1
|
Fijałkowska O, Jurowski K. Toxicity of ACP-105: a substance used as doping in sports: application of in silico methods for prediction of selected toxicological endpoints. Arch Toxicol 2025; 99:1485-1503. [PMID: 40064700 DOI: 10.1007/s00204-025-03962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/15/2025] [Indexed: 04/04/2025]
Abstract
ACP-105 is a novel non-steroidal Selective Androgen Receptor Modulator (SARM) used by athletes. Its action aims to increase muscle mass and is one of the options in testosterone replacement therapy. Its safety profile remains insufficiently explored, particularly regarding its toxicity in humans. The lack of information about the studied compound in the World Anti-Doping Agency (WADA) became the purpose of this study. Given the increasing use of such compounds in sports, a deeper understanding of their biological risks is crucial. This study not only fills the gap in available information but also contributes to the growing body of research on SARMs, providing insights into their potential hazards and guiding future investigations into their safety. This work aimed to use various in silico techniques to predict the toxicity of ACP-105, including acute toxicity, effects on internal organs, genotoxicity based on the Ames test, eye and skin irritation, and cardiotoxicity by testing hERG inhibitors. A preliminary safety analysis of the compound was based on its chemical structure and interactions with biological targets using various in silico techniques: qualitative (STopTox, ADMETlab, admetSAR, ProTox 3.0, and Toxtree 3.1.0) and quantitative (TEST 5.1.2, Percepta, VEGA QSAR 1.2.3, and SL-Tox) to ensure that the prediction results are as accurate as possible.
Collapse
Affiliation(s)
- Oktawia Fijałkowska
- Toxicological Science Club 'Paracelsus', Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland
| | - Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland.
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland.
| |
Collapse
|
2
|
Unni V, Abishad P, Mohan B, Arya PR, Juliet S, John L, Vinod VK, Karthikeyan A, Kurkure NV, Barbuddhe SB, Rawool DB, Vergis J. Antibacterial and photocatalytic potential of piperine-derived zinc oxide nanoparticles against multi-drug-resistant non-typhoidal Salmonella spp. BMC Microbiol 2025; 25:89. [PMID: 40000999 PMCID: PMC11852875 DOI: 10.1186/s12866-025-03829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Drug-resistant pathogens and industrial dye wastes have emerged as critical global public health concerns, posing significant risks to human and animal health, as well as to environmental sustainability. Green synthesized nano absorbents were found to be a viable strategy for treating drug-resistant pathogens and in wastewater. Hence, this study endeavored the synthesis of piperine-driven nano-zinc oxide (ZnONPs) and evaluated them for antibacterial, antibiofilm, and photocatalytic disinfection potential against multi-drug resistant (MDR) foodborne strains of non-typhoidal Salmonella (NTS). Besides, the dye degradation potential of ZnONPs when exposed to UV, sunlight, and LED lights and their antioxidant capacity were assessed. RESULTS Initially, in silico analysis of piperine revealed drug-likeliness with minimal toxicity and strong interaction between piperine and OmpC motifs of Salmonella spp. UV spectroscopy of ZnONPs revealed a prominent absorption peak at 340 nm, while PXRD analysis confirmed the hexagonal wurtzite structure of ZnONPs by exhibiting peaks at 30°, 35.6°, 41.3°, 43.6°, 44.3°, 48°, 53°, 58°, and 59.2°, which corresponded to the lattice planes (102), (110), (103), (200), (112), (004), (104), (210), and (211). Additionally, the TEM images demonstrated predominantly spherical ZnONPs with hexagonal wurtzite crystalline SAED pattern. The minimum inhibitory concentration and minimum bactericidal concentration values (µg/mL) of the ZnONPs were found to be 62.50 and 125, respectively. The ZnONPs were observed to be safe with minimal hemolysis (less than 2%) in chicken RBCs, and no cytopathic effects were observed in the MTT assay using HEK cell lines. The NPs were found to be variably stable (high-end temperatures, proteases, cationic salts, and diverse pH), and were tested safe towards commensal gut lactobacilli. Additionally, in vitro time-kill kinetic assay indicated that the MDR-NTS strains were eliminated after co-incubating with ZnONPs for 6 h. The photocatalytic studies exhibited complete bacterial elimination under visible light at 4 h. Interestingly, the ZnONPs significantly inhibited the biofilm formation in the crystal violet staining assay by MDR-NTS strains (P < 0.001) at 24 and 48 h. Besides, a dose-dependent reducing power assay and 2,2'- azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) assay were exhibited. Moreover, ZnONPs significantly degraded methylene blue, crystal violet, and rhodamine-B under different light sources (sunlight, UV light, and LED). CONCLUSIONS This study revealed a sustainable one-pot method of synthesizing ZnONPs from piperine, which might be used as a viable antibacterial candidate with antioxidant, antibiofilm, and photocatalytic properties with eco-friendly implications and wastewater treatment.
Collapse
Affiliation(s)
- Varsha Unni
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Padikkamannil Abishad
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Bibin Mohan
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Pokkittath Radhakrishnan Arya
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Sanis Juliet
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Lijo John
- Department of Veterinary Biochemistry, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Valil Kunjukunju Vinod
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Asha Karthikeyan
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | | | | | | | - Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India.
| |
Collapse
|
3
|
Belina D, Gobena T, Kebede A, Chimdessa M, Hald T. Genotypic Antimicrobial Resistance Profiles of Diarrheagenic Escherichia coli and Nontyphoidal Salmonella Strains Isolated from Children with Diarrhea and Their Exposure Environments in Ethiopia. Infect Drug Resist 2024; 17:4955-4972. [PMID: 39539744 PMCID: PMC11559196 DOI: 10.2147/idr.s480395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background Antimicrobial resistance (AMR) poses a significant global threat, particularly in low- and middle-income countries, such as Ethiopia, where surveillance is limited. This study aimed to predict and characterize the AMR profiles of diarrheagenic Escherichia coli (DEC) and nontyphoidal Salmonella (NTS) strains isolated from human, animal, food, and environmental samples using whole genome sequencing. Methods A total of 57 NTS and 50 DEC isolates were sequenced on an Illumina NextSeq 550. The ResFinder and PointFinder tools were employed to identify antimicrobial resistance genes (ARGs) and point mutations. Salmonella serotypes were determined using SeqSero. Results The analysis identified at least one ARG in every NTS sample and 78% of the DEC isolates, with 22 distinct ARGs in the NTS samples and 40 in the DEC samples. The most prevalent ARGs were aac(6')-Iaa and aph(3')-Ib, which predict aminoglycoside resistance in 100% of NTS and 54% of DEC isolates, respectively. Other commonly identified ARGs include sul2, aph(6)-Id, blaTEM-1B , and tet(A), which confer resistance to folate inhibitors, aminoglycosides, β-lactams, and tetracycline. Some ARGs predicted phenotypic multidrug resistance in both DEC and NTS isolates. All identified β-lactam ARGs, except for blaTEM -1D, conferred resistance to more than three antibiotics. Interestingly, blaCTX- M-15 was found to confer resistance to nine antibiotics, including third-generation cephalosporins, in 18% of DEC and 3.5% of NTS isolates. DEC isolates from children exhibited the highest ARG diversity. Notably, genes such as aph(3″)-Ib, aph(6)-Id, sul2, and tet(A) were detected across all sample types, including water sources, although some ARGs were exclusive to specific sample types. Point mutations mediating AMR were detected in several genes, with mutations associated with nucleotide substitution being the most frequent. Conclusion This genotypic AMR profiling revealed the presence of widespread drug-resistant NTS and DEC strains in Ethiopia. Robust and sustained AMR surveillance is essential for monitoring the emergence and spread of these resistant pathogens.
