1
|
Nagasaka M, Warnecke B, Ou SHI, Bannoura SF, Kim C, Elliott A, Halmos B, Hoon D, Darabi S, Sukari A, Radovich M, Lou E, Sledge G, El-Deiry W, Al-Hallak MN, Pasche BC, Azmi AS. Multiomic Characterization of RCC1 and RCC2 Expression and Their Association With Molecular Alterations, Immune Phenotypes, and Cancer Outcomes. JCO ONCOLOGY ADVANCES 2025; 2:00022. [PMID: 40330141 PMCID: PMC12052079 DOI: 10.1200/oa-24-00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/18/2025] [Accepted: 03/19/2025] [Indexed: 05/08/2025]
Abstract
PURPOSE Regulator of chromosome condensation 1 (RCC1) and RCC2 have been shown to play important roles in the regulation of cell cycle, DNA damage response, and nucleocytoplasmic transport. MATERIALS AND METHODS DNA (592-gene or whole exome) and RNA (whole transcriptome) sequencing was performed at Caris Life Sciences (Phoenix, AZ). Samples were stratified by RCC1 expression quartile thresholds (Q1: low, Q4: high) for small cell lung cancer (SCLC; n = 876), non-small cell lung cancer (NSCLC; n = 21,603), gastric cancer (GC; n = 1,908), pancreatic cancer (PC; n = 5,071), and colorectal cancer (CRC; n = 14,892). Statistical significance was determined using chi-square and Wilcoxon rank-sum tests and adjusted for multiple comparisons (*P < .05). Corresponding analyses were run for RCC2. RESULTS Median RCC1 mRNA expression was highest in SCLC (14.3 transcript per million [TPM]), followed by GC (9.9), NSCLC (9.9), CRC (9.8), and PC (6.9). Similar to RCC1, the median RCC2 expressions were highest in SCLC (36.2 TPM). Tumor mutational burden-high rates were positively associated with increasing RCC1 expression quartiles (Q1-4) in NSCLC (31%-41%), GC (7%-22%), and CRC (5%-17%) and with increasing RCC2 expression in NSCLC and CRC only. Higher expression with RCC1 and RCC2 was associated with worse overall survival in NSCLC (hazard ratio [HR] for RCC1 and RCC2 were 1.3 and 1.3, respectively), PC (HR for RCC1 and RCC2 were 1.5 and 1.12, respectively), and CRC (HR for RCC1 and RCC2 were 1.3 and 1.03, respectively). CONCLUSION RCC1 and RCC2 expression is a negative prognostic marker in NSCLC, PC, and CRC. Further studies to investigate RCC1 and RCC2 function at the molecular level may provide opportunities for novel targeted drug development.
Collapse
Affiliation(s)
- Misako Nagasaka
- University of California Irvine, Orange, CA
- St Marianna University School of Medicine, Kawasaki City, Kanagawa, Japan
| | | | | | | | - Chul Kim
- Georgetown University, Washington, DC
| | | | | | - Dave Hoon
- St John's Cancer Institute, Santa Monica, CA
| | | | - Ammar Sukari
- Karmanos Cancer Institute, Wayne State University, Detroit, MI
| | | | - Emil Lou
- University of Minnesota, Minneapolis, MN
| | | | | | | | - Boris C. Pasche
- Karmanos Cancer Institute, Wayne State University, Detroit, MI
| | - Asfar S. Azmi
- Karmanos Cancer Institute, Wayne State University, Detroit, MI
| |
Collapse
|
2
|
Wu W, Wu W, Xie X, Li J, Gao Y, Xie L, Zhong C, Xiao J, Cai M, Yin D, Hu K. DNMT1 is required for efficient DSB repair and maintenance of replication fork stability, and its loss reverses resistance to PARP inhibitors in cancer cells. Oncogene 2025:10.1038/s41388-025-03409-w. [PMID: 40234721 DOI: 10.1038/s41388-025-03409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
Cancer cells with breast cancer susceptibility gene (BRCA) mutations inevitably acquire resistance to PARP inhibitors (PARPi), and new strategies to maximize the efficacy of PARPi are urgently needed for the treatment of patients with BRCA1/2-mutant cancers. Here, we provide evidence that DNMT1 plays essential roles in DNA repair and the maintenance of replication fork stability by associating with the RPA complex and the SFPQ/NONO/FUS complex. DNMT1 depletion impairs RPA1 recruitment to stalled replication forks and inhibits DNA‒RNA hybrid (R-loop) resolution as well as the retention of RPA1 and SFPQ/NONO/FUS complexes at double-stranded DNA breaks (DSBs). Moreover, PARP1 activity is required for DNMT1 retention at DSB sites by modulating its protein stability, which is tightly and dynamically regulated by PARP1-mediated PARylation and PARG- and NUDT16-mediated dePARylation. DNMT1 PARylation further recruits the E3 ubiquitin ligase CHFR to enhance its ubiquitination and target it for proteasome-dependent degradation. Notably, DNMT1 is also required for irradiation (IR)-mediated and PARPi-induced activation of the G2 arrest checkpoint. The combination of DNMT1i with PARPi significantly attenuates PARPi-induced ATR-Chk1 signaling and enhances the degradation of the stalled replication