Clinical Nutrition, School of Nutrition and Food SciencesShiraz University of Medical SciencesShirazIran
| |
Collapse
|
11
|
Paquette S, Thomas SC, Venkataraman K, Appanna VD, Tharmalingam S. The Effects of Oral Probiotics on Type 2 Diabetes Mellitus (T2DM): A Clinical Trial Systematic Literature Review. Nutrients 2023; 15:4690. [PMID: 37960343 PMCID: PMC10648673 DOI: 10.3390/nu15214690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) remains a global health concern. Emerging clinical trial (CT) evidence suggests that probiotic intervention may promote a healthy gut microbiome in individuals with T2DM, thereby improving management of the disease. This systematic literature review summarizes thirty-three CTs investigating the use of oral probiotics for the management of T2DM. Here, twenty-one studies (64%) demonstrated an improvement in at least one glycemic parameter, while fifteen studies (45%) showed an improvement in at least one lipid parameter. However, no article in this review was able to establish a uniform decrease in glycemic, lipid, or blood pressure profiles. The lack of consistency across the studies may be attributed to differences in probiotic composition, duration of probiotic consumption, and probiotic dose. An interesting finding of this literature review was the beneficial trend of metformin and probiotic co-administration. Here, patients with T2DM taking metformin demonstrated enhanced glycemic control via the co-administration of probiotics. Taken together, the overall positive findings reported across the studies in combination with minimal adverse effects constitute ground for further quality CTs. This review provides recommendations for future CTs that may address the shortcomings of the current studies and help to extract useful data from future investigations of the use of probiotics in T2DM management.
Collapse
Affiliation(s)
- Simon Paquette
- Medical Sciences Division, NOSM University, Sudbury, ON P3E 2C6, Canada; (S.P.); (S.C.T.); (K.V.)
| | - Sean C. Thomas
- Medical Sciences Division, NOSM University, Sudbury, ON P3E 2C6, Canada; (S.P.); (S.C.T.); (K.V.)
| | - Krishnan Venkataraman
- Medical Sciences Division, NOSM University, Sudbury, ON P3E 2C6, Canada; (S.P.); (S.C.T.); (K.V.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Vasu D. Appanna
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Sujeenthar Tharmalingam
- Medical Sciences Division, NOSM University, Sudbury, ON P3E 2C6, Canada; (S.P.); (S.C.T.); (K.V.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| |
Collapse
|
12
|
Almeida C, Gonçalves-Nobre JG, Alpuim Costa D, Barata P. The potential links between human gut microbiota and cardiovascular health and disease - is there a gut-cardiovascular axis? FRONTIERS IN GASTROENTEROLOGY 2023; 2. [DOI: 10.3389/fgstr.2023.1235126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut-heart axis is an emerging concept highlighting the crucial link between gut microbiota and cardiovascular diseases (CVDs). Recent studies have demonstrated that gut microbiota is pivotal in regulating host metabolism, inflammation, and immune function, critical drivers of CVD pathophysiology. Despite a strong link between gut microbiota and CVDs, this ecosystem’s complexity still needs to be fully understood. The short-chain fatty acids, trimethylamine N-oxide, bile acids, and polyamines are directly or indirectly involved in the development and prognosis of CVDs. This review explores the relationship between gut microbiota metabolites and CVDs, focusing on atherosclerosis and hypertension, and analyzes personalized microbiota-based modulation interventions, such as physical activity, diet, probiotics, prebiotics, and fecal microbiota transplantation, as a promising strategy for CVD prevention and treatment.
Collapse
|
13
|
Chaiyasut C, Sivamaruthi BS, Lailerd N, Sirilun S, Thangaleela S, Khongtan S, Bharathi M, Kesika P, Saelee M, Choeisoongnern T, Fukngoen P, Peerajan S, Sittiprapaporn P. Influence of Bifidobacterium breve on the Glycaemic Control, Lipid Profile and Microbiome of Type 2 Diabetic Subjects: A Preliminary Randomized Clinical Trial. Pharmaceuticals (Basel) 2023; 16:ph16050695. [PMID: 37242478 DOI: 10.3390/ph16050695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most highly prevalent metabolic disorders worldwide. Uncontrolled T2DM can lead to other health threats such as cardiac arrest, lower-limb amputation, blindness, stroke, impaired kidney function, and microvascular and macrovascular complications. Many studies have demonstrated the association between gut microbiota and diabetes development and probiotic supplementation in improving glycemic properties in T2DM. The study aimed to evaluate the influence of Bifidobacterium breve supplementation on glycemic control, lipid profile, and microbiome of T2DM subjects. Forty participants were randomly divided into two groups, and they received probiotics (50 × 109 CFU/day) or placebo interventions (corn starch; 10 mg/day) for 12 weeks. The changes in the blood-urea nitrogen (BUN), aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), fasting blood sugar (FBS), glycated hemoglobin (HbA1c), total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), creatinine levels, and other factors such as body-mass index, visceral fat, body fat, and body weight were assessed at baseline and after 12 weeks. B. breve supplementation significantly reduced BUN, creatinine, LDL, TG, and HbA1c levels compared to the placebo group. Significant changes were observed in the microbiome of the probiotic-treated group compared to the placebo group. Firmicutes and proteobacteria were predominant in the placebo and probiotic-treated groups. Genera Streptococcus, Butyricicoccus, and species Eubacterium hallii were significantly reduced in the probiotic-treated group compared to the placebo. Overall results suggested that B. breve supplementation could prevent worsening of representative clinical parameters in T2DM subjects. The current study has limitations, including fewer subjects, a single probiotic strain, and fewer metagenomic samples for microbiome analysis. Therefore, the results of the current study require further validation using more experimental subjects.