Collapse
Affiliation(s)
- Dinaol Belina
- College of Veterinary Medicine, Haramaya University, Dire Dawa, Ethiopia
- School of Biological Sciences and Biotechnology, Haramaya University, Dire Dawa, Ethiopia
| | - Tesfaye Gobena
- College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Ameha Kebede
- School of Biological Sciences and Biotechnology, Haramaya University, Dire Dawa, Ethiopia
| | - Meseret Chimdessa
- School of Biological Sciences and Biotechnology, Haramaya University, Dire Dawa, Ethiopia
| | - Tine Hald
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
4
|
Das A, Mumu M, Rahman T, Sayeed MA, Islam MM, Alawneh JI, Hassan MM. An In Silico Approach to Discover Efficient Natural Inhibitors to Tie Up Epstein-Barr Virus Infection. Pathogens 2024; 13:928. [PMID: 39599481 PMCID: PMC11597430 DOI: 10.3390/pathogens13110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Epstein-Barr virus (EBV), also known as human herpesvirus 4, is a member of the herpes virus family. EBV is a widespread virus and causes infectious mononucleosis, which manifests with symptoms such as fever, fatigue, lymphadenopathy, splenomegaly, and hepatomegaly. Additionally, EBV is associated with different lymphocyte-associated non-malignant, premalignant, and malignant diseases. So far, no effective treatment or therapeutic drug is known for EBV-induced infections and diseases. This study investigated natural compounds that inhibit EBV glycoprotein L (gL) and block EBV fusion in host cells. We utilised computational approaches, including molecular docking, in silico ADMET analysis, and molecular dynamics simulation. We docked 628 natural compounds against gL and identified the four best compounds based on binding scores and pharmacokinetic properties. These four compounds, with PubChem CIDs 4835509 (CHx-HHPD-Ac), 2870247 (Cyh-GlcNAc), 21206004 (Hep-HHPD-Ac), and 51066638 (Und-GlcNAc), showed several interactions with EBV gL. However, molecular dynamics simulations indicated that the protein-ligand complexes of CID: 4835509 (CHx-HHPD-Ac) and CID: 2870247 (Cyh-GlcNAc) are more stable than those of the other two compounds. Therefore, CIDs 4835509 and 2870247 (Cyh-GlcNAc) may be potent natural inhibitors of EBV infection. These findings can open a new way for effective drug design against EBV and its associated infections and diseases.
Collapse
Affiliation(s)
- Ayan Das
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram 4331, Bangladesh; (A.D.); (M.M.); (T.R.)
| | - Mumtaza Mumu
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram 4331, Bangladesh; (A.D.); (M.M.); (T.R.)
| | - Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram 4331, Bangladesh; (A.D.); (M.M.); (T.R.)
| | - Md Abu Sayeed
- National Centre for Epidemiology and Population Health (NCEPH), College of Health and Medicine, The Australian National University, Canberra, ACT 2601, Australia
| | - Md Mazharul Islam
- Department of Animal Resources, Ministry of Municipality, Doha P.O. Box 35081, Qatar;
| | - John I. Alawneh
- Plant Biosecurity and Product Integrity, Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, QLD 4000, Australia;
| | - Mohammad Mahmudul Hassan
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| |
Collapse
|
5
|
AbouAitah K, Geioushy RA, Nour SA, Emam MTH, Zakaria MA, Fouad OA, Shaker YM, Kim BS. A Combined Phyto- and Photodynamic Delivery Nanoplatform Enhances Antimicrobial Therapy: Design, Preparation, In Vitro Evaluation, and Molecular Docking. ACS APPLIED BIO MATERIALS 2024; 7:6873-6889. [PMID: 39374427 DOI: 10.1021/acsabm.4c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Microbial combating is one of the hot research topics, and finding an alternative strategy is considerably required nowadays. Here, we report on a developed combined chemo- and photodynamic delivery system with a core of zinc oxide nanoparticles (ZnO NPs), porphyrin photosensitizer (POR) connected to alginate polymer (ALG), and berberine (alkaloid natural agent, BER) with favorable antimicrobial effects. According to the achieved main designs, the results demonstrated that the loading capacity and entrapment efficiency reached 22.2 wt % and 95.2%, respectively, for ZnO@ALG-POR/BER nanoformulation (second design) compared to 5.88 wt % and 45.1% for ZnOBER@ALG-POR design (first design). Importantly, when the intended nanoformulations were combined with laser irradiation for 10 min, they showed effective antifungal and antibacterial action against Candida albicans, Escherichia coli, and Staphylococcus aureus. Comparing these treatments to ZnO NPs and free BER, a complete (100%) suppression of bacterial and fungal growth was observed by ZnO@ALG-POR/BER nanoformulation treated E. coli, and by ZnOBER treated C. albicans. Also, after laser treatments, most data showed that E. coli was more sensitive to treatments using nanoformulations than S. aureus. The nanoformulations like ZnOBER@ALG-POR were highly comparable to traditional antibiotics against C. albicans and E. coli before laser application. The results of the cytotoxicity assessment demonstrated that the nanoformulations exhibited moderate biocompatibility on normal human immortalized retinal epithelial (RPE1) cells. Notably, the most biocompatible nanoformulation was ZnOBER@ALG-POR, which possessed ∼9% inhibition of RPE1 cells compared to others. High binding affinities were found between all three microbial strains' receptor proteins and ligands in the molecular docking interaction between the receptor proteins and the ligand molecules (mostly BER and POR). In conclusion, our findings point to the possible use of hybrid nanoplatform delivery systems that combine natural agents and photodynamic therapy into a single therapeutic agent, effectively combating microbial infections. Therapeutic efficiency correlates with nanoformulation design and microorganisms, demonstrating possible optimization for further development.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Ramadan A Geioushy
- Nanostructured Materials and Nanotechnology Department, Advanced Materials Institute, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
| | - Shaimaa A Nour
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Maha T H Emam
- Department of Genetics and Cytology, Biotechnology Research Institute, National Research Centre, 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Mohammed A Zakaria
- Spectroscopy Department, Physics Research Institute, National Research Centre, 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Osama A Fouad
- Nanostructured Materials and Nanotechnology Department, Advanced Materials Institute, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
| | - Yasser M Shaker
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
6
|
Wahyuni DK, Junairiah J, Rosyanti C, Kharisma VD, Syukriya AJ, Rahmawati CT, Purkan P, Subramaniam S, Prasongsuk S, Purnobasuki H. Computational and in vitro analyses of the antibacterial effect of the ethanolic extract of Pluchea indica L. leaves. Biomed Rep 2024; 21:137. [PMID: 39129835 PMCID: PMC11310492 DOI: 10.3892/br.2024.1825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/19/2024] [Indexed: 08/13/2024] Open
Abstract
The most common gram-negative, Escherichia coli, and gram-positive bacteria, Bacillus spp., have evolved different mechanisms that have caused the emergence of multi-drug resistance. As a result, drugs that block the bacterial growth cycle are needed. Here, in silico and in vitro studies were performed to assess compounds in the Pluchea indica leaf extract, a medicinal plant, that can inhibit bacterial proteins. Briefly, P. indica leaves were extracted using ethanol. The crude extract was then subjected to gas chromatography-mass spectrometry for metabolite screening. Molecular docking simulations with rhomboid protease (Rpro) (Protein data bank ID number: 3ZMI from E. coli and filamenting temperature-sensitive mutant Z (FtsZ) protein data bank ID number: 2VAM from Bacillus subtilis were performed. Moreover, the well diffusion method was used to confirm the antibacterial activity of P. indica leaf extract. A total of 10 compounds were identified in the P. indica extract and used for computational analysis. Based on drug-likeness prediction, P. indica compounds may be drug-like molecules. Binding affinity tests indicated that 10,10-Dimethyl-2,6-dimethylenebicyclo(7.2.0)undecan-5.β.-ol and 11,11-Dimethyl-4,8-dimethylenebicyclo(7.2.0)undecan-3-ol had the most negative values. Accordingly, these compounds may be potential ligands that bind to bacterial proteins. The root mean square fluctuation values was <2 Å, indicating stable fluctuation binding for the ligand-protein complex. According to in vitro antibacterial assays, a high concentration (50%) of the P. indica extract markedly inhibited E. coli and B. subtilis, with inhibitory zone diameters of 31.86±1.63 and 21.09±0.09 mm, respectively. Overall, the compounds in the P. indica leaf extract were identified as functional inhibitors of E. coli and B. subtilis proteins via in silico analysis. This may facilitate development of antibacterial agents.