fork mediated by PARPi, resulting in increased chromosomal aberrations and cell death in BRCA-proficient and BRCA-deficient cancer cells. Therefore, our findings provide novel insights into the mechanism by which DNMT1 inhibitors (DNMT1i) reverse PARPi resistance and indicate that targeting the PARP-DNMT1 pathway is a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weijun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaojuan Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Gynecologic Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuan Gao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Limin Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Caixia Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianhong Xiao
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Manbo Cai
- Department of Oncology Radiotherapy, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
3
|
Zheng J, Deng Y, Fang C, Xiong S, Zhu X, Wu W, Chen X, Wu W, Yin D, Hu K, Yan H. Comprehensive dataset of interactors for the entire PARP family using TurboID proximity labeling. Sci Data 2025; 12:405. [PMID: 40057523 PMCID: PMC11890743 DOI: 10.1038/s41597-025-04722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/27/2025] [Indexed: 05/03/2025] Open
Abstract
A comprehensive dataset detailing protein interactors for the PARP family has been generated using TurboID proximity labeling under standardized experimental conditions. V5-TurboID fusion constructs enabled identification of 6,314 high-confidence interacting proteins through mass spectrometry, capturing transient interactions undetectable by conventional methods. Parallel GFP-PARP localization experiments validated physiological subcellular distributions. The dataset reveals both shared and unique interactors across PARP members, with network analysis suggesting functional cooperativity and specialization. Functional annotation analyses were performed on representative PARP members to validate key biological processes. All raw proteomic data (PRIDE: PXD052745)29 and processed interaction networks (figshare)50 are publicly available. This comprehensive interactome atlas provides a valuable foundation for advancing our understanding of PARP-mediated regulatory mechanisms and supports therapeutic development.
Collapse
Affiliation(s)
- Jiefu Zheng
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China
| | - Yawen Deng
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Cong Fang
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China
| | - Shiyu Xiong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xudong Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Weijun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xinliang Chen
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wenjing Wu
- Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Haiyan Yan
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China.
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
4
|
Liu Y, Kong J, Liu G, Li Z, Xiao Y. Precise Gene Knock-In Tools with Minimized Risk of DSBs: A Trend for Gene Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401797. [PMID: 38728624 PMCID: PMC11267366 DOI: 10.1002/advs.202401797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Gene knock-in refers to the insertion of exogenous functional genes into a target genome to achieve continuous expression. Currently, most knock-in tools are based on site-directed nucleases, which can induce double-strand breaks (DSBs) at the target, following which the designed donors carrying functional genes can be inserted via the endogenous gene repair pathway. The size of donor genes is limited by the characteristics of gene repair, and the DSBs induce risks like genotoxicity. New generation tools, such as prime editing, transposase, and integrase, can insert larger gene fragments while minimizing or eliminating the risk of DSBs, opening new avenues in the development of animal models and gene therapy. However, the elimination of off-target events and the production of delivery carriers with precise requirements remain challenging, restricting the application of the current knock-in treatments to mainly in vitro settings. Here, a comprehensive review of the knock-in tools that do not/minimally rely on DSBs and use other mechanisms is provided. Moreover, the challenges and recent advances of in vivo knock-in treatments in terms of the therapeutic process is discussed. Collectively, the new generation of DSBs-minimizing and large-fragment knock-in tools has revolutionized the field of gene editing, from basic research to clinical treatment.