Collapse
Affiliation(s)
- Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Narissara Lailerd
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasithorn Sirilun
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suchanat Khongtan
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muruganantham Bharathi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Manee Saelee
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Thiwanya Choeisoongnern
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Pranom Fukngoen
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Phakkharawat Sittiprapaporn
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| |
Collapse
|
14
|
Hijová E. Benefits of Biotics for Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24076292. [PMID: 37047262 PMCID: PMC10093891 DOI: 10.3390/ijms24076292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiovascular diseases are the main cause of death in many countries, and the better prevention and prediction of these diseases would be of great importance for individuals and society. Nutrition, the gut microbiota, and metabolism have raised much interest in the field of cardiovascular disease research in the search for the main mechanisms that promote cardiovascular diseases. Understanding the interactions between dietary nutrient intake and the gut microbiota-mediated metabolism may provide clinical insight in order to identify individuals at risk of cardiometabolic disease progression, as well as other potential therapeutic targets to mitigate the risk of cardiometabolic disease progression. The development of cardiometabolic diseases can be modulated by specific beneficial metabolites derived from bacteria. Therefore, it is very important to investigate the impact of these metabolites on human health and the possibilities of modulating their production with dietary supplements called biotics.
Collapse
Affiliation(s)
- Emília Hijová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
15
|
Farajipour H, Sadr S, Matin HR, Aschner M, Asemi Z, Banikazemi Z, Mirzaei H, Taghizadeh M. Therapeutic effect of probiotics on metabolic indices and clinical signs in age-related macular degeneration. J Immunoassay Immunochem 2022; 44:229-241. [PMID: 36576143 DOI: 10.1080/15321819.2022.2159765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Probiotics positively influence age-related macular degeneration (ARMD) given their propensity to attenuate oxidative and inflammatory stress. We addressed the impact of probiotics on metabolic profiles, clinical indices, inflammatory and oxidative stress parameters in ARMD patients. We performed a randomized, double-blind, placebo-controlled trial analyzing 57 subjects with ARMD aged between 50 and 85 years. Subjects were randomized into two groups, and received daily for 8 weeks either probiotic capsule or placebo. Fasting blood samples were obtained at baseline and after the 8-week intervention for the determination of metabolic profiles and oxidative stress biomarkers. After the 8-week intervention, compared with the placebo, probiotic supplementation significantly increased means HDL-cholesterol (Probiotic group: +3.86±4.42 vs. Placebo group: -0.55±4.93 mg/dL, P = .001), plasma total antioxidant capacity (TAC) (Probiotic group: +77.43±168.30 vs. Placebo group: -23.12±169.22 mmol/L, P = .02) and significantly decreased malondialdehyde (MDA) levels (Probiotic group: -0.18±0.46 vs. Placebo group: +0.18±0.25 µmol/L, P = .001). There was no significant effect of probiotic administration on other metabolic profiles and clinical symptoms. Overall, an eight-week probiotic administration among ARMD patients had beneficial effects on TAC, MDA and HDL-cholesterol levels; however, it did not affect clinical signs and other metabolic profiles.
Collapse
Affiliation(s)
- Hasan Farajipour
- Department of Ophthalmology, School of Medicine, Matini Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Sadr
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Matin
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
16
|
Longoria CR, Guers JJ, Campbell SC. The Interplay between Cardiovascular Disease, Exercise, and the Gut Microbiome. Rev Cardiovasc Med 2022; 23:365. [PMID: 39076202 PMCID: PMC11269073 DOI: 10.31083/j.rcm2311365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 07/31/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, with physical inactivity being a known contributor to the global rates of CVD incidence. The gut microbiota has been associated with many diseases including CVD and other comorbidities such at type 2 diabetes and obesity. Researchers have begun to examine the gut microbiome as a predictor of early disease states by detecting disruptions, or dysbiosis, in the microbiota. Evidence is lacking to investigate the potential link between the gut microbiota, exercise, and CVD risk and development. Research supports that diets with whole food have reduced instances of CVD and associated diseases, increased abundances of beneficial gut bacteria, and altered gut-derived metabolite production. Further, exercise and lifestyle changes to increase physical activity demonstrate improved health outcomes related to CVD risk and comorbidities and gut microbial diversity. It is difficult to study an outcome such as CVD when including multiple factors; however, it is evident that exercise, lifestyle, and the gut microbiota contribute to improved health in their own ways. This review will highlight current research findings and what potential treatments of CVD may be generated by manipulation of the gut microbiota and/or exercise.
Collapse
Affiliation(s)
- Candace R. Longoria
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - John J. Guers
- Department of Biology, Behavioral Neuroscience and Health Science, Rider University, Lawrenceville, NJ 08646, USA
| | - Sara C. Campbell
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|