Collapse
Affiliation(s)
- Dwi Kusuma Wahyuni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
- Center of Excellence in Plant Biodiversity and Biotechnology, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
| | - Junairiah Junairiah
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
- Center of Excellence in Plant Biodiversity and Biotechnology, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
| | - Chery Rosyanti
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
| | - Viol Dhea Kharisma
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
| | - Alvi Jauharotus Syukriya
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
| | - Cici Tya Rahmawati
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
| | - Purkan Purkan
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
| | - Sreeramanan Subramaniam
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
- School of Biological Science, Universiti Sains Malaysia, Georgetown 11800, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia (USM), Bayan Lepas, 11900, Penang, Malaysia
| | - Sehanat Prasongsuk
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hery Purnobasuki
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
- Center of Excellence in Plant Biodiversity and Biotechnology, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
| |
Collapse
|
7
|
Mohan B, Abishad P, Arya PR, Dias M, Vinod VK, Karthikeyan A, Juliet S, Kurkure NV, Barbuddhe SB, Rawool DB, Vergis J. Elucidating antibiofilm as well as photocatalytic disinfection potential of green synthesized nanosilver against multi-drug-resistant bacteria and its photodegradation ability of cationic dyes. Gut Pathog 2024; 16:51. [PMID: 39334435 PMCID: PMC11438043 DOI: 10.1186/s13099-024-00639-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Bioinspired nanomaterials have widely been employed as suitable alternatives for controlling biofilm and pathogens due to their distinctive physico-chemical properties. METHODOLOGY This study explored the antibiofilm as well as photocatalytic potential of silver (Ag) nanoparticles (NPs) synthesized using the cell-free supernatant of Lactobacillus acidophilus for the disinfection of multi-drug-resistant (MDR) strains of enteroaggregative E. coli (EAEC), Salmonella Typhimurium, S. Enteritidis and methicillin-resistant Staphylococcus aureus (MRSA) on exposure to LED light. In addition, the removal of toxic cationic dyes i.e., methylene blue (MB), rhodamine B (RhB) and crystal violet (CV) was explored on exposure to sunlight, LED and UV lights. RESULTS Initially, the synthesis of AgNPs was verified using UV- Vis spectroscopy, X-ray diffraction and transmission electron microscopy. The synthesized AgNPs exhibited MIC and MBC values of 7.80 and 15.625 µg/mL, respectively. The AgNPs exhibited significant inhibition (P < 0.001) in the biofilm-forming ability of all the tested MDR isolates. On exposure to LED light, the AgNPs could effectively eliminate all the tested MDR isolates in a dose-dependent manner. While performing photocatalytic assays, the degradation of RhB was observed to be quite slower than MB and CV irrespective of the tested light sources. Moreover, the sunlight as well as UV light exhibited better photodegradation capacity than LED light. Notwithstanding the light sources, RhB followed zero-order kinetics; however, MB and CV followed primarily second-order kinetics. CONCLUSION The green synthesized AgNPs were found to be an effective photocatalytic as well as antifouling candidate that could be applied in therapeutics and wastewater treatment.
Collapse
Affiliation(s)
- Bibin Mohan
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | - Padikkamannil Abishad
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | - Pokkittath Radhakrishnan Arya
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | - Marita Dias
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | - Valil Kunjukunju Vinod
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | - Asha Karthikeyan
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | - Sanis Juliet
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | | | | | | | - Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India.
| |
Collapse
|
8
|
Islam S, Hussain EA, Shujaat S, Khan MU, Ali Q, Malook SU, Ali D. Antibacterial potential of Propolis: molecular docking, simulation and toxicity analysis. AMB Express 2024; 14:81. [PMID: 39014110 PMCID: PMC11252112 DOI: 10.1186/s13568-024-01741-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
The issue of antibiotic resistance in pathogenic microbes is a global concern. This study was aimed to explore in silico and in vitro analysis of the antibacterial efficacy of different natural ligands against bacterial activity. The ligands included in the study were Propolis Neoflavanoide 1, Carvacrol, Cinnamaldehyde, Thymol, p-benzoquinone, and Ciprofloxacin (standard drug S*). The outcomes of molecular docking revealed that Propolis Neoflavaniode-1 showed a highly significant binding energy of - 7.1 and - 7.2 kcal/mol for the two gram-positive bacteria, as compared to the gram-negative bacteria. All ligands demonstrated acute toxicity (oral, dermal), except for Propolis Neoflavanoide 1 and S* drugs, with a confidence score range of 50-60%. Using a molecular dynamic simulation approach, we investigated Propolis Neoflavaniode-1's potential for therapeutic use in more detail. An MD simulation lasting 100 ns was performed using the Desmond Simulation software to examine the conformational stability and steady state of Propolis Neoflavaniode-1 in protein molecule complexes. Additionally, in vitro studies confirmed the antimicrobial activity of Propolis Neoflavaniode 1 by increasing the zone of inhibition against Gram-positive bacteria, p < 0.005 as compared to gram-negative bacteria. This study revealed the promising antibacterial efficacy of Propolis Neoflavaniode 1, demonstrated through robust in silico analyses, minimal toxicity, and confirmed in vitro antimicrobial activity, suggesting its potential as a viable alternative to combat antibiotic resistance.
Collapse
Affiliation(s)
- Shabana Islam
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Erum Akbar Hussain
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Shahida Shujaat
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Saif Ul Malook
- Department of Entomology and Nematology, University of Florida, Gainesville, USA
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
9
|
Imran M, Haider A, Shahzadi A, Mustajab M, Ul-Hamid A, Ullah H, Khan S, Abd-Rabboh HSM, Ikram M. Silver and carbon nitride-doped nickel selenide for effective dye decolorization and bactericidal activity: in silico docking study. RSC Adv 2024; 14:20004-20019. [PMID: 38911830 PMCID: PMC11191054 DOI: 10.1039/d4ra01437e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
In this study, nickel selenide (NiSe), Ag/C3N4-NiSe, and C3N4/Ag-NiSe nanowires (NWs) were synthesized via coprecipitation. The prepared NWs were employed for the degradation of the rhodamine B (RhB) dye in the absence of light using sodium borohydride (NaBH4), bactericidal activity against pathogenic Staphylococcus aureus (S. aureus) and in silico docking study to investigate the d-alanine ligase (DDl) and deoxyribonucleic acid (DNA) gyrase of S. aureus. NWs demonstrate a catalytic degradation efficiency of 69.58% toward RhB in a basic medium. The percentage efficacy of the synthesized materials was evaluated as 19.12-42.62% at low and 36.61-49.72% at high concentrations against pathogenic S. aureus. Molecular docking results suggest that both C3N4/Ag-doped NiSe and Ag/C3N4-doped NiSe possess inhibitory activities toward DDl and DNA gyrase of S. aureus, which coincides with the in vitro bactericidal activity. Based on the research outcomes, the synthesized NWs show potential as an effective agent for water purification and resistance to microbial contaminants.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Chemistry, Government College University Faisalabad Pakpattan Road Sahiwal Punjab 57000 Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan 66000 Punjab Pakistan
| | - Anum Shahzadi
- Department of Pharmacy, COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Muhammad Mustajab
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Hameed Ullah
- Laboratory of Nanomaterials for Renewable Energy and Artificial Photosynthesis (NanoREAP), Institute of Physics, UFRGS 91509-900 Porto Alegre Rio Grande do Sul Brazil
| | - Sherdil Khan
- Laboratory of Nanomaterials for Renewable Energy and Artificial Photosynthesis (NanoREAP), Institute of Physics, UFRGS 91509-900 Porto Alegre Rio Grande do Sul Brazil
| | - Hisham S M Abd-Rabboh
- Chemistry Department, College of Science, King Khalid University P. O. Box 9004 Abha 62223 Saudi Arabia
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| |
Collapse
|
10
|
Chand P, Narula K, Vs R, Sharma S, Kumari S, Mondal N, Singh SP, Mishra P, Prasad T. Mechanistic Insights into Cellular and Molecular Targets of Zinc Oxide Quantum Dots (ZnO QDs) in Fungal Pathogen, Candida albicans: One Drug Multi-Targeted Therapeutic Approach. ACS Infect Dis 2024; 10:1914-1934. [PMID: 38831663 DOI: 10.1021/acsinfecdis.3c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Rationally designed multitargeted drugs, known as network therapeutics/multimodal drugs, have emerged as versatile therapeutic solutions to combat drug-resistant microbes. Here, we report novel mechanistic insights into cellular and molecular targets of ZnO quantum dots (QDs) against Candida albicans, a representative of fungal pathogens. Stable, monodispersed 4-6 nm ZnO QDs were synthesized using a wet chemical route, which exhibited dose-dependent inhibition on the growth dynamics of Candida. Treatment with 200 μg/mL ZnO QDs revealed an aberrant morphology and a disrupted cellular ultrastructure in electron microscopy and led to a 23% reduction in ergosterol content and a 53% increase in intracellular reactive oxygen species. Significant increase in steady-state fluorescence polarization and fluorescence lifetime decay of membrane probe 1,6-diphenyl-1,3,5-hexatriene (DPH) in treated cells, respectively, implied reduction in membrane fluidity and enhanced microviscosity. The observed reduction in passive diffusion of fluorescent Rhodamine 6G across the membrane validated the intricate relationship between ergosterol, membrane fluidity, and microviscosity. An inverse relationship existing between ergosterol biosynthetic genes, ERG11 and ERG3 in treated cells, related well with displayed higher susceptibilities. Furthermore, treated cells exhibited impaired functionality and downregulation of ABC drug efflux pumps. Multiple cellular targets of ZnO QDs in Candida were validated by in silico molecular docking. Thus, targeting ERG11, ERG3, and ABC drug efflux pumps might emerge as a versatile, nano-ZnO-based strategy in fungal therapeutics to address the challenges of drug resistance.