Collapse
Affiliation(s)
- Yongfeng Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Mudi Meng Honors CollegeChina Pharmaceutical UniversityNanjing210009China
| | - Jianping Kong
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Gongyu Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Zhaoxing Li
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Yibei Xiao
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| |
Collapse
|
5
|
Wu W, Wu W, Zhou Y, Yang Q, Zhuang S, Zhong C, Li W, Li A, Zhao W, Yin X, Zu X, Chak-Lui Wong C, Yin D, Hu K, Cai M. The dePARylase NUDT16 promotes radiation resistance of cancer cells by blocking SETD3 for degradation via reversing its ADP-ribosylation. J Biol Chem 2024; 300:105671. [PMID: 38272222 PMCID: PMC10926213 DOI: 10.1016/j.jbc.2024.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a critical posttranslational modification that plays a vital role in maintaining genomic stability via a variety of molecular mechanisms, including activation of replication stress and the DNA damage response. The nudix hydrolase NUDT16 was recently identified as a phosphodiesterase that is responsible for removing ADP-ribose units and that plays an important role in DNA repair. However, the roles of NUDT16 in coordinating replication stress and cell cycle progression remain elusive. Here, we report that SETD3, which is a member of the SET-domain containing protein (SETD) family, is a novel substrate for NUDT16, that its protein levels fluctuate during cell cycle progression, and that its stability is strictly regulated by NUDT16-mediated dePARylation. Moreover, our data indicated that the E3 ligase CHFR is responsible for the recognition and degradation of endogenous SETD3 in a PARP1-mediated PARylation-dependent manner. Mechanistically, we revealed that SETD3 associates with BRCA2 and promotes its recruitment to stalled replication fork and DNA damage sites upon replication stress or DNA double-strand breaks, respectively. Importantly, depletion of SETD3 in NUDT16-deficient cells did not further exacerbate DNA breaks or enhance the sensitivity of cancer cells to IR exposure, suggesting that the NUDT16-SETD3 pathway may play critical roles in the induction of tolerance to radiotherapy. Collectively, these data showed that NUDT16 functions as a key upstream regulator of SETD3 protein stability by reversing the ADP-ribosylation of SETD3, and NUDT16 participates in the resolution of replication stress and facilitates HR repair.
Collapse
Affiliation(s)
- Weijun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Oncology Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yingshi Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiao Yang
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shuting Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Caixia Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenjia Li
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Aixin Li
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wanzhen Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Oncology Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaomin Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Oncology Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Carmen Chak-Lui Wong
- Li Ka Shing Faculty of Medicine, Department of Pathology, The University of Hong Kong, Hong Kong, Guangdong, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Manbo Cai
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
6
|
Qi F, Zuo Z, Hu K, Wang R, Wu T, Liu H, Tang J, Wang Q, Xie Y, Tan L, Yang Y, Zhang X, Zheng J, Xu J, Yao Z, Wang S, Wu LJ, Guo K. VEGF-A in serum protects against memory impairment in APP/PS1 transgenic mice by blocking neutrophil infiltration. Mol Psychiatry 2023; 28:4374-4389. [PMID: 37280283 PMCID: PMC10827659 DOI: 10.1038/s41380-023-02097-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023]
Abstract
Activation of innate immunity in the brain is a prominent feature of Alzheimer's disease (AD). The present study investigated the regulation of innate immunity by wild-type serum injection in a transgenic AD mouse model. We found that treatment with wild-type mouse serum significantly reduced the number of neutrophils and microglial reactivity in the brains of APP/PS1 mice. Mimicking this effect, neutrophil depletion via Ly6G neutralizing antibodies resulted in improvements in AD brain functions. Serum proteomic analysis identified vascular endothelial growth factor-A (VEGF-A) and chemokine (C-X-C motif) ligand 1 (CXCL1) as factors enriched in serum samples, which are crucial for neutrophil migration and chemotaxis, leukocyte migration, and cell chemotaxis. Exogenous VEGF-A reversed amyloid β (Aβ)-induced decreases in cyclin-dependent kinase 5 (Cdk5) and increases in CXCL1 in vitro and blocked neutrophil infiltration into the AD brain. Endothelial Cdk5 overexpression conferred an inhibitory effect on CXCL1 and neutrophil infiltration, thereby restoring memory abilities in APP/PS1 mice. Our findings uncover a previously unknown link between blood-derived VEGF signaling and neutrophil infiltration and support targeting endothelial Cdk5 signaling as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Fangfang Qi