Collapse
Affiliation(s)
- Preeti Chand
- Special Centre for Nano Sciences and AIRF, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kritika Narula
- Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Radhakrishnan Vs
- Special Centre for Nano Sciences and AIRF, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shubham Sharma
- Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sangeeta Kumari
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Neelima Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Surinder P Singh
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Prashant Mishra
- Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Tulika Prasad
- Special Centre for Nano Sciences and AIRF, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
11
|
Srinivasan M, Gangurde A, Chandane AY, Tagalpallewar A, Pawar A, Baheti AM. Integrating network pharmacology and in silico analysis deciphers Withaferin-A's anti-breast cancer potential via hedgehog pathway and target network interplay. Brief Bioinform 2024; 25:bbae032. [PMID: 38446743 PMCID: PMC10917074 DOI: 10.1093/bib/bbae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 03/08/2024] Open
Abstract
This study examines the remarkable effectiveness of Withaferin-A (WA), a withanolide obtained from Withania somnifera (Ashwagandha), in encountering the mortiferous breast malignancy, a global peril. The predominant objective is to investigate WA's intrinsic target proteins and hedgehog (Hh) pathway proteins in breast cancer targeting through the application of in silico computational techniques and network pharmacology predictions. The databases and webtools like Swiss target prediction, GeneCards, DisGeNet and Online Mendelian Inheritance in Man were exploited to identify the common target proteins. The culmination of the WA network and protein-protein interaction network were devised using Stitch and String web tools, through which the drug-target network of 30 common proteins was constructed employing Cytoscape-version 3.9. Enrichment analysis was performed by incorporating Gprofiler, Metascape and Cytoscape plugins. David compounded the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, and enrichment was computed through bioinformatics tools. The 20 pivotal proteins were docked harnessing Glide, Schrodinger Suite 2023-2. The investigation was governed by docking scores and affinity. The shared target proteins underscored the precise Hh and WA network roles with the affirmation enrichment P-value of <0.025. The implications for hedgehog and cancer pathways were profound with enrichment (P < 0.01). Further, the ADMET and drug-likeness assessments assisted the claim. Robust interactions were noticed with docking studies, authenticated through molecular dynamics, molecular mechanics generalized born surface area scores and bonds. The computational investigation emphasized WA's credible anti-breast activity, specifically with Hh proteins, implying stem-cell-level checkpoint restraints. Rigorous testament is imperative through in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mythili Srinivasan
- Research Scholar, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra 411038, India
| | - Apeksha Gangurde
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra 411038, India
| | - Ashwini Y Chandane
- Abhinav College of Pharmacy, Narhe, Ambegaon, Pune, Maharashtra 411041, India
| | - Amol Tagalpallewar
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra 411038, India
| | - Anil Pawar
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra 411038, India
| | - Akshay M Baheti
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra 411038, India
| |
Collapse
|
12
|
Imbabi TA, Habashy WS, Abol-Fetouh GM, Labib MM, Osman A, Elkelish A, Qurtam AA, Tantawi AA, Ahmed-Farid O. Enhancing semen quality, brain neurotransmitters, and antioxidant status of rabbits under heat stress by acacia gum, vitamin C, and lycopene as dietary supplements: an in vitro and in silico study. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2023.2187715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Ameji PJ, Uzairu A, Shallangwa GA, Uba S. Molecular docking-based virtual screening, drug-likeness, and pharmacokinetic profiling of some anti- Salmonella typhimurium cephalosporin derivatives. J Taibah Univ Med Sci 2023; 18:1417-1431. [PMID: 38162870 PMCID: PMC10757315 DOI: 10.1016/j.jtumed.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/25/2023] [Accepted: 05/31/2023] [Indexed: 01/03/2024] Open
Abstract
Objective The rising cases of resistance to existing antibiotic therapies in Salmonella typhimurium has made it necessary to search for novel drug candidates. The present study employed the molecular docking technique to screen a set of antibacterial cephalosporin analogues against penicillin-binding protein 1a (PBP1a) of the bacterium. This is the first study to screen cephalosporin analogues against PBP1a, a protein central to peptidoglycan synthesis in S. typhimurium. Methods Some cephalosporin analogues were retrieved from a drug repository. The structures of the molecules were optimized using the semi-empirical method of Spartan 14 software and were subsequently docked against the active sites of PBP1a using AutoDock vina software. The most potent ligands were chosen as the most promising leads and subsequently subjected to absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling using the SwissADME online server and DataWarrior chemoinformatics program. The CABSflex 2.0 server was used to carry out molecular dynamics (MD) simulation on the most stable ligand-protein complex. Results Compounds 3, 23, and 28 with binding affinity (ΔG) values of -9.2, -8.7, and -8.9 kcal/mol, respectively, were selected as the most promising leads. The ligands bound to the active sites of PBP1a via hydrophobic bonds, hydrogen bonds, and electrostatic interactions. Furthermore, ADMET analyses of the ligands revealed that they exhibited sound pharmacokinetic and toxicity profiles. In addition, an MD study revealed that the most active ligand bound favorably and dynamically to the target protein. Conclusion The findings of this research could provide an excellent platform for the discovery and rational design of novel antibiotics against S. typhimurium. Additional in vitro and in vivo studies should be carried out on the drug candidates to validate the findings of this study.
Collapse
Affiliation(s)
- Philip John Ameji
- Department of Chemistry, Federal University Lokoja, Lokoja, Kogi State, Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | | | - Sani Uba
- Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
14
|
Divya Rajaselvi N, Jida MD, Nair DB, Sujith S, Beegum N, Nisha AR. Toxicity prediction and analysis of flavonoid apigenin as a histone deacetylase inhibitor: an in-silico approach. In Silico Pharmacol 2023; 11:34. [PMID: 37941890 PMCID: PMC10630278 DOI: 10.1007/s40203-023-00170-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Occurrence of cancer is driving up on a global scale that exerts greater implications on the physical, psychological and economic stability of the human population. In the present context, numerous research studies are being conducted to explore and discover the drug molecule as an anticancer agent. Diverse scales of flavonoids entail the human diet, and they displayed prospective curative effects against an array of ailments. Among different categories of flavonoids, apigenin a trihydroxy flavone has been proven to have various pharmacological effects. Molecular docking is a key tool in structural molecular biology and computer assisted drug design. In this study, HDAC inhibitory action of apigenin and its probable toxicity was assessed by docking study using Auto dock platform. Molecular dynamics simulation was done by using iMODS server for elucidating the stability of the receptor-ligand complex. Toxicity predictions were evaluated by using tools such as CarcinoPred for carcinogenicity study, pkCSM for ADMET analysis, ProTox-II for rodent oral toxicity, lazar for estimating mutagenicity, BOILED Egg plot analysis for examining the gastrointestinal absorption and blood brain permeability, PASS prediction to identify the various biological functions and DruLiTo program to compute the drug likeness property. Graphical abstract
Collapse
Affiliation(s)
- N. Divya Rajaselvi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, India
- Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - M. D. Jida
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, India
- Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - Devu B. Nair
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, India
- Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - S. Sujith
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, India
- Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - Nisaath Beegum
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, India
- Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - A. R. Nisha
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, India
- Kerala Veterinary and Animal Sciences University, Wayanad, India
| |
Collapse
|
15
|
Pourhajibagher M, Bahador A. Natural photosensitizers potentiate the targeted antimicrobial photodynamic therapy as the Monkeypox virus entry inhibitors: An in silico approach. Photodiagnosis Photodyn Ther 2023; 43:103656. [PMID: 37336465 PMCID: PMC10275794 DOI: 10.1016/j.pdpdt.2023.103656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Monkeypox is a viral zoonotic disease that has emerged as a threat to public health. Currently, there is no treatment approved specifically targeting Monkeypox disease. Hence, it is essential to identify and develop therapeutic approaches to the Monkeypox virus. In the current in silico paper, we comprehensively involve using computer simulations and modeling to insights and predict hypotheses on the potential of natural photosensitizers-mediated targeted antimicrobial photodynamic therapy (aPDT) against D8L as a Monkeypox virus protein involved in viral cell entry. MATERIALS AND METHODS In the current study, computational techniques such as molecular docking were combined with in silico ADMET predictions to examine how Curcumin (Cur), Quercetin (Qct), and Riboflavin (Rib) as the natural photosensitizers bind to the D8L protein in Monkeypox virus, as well as to determine pharmacokinetic properties of these photosensitizers. RESULTS The three-dimensional structure of the D8L protein in the Monkeypox virus was constructed using homology modeling (PDB ID: 4E9O). According to the physicochemical properties and functional characterization, 4E9O was a stable protein with the nature of a hydrophilic structure. The docking studies employing a three-dimensional model of 4E9O with natural photosensitizers exhibited good binding affinity. D8L protein illustrated the best docking score (-7.6 kcal/mol) in relation to the Rib and displayed good docking scores in relation to the Cur (-7.0 kcal/mol) and Qct (-7.5 kcal/mol). CONCLUSIONS The findings revealed that all three photosensitizers were found to obey the criteria of Lipinski's rule of five and displayed drug-likeness. Moreover, all the tested photosensitizers were found to be non-hepatotoxic and non-cytotoxic. In summary, our investigation identified Cur, Qct, and Rib could efficiently interact with D8L protein with a strong binding affinity. It can be concluded that aPDT using these natural photosensitizers may be considered an adjuvant treatment against Monkeypox disease.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
16
|
Zelelew D, Endale M, Melaku Y, Geremew T, Eswaramoorthy R, Tufa LT, Choi Y, Lee J. Ultrasonic-Assisted Synthesis of Heterocyclic Curcumin Analogs as Antidiabetic, Antibacterial, and Antioxidant Agents Combined with in vitro and in silico Studies. Adv Appl Bioinform Chem 2023; 16:61-91. [PMID: 37533689 PMCID: PMC10392906 DOI: 10.2147/aabc.s403413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023] Open
Abstract
Background Heterocyclic analogs of curcumin have a wide range of therapeutic potential and the ability to control the activity of a variety of metabolic enzymes. Methods 1H-NMR and 13C-NMR spectroscopic techniques were used to determine the structures of synthesized compounds. The agar disc diffusion method and α-amylase inhibition assay were used to examine the antibacterial and anti-diabetic potential of the compounds against α-amylase enzyme inhibitory activity, respectively. DPPH-free radical scavenging and lipid peroxidation inhibition assays were used to assess the in vitro antioxidant potential. Results and Discussion In this work, nine heterocyclic analogs derived from curcumin precursors under ultrasonic irradiation were synthesized in excellent yields (81.4-93.7%) with improved reaction time. Results of antibacterial activities revealed that compounds 8, and 11 displayed mean inhibition zone of 13.00±0.57, and 19.66±00 mm, respectively, compared to amoxicillin (12.87±1.41 mm) at 500 μg/mL against E. coli, while compounds 8, 11 and 16 displayed mean inhibition zone of 17.67±0.57, 14.33±0.57 and 23.33±00 mm, respectively, compared to amoxicillin (13.75±1.83 mm) at 500 μg/mL against P. aeruginosa. Compound 11 displayed a mean inhibition zone of 11.33±0.57 mm compared to amoxicillin (10.75±1.83 mm) at 500 μg/mL against S. aureus. Compound 11 displayed higher binding affinities of -7.5 and -8.3 Kcal/mol with penicillin-binding proteins (PBPs) and β-lactamases producing bacterial strains, compared to amoxicillin (-7.2 and -7.9 Kcal/mol, respectively), these results are in good agreement with the in vitro antibacterial activities. In vitro antidiabetic potential on α-amylase enzyme revealed that compounds 11 (IC50=7.59 µg/mL) and 16 (IC50=4.08 µg/mL) have higher inhibitory activities than acarbose (IC50=8.0 µg/mL). Compound 8 showed promising antioxidant inhibition efficacy of DPPH (IC50 = 2.44 g/mL) compared to ascorbic acid (IC50=1.24 g/mL), while compound 16 revealed 89.9±20.42% inhibition of peroxide generation showing its potential in reducing the development of lipid peroxides. In silico molecular docking analysis, results are in good agreement with in vitro biological activity. In silico ADMET profiles suggested the adequate oral drug-likeness potential of the compounds without adverse effects. Conclusion According to our findings, both biological activities and in silico computational studies results demonstrated that compounds 8, 11, and 16 are promising α-amylase inhibitors and antibacterial agents against E. coli, P. aeruginosa, and S. aureus, whereas compound 8 was found to be a promising antioxidant agent.
Collapse
Affiliation(s)
- Demis Zelelew
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Milkyas Endale
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Yadessa Melaku
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Teshome Geremew
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | | | - Lemma Teshome Tufa
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Youngeun Choi
- Department of Chemistry, Department of Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Department of Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
17
|
Ameji PJ, Uzairu A, Shallangwa GA, Uba S. Molecular docking simulation, drug-likeness assessment, and pharmacokinetic study of some cephalosporin analogues against a penicillin-binding protein of Salmonella typhimurium. J Antibiot (Tokyo) 2023; 76:211-224. [PMID: 36755130 DOI: 10.1038/s41429-023-00598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023]
Abstract
In pursuit of novel antibiotics that could curb the growing trend of multidrug resistance by Salmonella typhimurium, a data set of some cephalosporin analogues were subjected to Molecular Docking based virtual screening against a penicillin-binding protein (PBP 1b) of the bacterium to ascertain the binding affinity values of the bioactive ligands against the active sites of the PBP 1b protein target using the AutoDock Vina Software. Three compounds with binding affinity values ranging from -7.8 kcal/mol to -8.2 kcal/mol were selected as the most promising leads. The selected compounds also displayed better potencies against the bacterium when compared with Cefuroxime (binding affinity = -6.4 kcal/mol), a standard β-lactam antibiotic used herein for quality control and assurance. Furthermore, evaluation of the drug-likeness and ADMET properties of the three most promising leads revealed that they possess good oral bioavailability and excellent pharmacokinetic profiles. It is hoped that the findings of this study will provide an excellent template for developing more potent β-lactam antibiotics against Salmonella typhimurium.