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Editorial Department of Journal of Sun Yat-sen University, Guangzhou, 510080, China
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zejie Zuo
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Rui Wang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tong Wu
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Liu
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiaoling Tang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qingbo Wang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yufeng Xie
- Five-year Programs of Clinical Medicine in the 2017 grade, School of Medicine, Sun Yat-sen University, Shenzhen, 528406, China
| | - Liren Tan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yunjie Yang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jie Xu
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhibin Yao
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shengwen Wang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Kaihua Guo
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Xie W, Shi L, Quan H, Xiao H, Chen J, Liu J, de Dieu Habimana J, Huang R, Luo J, Chen P, Li Z. SYVN1 ubiquitinates FoxO1 to induce β-catenin nuclear translocation, PD-L1-mediated metastasis, and immune evasion of hepatocellular carcinoma. Cell Oncol (Dordr) 2023; 46:1285-1299. [PMID: 37099251 PMCID: PMC10618324 DOI: 10.1007/s13402-023-00811-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND A high incidence of hepatocellular carcinoma (HCC), the most frequently diagnosed form of liver cancer, is observed in Africa and Asia. SYVN1 is upregulated in HCC; however, the biological roles of SYVN1 in immune evasion remain unclear. METHODS RT-qPCR and western blot were employed to detect the expression levels of SYVN1 and the key molecules in HCC cells and tissues. Flow cytometry was used to determine the proportion of T cells, and an ELISA assay was used to determine the amount of IFN-γ secreted. Cell viability was monitored by CCK-8 and colony formation assays. The metastatic properties of HCC cells were detected by Transwell assays. Bioinformatics analysis, ChIP, and luciferase assays were used to study the transcriptional regulation of PD-L1. Co-IP was used to detect direct interaction between SYVN1 and FoxO1, as well as the ubiquitination of FoxO1. The in vitro findings were validated in xenograft and lung metastasis models. RESULTS In HCC cells and tissues, SYVN1 was upregulated while FoxO1 was downregulated. SYVN1 knockdown or FoxO1 overexpression reduced PD-L1 expression, and inhibited immune evasion, cell growth, and metastasis in HCC cells. Mechanistically, FoxO1 regulated PD-L1 transcription in a β-catenin-independent or -dependent manner. Functional studies further showed that SYVN1 promoted immune evasion, cell proliferation, migration and invasion via facilitating ubiquitin-proteasome-dependent degradation of FoxO1. In vivo investigations showed that silencing of SYVN1 inhibited immune evasion and metastasis of HCC cells, possible via the FoxO1/PD-L1 axis. CONCLUSION SYVN1 regulates FoxO1 ubiquitination to stimulate β-catenin nuclear translocation and promotes PD-L1-mediated metastasis and immune evasion in HCC.
Collapse
Affiliation(s)
- Wei Xie
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, 410031, Hunan Province, P.R. China
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu Distirct, Changsha, 410031, Hunan Province, P.R. China
| | - Lei Shi
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu Distirct, Changsha, 410031, Hunan Province, P.R. China
| | - Hu Quan
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu Distirct, Changsha, 410031, Hunan Province, P.R. China
| | - Hua Xiao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu Distirct, Changsha, 410031, Hunan Province, P.R. China
| | - Jie Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu Distirct, Changsha, 410031, Hunan Province, P.R. China
| | - Jia Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu Distirct, Changsha, 410031, Hunan Province, P.R. China
| | - Jean de Dieu Habimana
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, P.R. China
| | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, P.R. China
| | - Jia Luo
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu Distirct, Changsha, 410031, Hunan Province, P.R. China
| | - Pan Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu Distirct, Changsha, 410031, Hunan Province, P.R. China.