Collapse
Affiliation(s)
- Philip John Ameji
- Department of Chemistry, Federal University Lokoja, P.M.B., 1154, Lokoja, Kogi State, Nigeria.
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University, 1044, Zaria, Kaduna State, Nigeria
| | | | - Sani Uba
- Department of Chemistry, Ahmadu Bello University, 1044, Zaria, Kaduna State, Nigeria
| |
Collapse
|
18
|
Yadava A, Bhuyan MMR, Mukherjee D, Kumar D, Dwivedi M. Phytomolecules as potential candidates to intervene the function of E. coli sodium-proton antiporters; Ec-NhaA. J Biomol Struct Dyn 2023; 41:15598-15609. [PMID: 36935099 DOI: 10.1080/07391102.2023.2191130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/06/2023] [Indexed: 03/20/2023]
Abstract
Sodium-Proton antiporter, NhaA is a ubiquitous protein found in cytoplasmic membranes of all the prokaryotic and eukaryotic systems. These antiporters have been widely studied in E. coli and their homologs, observed in humans, are found to be crucial for various pathophysiological conditions, such as hypertension, cardiac diseases, blood pressure fluctuation etc. NhaA is responsible for the virulent properties of many pathogens like Vibrio cholerae, Yersinia pestis etc. In the present work, we have exploited in silico approaches to find lead phytomolecules that have the efficacy to interfere with the activities of sodium-proton antiporters in E. coli. A database of the plant-based natural bioactive compounds was used to screen 350 phytochemicals from various plant sources as potential ligands for the Ec-NhaA protein (PDB ID: 4ATV). Further interactions between Ec-NhaA and ligands were analyzed by AutoDock Vina and proposed 46 ligands with a significant affinity for NhaA where the binding energy range from -7.5 to -9.3 kcal/mol. Physiochemical characterization suggested 26 ligands with non-BBB permeability, good GI absorption and solubility. As a final step, MD simulation for more than 100 ns duration suggested Luteolin, Apigenin and Rhamnocitrin with the best affinity and showing potential stable interaction with the target protein. This study proposed the potential compounds of natural origin as an interfering agent against sodium-proton transport activity that may lead to affect the survival of various pathogenic bacteria.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anuradha Yadava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Md Mahfuzur Rahman Bhuyan
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), Lucknow, Uttar Pradesh, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| |
Collapse
|
19
|
Chowdhury H, Kumar Bera A, Subhasmita Raut S, Chandra Malick R, Sekhar Swain H, Saha A, Kumar Das B. In Vitro Antibacterial Efficacy of Cymbopogon flexuosus Essential Oil against Aeromonas hydrophila of Fish Origin and in Silico Molecular Docking of the Essential Oil Components against DNA Gyrase-B and Their Drug-Likeness. Chem Biodivers 2023; 20:e202200668. [PMID: 36799768 DOI: 10.1002/cbdv.202200668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
In aquaculture, diseases caused by the Aeromonads with high antibiotic resistance are among the most common and troublesome diseases. Application of herbs is emerging as a tool in controlling these diseases. Plant extracts besides disease control, favor various physiological activities in fish. In this study, essential oil of Cymbopogon flexuosus (Poaceae family) was studied in vitro for its antibacterial efficacy against two oxytetracycline (OTC) resistant and one sensitive strains of Aeromonas hydrophila. The oil was found rich (86.93 %) in oxygenated terpenoids containing 74.15 % of citral. The oil exhibited dose dependent growth inhibition of the bacteria. Mean MIC value of the oil against the sensitive strain was recorded as 2.0 mg mL-1 whereas MBC value was recorded as 4.0 mg mL-1 . The oil was found effective against the OTC resistant isolates with the MIC and MBC values ranging from 2.67-3.33 and 4.0-6.67 mg mL-1 , respectively. In silico molecular docking of the essential oil components against DNA gyrase-B, a vital macromolecule in bacterial cell, was carried out to computationally asses the efficacy of the oil against the bacteria. Some of the components of the essential oil strongly bonded with the enzyme to inhibit its efficacy. Binding energy of some components of the oil was comparable to that of the conventional antibiotic, OTC. The identified phytochemicals exhibited favorable physicochemical and pharmacokinetic properties and satisfied the rule of five (Ro5).
Collapse
Affiliation(s)
- Hemanta Chowdhury
- ICAR - Central Inland Fisheries Research Institute, Manirampore, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Asit Kumar Bera
- ICAR - Central Inland Fisheries Research Institute, Manirampore, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Subhashree Subhasmita Raut
- ICAR - Central Inland Fisheries Research Institute, Manirampore, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Ramesh Chandra Malick
- ICAR - Central Inland Fisheries Research Institute, Manirampore, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Himanshu Sekhar Swain
- ICAR - Central Inland Fisheries Research Institute, Manirampore, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Ajoy Saha
- ICAR - Central Inland Fisheries Research Institute, Manirampore, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Basanta Kumar Das
- ICAR - Central Inland Fisheries Research Institute, Manirampore, Barrackpore, Kolkata 700 120, West Bengal, India
| |
Collapse
|
20
|
Abishad PM, Jayashankar M, Namratha K, Srinath BS, Kurkure NV, Barbuddhe SB, Rawool DB, Vergis J, Byrappa K. Synthesis of ZIF-8(Fe) Functionalized with Citral as Potent Antimicrobial Candidate against Multi-Drug Resistant Enteroaggregative Escherichia coli and Non-Typhoidal Salmonella spp. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s1068162023020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
21
|
Jindal A, Kapoor S, Verma I, Raju A, Arora H, Tyagi P. Synthesis, Characterization and Antibacterial Investigation of Mononuclear Copper (II) Complexes of Amine-phenolate Based Ligands. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2169720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Ambika Jindal
- Department of Basic and Applied Sciences, School of Engineering and Sciences, G D Goenka University, Gurugram, Haryana, India
| | - Sumeet Kapoor
- Department of Biochemical Engineering and Biotechnology, Hauz Khas, Indian Institute of Technology Delhi, New Delhi, Delhi, India
| | - Indresh Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Anish Raju
- Department of Biochemical Engineering and Biotechnology, Hauz Khas, Indian Institute of Technology Delhi, New Delhi, Delhi, India
| | - Himanshu Arora
- Department of Chemistry, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Priyanka Tyagi
- Department of Basic and Applied Sciences, School of Engineering and Sciences, G D Goenka University, Gurugram, Haryana, India
| |
Collapse
|
22
|
Zahra N, Zeshan B, Ishaq M. Carbapenem resistance gene crisis in A. baumannii: a computational analysis. BMC Microbiol 2022; 22:290. [PMID: 36463105 PMCID: PMC9719202 DOI: 10.1186/s12866-022-02706-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Acinetobacter baumannii (A. baumannii) is one of the members of ESKAPE bacteria which is considered multidrug resistant globally. The objective of this study is to determine the protein docking of different antibiotic resistance gene (ARGs) in A. baumannii. In silico analysis of antibiotic resistance genes against carbapenem are the blaOXA-51, blaOXA-23, blaOXA-58, blaOXA-24, blaOXA-143, NMD-1 and IMP-1 in A. baumannii. The doripenem, imipenem and meropenem were docked to blaOXA-51 and blaOXA-23 using PyRx. The top docking energy was -5.5 kcal/mol by imipenem and doripenem and meropenem showed a binding score of -5. 2 kcal/mol each and blaOXA-23 energy was -4.3 kcal/mol by imipenem and meropenem showed a binding score of -2.3 kcal/mol, while doripenem showed the binding score of -3.4 kcal/mol. Similarly, doripenem imipenem and meropenem were docked to blaOXA-58, IMP-1, Rec A and blaOXA-143, with docking energy was -8.8 kcal/mol by doripenem and meropenem each while imipenem showed a binding score of -4.2 kcal/mol and with IMP-1 demonstrated their binding energies. was -5.7 kcal/mol by meropenem and doripenem showed a binding score of -5.3 kcal/mol, while imipenem showed a binding score of -4.5 kcal/mol. And docking energy was -4.9 kcal/mol by imipenem and meropenem showed binding energy of -3.6 kcal/mol each while doripenem showed a binding score of -3.9 kcal/mol in RecA and with blaOXA-143 docking energy was -3.0 kcal/mol by imipenem and meropenem showed a binding score of -1.9 kcal/mol, while doripenem showed the binding score of -2.5 kcal/mol respectively. Doripenem, imipenem, and meropenem docking findings with blaOXA-24 confirmed their binding energies. Doripenem had the highest docking energy of -5.5 kcal/mol, meropenem had a binding score of -4.0 kcal/mol, and imipenem had a binding score of -3.9 kcal/mol. PyRx was used to dock the doripenem, imipenem, and meropenem to NMD-1. Docking energies for doripenem were all - 4.0 kcal/mol, whereas meropenem had docking energy of -3.3 kcal/mol and imipenem was -1.50 kcal/mol. To the best of our knowledge the underlying mechanism of phenotypic with genotypic resistance molecular docking regarding carbapenem resistance A. baumannii is unclear. Our molecular docking finds the possible protein targeting mechanism for carbapenem-resistant A.baumannii.
Collapse
Affiliation(s)
- Nureen Zahra
- grid.444936.80000 0004 0608 9608Department of Microbiology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan ,grid.440564.70000 0001 0415 4232Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Basit Zeshan
- grid.444936.80000 0004 0608 9608Department of Microbiology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan ,grid.265727.30000 0001 0417 0814Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, 90905 Sandakan, Sabah Malaysia
| | - Musarat Ishaq
- grid.1073.50000 0004 0626 201XLymphatics and Regenerative Surgery Laboratory, Obrien Institute and St Vincent’s Institute, Fitzroy, Australia
| |
Collapse
|
23
|
ZnO Nanoparticle-Assisted Synthesis of Thiazolo[3,2-α]Pyrimidine Analogs: Antibacterial and Antioxidant Activity, In Silico Molecular Docking, and ADMET Prediction Study. J CHEM-NY 2022. [DOI: 10.1155/2022/1346856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, a new series of nine Thiazolo[3,2-α] pyrimidine analogs were synthesized in good to excellent yields (87.9–96.9%) and improved reaction time using a ZnO nanoparticle-assisted protocol. All the synthesized compounds were characterized using a combination of physicochemical parameters, UV-visible, 1H-NMR, and 13C-NMR spectroscopic methods. Among the synthesized compounds, the in vitro antibacterial activity displayed by compound 16 was higher (14.67 ± 0.58 mm at 500 μg/mL) against P. aeruginosa compared to amoxicillin (12.33 ± 0.58 mm at 500 μg/mL), whereas compounds 14 and 18 showed comparable activity (12.00 ± 0.00 mm and 12.33 ± 0.58 mm at 500 μg/mL and 250 μg/mL, respectively) against the same strain. The activities displayed by compounds 14, 16, 18, and 20 were comparable (12.33 ± 1.15 mm, 12.65 ± 0.58 mm, 12.33 ± 0.58 mm, and 12.00 ± 1.00 mm, respectively, at 500 μg/mL) to amoxicillin (13.33 ± 1.15 mm at the same concentration) against E. coli. Compound 19 showed good activity (12.00 ± 1.72 mm at 500 μg/mL) against S. aureus compared to amoxicillin (16.33 ± 0.58 mm at the same concentration). Compound 19 displayed the highest percent inhibition of DPPH with an IC50 value of 9.48 g/mL using the DPPH free radical scavenging assay compared to ascorbic acid (3.21 g/mL) and promising inhibition of peroxide formation (76.28 ± 0.12%), demonstrating its potential in preventing the formation of lipid peroxides. Thus, according to our findings, both the biological activities and in silico computational results revealed that compounds 14, 16, and 18 are good antibacterial agents against P. aeruginosa and E. coli, whereas compound 19 was found to be a promising antibacterial agent against S. aureus and an antioxidant agent. The present study revealed that the synthesized compounds appear to be lead compounds for rational drug design.
Collapse
|
24
|
Synthesis, Antibacterial, and Antioxidant Activities of Thiazolyl-Pyrazoline Schiff Base Hybrids: A Combined Experimental and Computational Study. J CHEM-NY 2022. [DOI: 10.1155/2022/3717826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thiazole-pyrazoline Schiff base hybrids have a broad range of pharmacological potential with an ability to control the activity of numerous metabolic enzymes. In this work, a greener and more efficient approach has been developed to synthesize a novel series of thiazole-pyrazoline Schiff base hybrids using ZnO nanoparticle-assisted protocol in good to excellent yields (78.3–96.9%) and examined their antibacterial activity against Gram-positive and Gram-negative bacteria, as well as their antioxidant activity. Compound 24 (IZD = 18.67 ± 0.58) displayed better activity against P. aeruginosa compared with amoxicillin (IZD = 14.33 ± 2.52) at 250 μg/mL, whereas compounds 22 and 24 (IZD = 13.33 ± 0.58 mm and 17.00 ± 1.00 mm, respectively) showed better activity against E. coli compared with amoxicillin (IZD = 14.67 ± 0.58 mm) at 500 μg/mL. The remaining compounds showed moderate to weak activity against the tested bacterial strains. Compound 21 displayed significant inhibition of DPPH (IC50 = 4.63 μg/mL) compared with ascorbic acid (IC50 = 3.21 μg/mL). Compound 21 displayed 80.01 ± 0.07% inhibition of peroxide formation, suggesting its potential in preventing the formation of lipid peroxides. The results of the ADMET study showed that all synthesized compounds obeyed Lipinski's rule of five. In silico pharmacokinetic study demonstrated that compound 24 had superior intestinal absorption compared with amoxicillin. In silico molecular docking analysis revealed a binding affinity of −9.9 Kcal/mol for compound 24 against PqsA compared with amoxicillin (−7.3 Kcal/mol), whereas compounds 22 and 24 displayed higher binding affinity (−8.5 and −7.9 Kcal/mol, respectively) with DNA gyrase B compared with amoxicillin (-7.1 Kcal/mol), in good agreement with in vitro antibacterial activity against P. aeruginosa and E. coli. In silico toxicity study showed that all synthesized compounds had LD50 (mg/kg) values ranging from 800 to 1,000 putting them in ProTox-II class 4. The in vitro antibacterial activity and molecular docking analysis showed that compound 24 is a promising antibacterial therapeutic agent against P. aeruginosa and E. coli and compound 22 is a promising antibacterial agent against E. coli, whereas compound 21 is found to be a potential natural antioxidant agent. Moreover, the green synthesis approach using ZnO nanoparticle as catalyst was found to be a very efficient method to synthesize biologically active thiazole-pyrazoline Schiff base hybrids compared with the conventional method.
Collapse
|
25
|
Prasastha Ram V, Yasur J, Abishad P, Unni V, Purushottam Gourkhede D, Nishanth MAD, Niveditha P, Vergis J, Singh Malik SV, Kullaiah B, Kurkure NV, Ramesh C, Dufossé L, Rawool DB, Barbuddhe SB. Antimicrobial Efficacy of Green Synthesized Nanosilver with Entrapped Cinnamaldehyde against Multi-Drug-Resistant Enteroaggregative Escherichia coli in Galleria mellonella. Pharmaceutics 2022; 14:1924. [PMID: 36145672 PMCID: PMC9503582 DOI: 10.3390/pharmaceutics14091924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/11/2022] Open
Abstract
The global emergence of antimicrobial resistance (AMR) needs no emphasis. In this study, the in vitro stability, safety, and antimicrobial efficacy of nanosilver-entrapped cinnamaldehyde (AgC) against multi-drug-resistant (MDR) strains of enteroaggregative Escherichia coli (EAEC) were investigated. Further, the in vivo antibacterial efficacy of AgC against MDR-EAEC was also assessed in Galleria mellonella larval model. In brief, UV-Vis and Fourier transform infrared (FTIR) spectroscopy confirmed effective entrapment of cinnamaldehyde with nanosilver, and the loading efficiency was estimated to be 29.50 ± 0.56%. The AgC was of crystalline form as determined by the X-ray diffractogram with a mono-dispersed spherical morphology of 9.243 ± 1.83 nm in electron microscopy. AgC exhibited a minimum inhibitory concentration (MIC) of 0.008−0.016 mg/mL and a minimum bactericidal concentration (MBC) of 0.008−0.032 mg/mL against MDR- EAEC strains. Furthermore, AgC was stable (high-end temperatures, proteases, cationic salts, pH, and host sera) and tested safe for sheep erythrocytes as well as secondary cell lines (RAW 264.7 and HEp-2) with no negative effects on the commensal gut lactobacilli. in vitro, time-kill assays revealed that MBC levels of AgC could eliminate MDR-EAEC infection in 120 min. In G. mellonella larvae, AgC (MBC values) increased survival, decreased MDR-EAEC counts (p < 0.001), had an enhanced immunomodulatory effect, and was tested safe to the host. These findings infer that entrapment enhanced the efficacy of cinnamaldehyde and AgNPs, overcoming their limitations when used individually, indicating AgC as a promising alternative antimicrobial candidate. However, further investigation in appropriate animal models is required to declare its application against MDR pathogens.
Collapse
Affiliation(s)
- Vemula Prasastha Ram
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
- ICAR-National Research Centre on Meat, Hyderabad 500092, India
| | - Jyothsna Yasur
- ICAR-National Research Centre on Meat, Hyderabad 500092, India
| | - Padikkamannil Abishad
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Pookode 673576, India
| | - Varsha Unni
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Pookode 673576, India
| | - Diksha Purushottam Gourkhede
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
- ICAR-National Research Centre on Meat, Hyderabad 500092, India
| | - Maria Anto Dani Nishanth
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
- ICAR-National Research Centre on Meat, Hyderabad 500092, India
| | | | - Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Pookode 673576, India
| | - Satya Veer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
| | - Byrappa Kullaiah
- Centre for Research and Innovations, BGS Institute of Technology, Adichunchanagiri University, Mandya 571448, India
| | | | - Chatragadda Ramesh
- Biological Oceanography Division (BOD), Council of Scientific and Industrial Research, National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products (CHEMBIOPRO Lab), Département Agroalimentaire, Ecole Supérieure d’Ingénieurs Réunion Océan Indien (ESIROI), Université de La Réunion, F-97744 Saint-Denis, France
| | | | | |
Collapse
|
26
|
Hezam A, Abutaha N, Almekhlafi FA, Morshed Nagi Saeed A, Abishad P, Wadaan MA. Smart plasmonic Ag/Ag2O/ZnO nanocomposite with promising photothermal and photodynamic antibacterial activity under 600 nm visible light illumination. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Altayb HN, Yassin NF, Hosawi S, Kazmi I. In-vitro and in-silico antibacterial activity of Azadirachta indica (Neem), methanolic extract, and identification of Beta.d-Mannofuranoside as a promising antibacterial agent. BMC PLANT BIOLOGY 2022; 22:262. [PMID: 35610569 PMCID: PMC9131563 DOI: 10.1186/s12870-022-03650-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Antimicrobial resistance became the leading cause of death globally, resulting in an urgent need for the discovery of new, safe, and efficient antibacterial agents. Compounds derived from plants can provide an essential source of new types of antibiotics. A. indica (neem) plant is rich in antimicrobial phytoconstituents. Here, we used the sensitive and reliable gas chromatography-mass spectrometry (GC-MS) approach, for the quantitative and quantitative determination of bioactive constituents in methanolic extract of neem leaves grown in Sudan. Subsequently, antibacterial activity, pharmacokinetic and toxicological properties were utilized using in silico tools. RESULTS The methanolic extract of neem leaves was found to have antibacterial activity against all pathogenic and reference strains. The lowest concentration reported with bacterial activity was 3.125%, which showed zones of inhibition of more than 10 mm on P. aeruginosa, K. pneumoniae, Citrobacter spp., and E. coli, and 8 mm on Proteus spp., E. faecalis, S. epidermidis, and the pathogenic S. aureus. GC-MS analysis revealed the presence of 30 chemical compounds, including fatty acids (11), hydrocarbons (9), pyridine derivatives (2), aldehydes (2), phenol group (1), aromatic substances (1), coumarins (1), and monoterpenes (1). In silico and in vitro tools revealed that.beta.d-Mannofuranoside, O-geranyl was the most active compound on different bacterial proteins. It showed the best docking energy (-8 kcal/mol) and best stability with different bacterial essential proteins during molecular dynamic (MD) simulation. It also had a good minimum inhibitory concentration (MIC) (32 μg/ml and 64 μg/ml) against S. aureus (ATCC 25,923) and E. coli (ATCC 25,922) respectively. CONCLUSION The methanolic extract of A. indica leaves possessed strong antibacterial activity against different types of bacteria. Beta.d-Mannofuranoside, O-geranyl was the most active compound and it passed 5 rules of drug-likeness properties. It could therefore be further processed for animal testing and clinical trials for its possible use as an antibacterial agent with commercial values.
Collapse
Affiliation(s)
- Hisham N Altayb
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Nijood F Yassin
- Department Microbiology, College of Medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum, Sudan
| | - Salman Hosawi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Imran Kazmi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
28
|
Tuli H, Garg VK, Kapoor D, Bansal P, Kumar P, Mohapatra RK, Dhama K, Vashishth A, Seth P, Bhatia GK. In silico targeting of osmoporin protein of Salmonella to identify anti-Salmonellosis phyto-compounds. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2022; 10:423-429. [DOI: 10.18006/2022.10(2).423.429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2025]
Abstract
Salmonella enterica serotype typhi is a gram-negative, rod-shaped bacterium, and has flagella with the human body as its only reservoir. Typhoid fever was found to cause 21.7 million illnesses and 216,000 fatalities worldwide in 2000, and the International Vaccine Institute estimated 11.9 million cases and 129,000 deaths in low- and middle-income countries in 2010. More than 10 million patients were infected with S. typhi each year and the mortality rate is associated with more than 0.1 million patients. Moreover, it is also associated with drug resistance globally which makes the disease more dreadful. Other than antibiotics, various flavonoids showed medicinal effects against many diseases including S. typhi infection. Flavonoids are a type of plant bioactive metabolite that have potential medicinal efficacy. The goal of this study was to see if certain flavonoids (ellagic acid, eriodictyol, and naringenin) could interact with the outer membrane of osmoporin (PDB ID: 3uu2) receptor in Salmonella and helps in inhibiting its growth. To look for probable ligand-receptor binding relationships, we used Pyrxmolecular docking software. The molecular docking results were analyzed using the Biovia discovery studio visualizer. The current study discovered that selected plant-based compounds interacted with an outer membrane of the osmoporin receptor, resulting in minimization of energy in the range of-6.6 to -7.8 Kcal/mol.
Collapse
|
29
|
Khan F, Tabassum N, Bamunuarachchi NI, Kim YM. Phloroglucinol and Its Derivatives: Antimicrobial Properties toward Microbial Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4817-4838. [PMID: 35418233 DOI: 10.1021/acs.jafc.2c00532] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phloroglucinol (PG) is a natural product isolated from plants, algae, and microorganisms. Aside from that, the number of PG derivatives has expanded due to the discovery of their potential biological roles. Aside from its diverse biological activities, PG and its derivatives have been widely utilized to treat microbial infections caused by bacteria, fungus, and viruses. The rapid emergence of antimicrobial-resistant microbial infections necessitates the chemical synthesis of numerous PG derivatives in order to meet the growing demand for drugs. This review focuses on the use of PG and its derivatives to control microbial infection and the underlying mechanism of action. Furthermore, as future perspectives, some of the various alternative strategies, such as the use of PG and its derivatives in conjugation, nanoformulation, antibiotic combination, and encapsulation, have been thoroughly discussed. This review will enable the researcher to investigate the possible antibacterial properties of PG and its derivatives, either free or in the form of various formulations.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | | | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|