| | - Zhiyuan Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, 410031, Hunan Province, P.R. China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, P.R. China
| |
Collapse
|
8
|
Gong S, Wu H, Wu C, Duan Y, Zhang B, Wu P, Tang J, Fu J. A human pan-cancer system analysis of regulator of chromatin condensation 2. Heliyon 2023; 9:e13599. [PMID: 36865448 PMCID: PMC9970930 DOI: 10.1016/j.heliyon.2023.e13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/30/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Regulation of chromosome condensation 2 (RCC2) is associated with the cell cycle and is a crucial regulator of the chromatin condensation 1 (RCC1) family. The members of this family were normally regulators in the process of DNA replication and nucleocytoplasmic transport. RCC2 overexpression may lead to tumor formation and poor prognosis in some tumors including breast cancer and lung adenocarcinoma. However, the possible role of RCC2 in tumor formation and its prognostic function remains unclear. In this study, expression analysis from databases including The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) were combined to perform the first integrative and comprehensive analysis of RCC2 in human pan-cancer. RCC2 was highly expressed in most tumors which may lead to a poor prognosis. RCC2 expression was associated with immune/stromal infiltration, immune checkpoints, tumor mutational burden, and microsatellite instability. Thus, RCC2 could be a novel biomarker for prognosis and a promising cancer therapy target.
Collapse
Affiliation(s)
- Siming Gong
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Hao Wu
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Changwu Wu
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Yingjuan Duan
- Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
| | - Bixi Zhang
- Department of Pathology, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, China
| | - Panfeng Wu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Juyu Tang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinfei Fu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Corresponding author. Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Cotner M, Meng S, Jost T, Gardner A, De Santiago C, Brock A. Integration of quantitative methods and mathematical approaches for the modeling of cancer cell proliferation dynamics. Am J Physiol Cell Physiol 2023; 324:C247-C262. [PMID: 36503241 PMCID: PMC9886359 DOI: 10.1152/ajpcell.00185.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Physiological processes rely on the control of cell proliferation, and the dysregulation of these processes underlies various pathological conditions, including cancer. Mathematical modeling can provide new insights into the complex regulation of cell proliferation dynamics. In this review, we first examine quantitative experimental approaches for measuring cell proliferation dynamics in vitro and compare the various types of data that can be obtained in these settings. We then explore the toolbox of common mathematical modeling frameworks that can describe cell behavior, dynamics, and interactions of proliferation. We discuss how these wet-laboratory studies may be integrated with different mathematical modeling approaches to aid the interpretation of the results and to enable the prediction of cell behaviors, specifically in the context of cancer.
Collapse
Affiliation(s)
- Michael Cotner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Sarah Meng
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Tyler Jost
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Andrea Gardner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Carolina De Santiago
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
10
|
Liu Y, Ma G, Gao Z, Li J, Wang J, Zhu X, Ma R, Yang J, Zhou Y, Hu K, Zhang Y, Guo Y. Global chromosome rearrangement induced by CRISPR-Cas9 reshapes the genome and transcriptome of human cells. Nucleic Acids Res 2022; 50:3456-3474. [PMID: 35244719 PMCID: PMC8989517 DOI: 10.1093/nar/gkac153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/29/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chromosome rearrangement plays important roles in development, carcinogenesis and evolution. However, its mechanism and subsequent effects are not fully understood. Large-scale chromosome rearrangement has been performed in the simple eukaryote, wine yeast, but the relative research in mammalian cells remains at the level of individual chromosome rearrangement due to technical limitations. In this study, we used CRISPR-Cas9 to target the highly repetitive human endogenous retrotransposons, LINE-1 and Alu, resulting in a large number of DNA double-strand breaks in the chromosomes. While this operation killed the majority of the cells, we eventually obtained live cell groups. Karyotype analysis and genome re-sequencing proved that we have achieved global chromosome rearrangement (GCR) in human cells. The copy number variations of the GCR genomes showed typical patterns observed in tumor genomes. The ATAC-seq and RNA-seq further revealed that the epigenetic and transcriptomic landscapes were deeply reshaped by GCR. Gene expressions related to p53 pathway, DNA repair, cell cycle and apoptosis were greatly altered to facilitate the cell survival. Our study provided a new application of CRISPR-Cas9 and a practical approach for GCR in complex mammalian genomes.
Collapse
Affiliation(s)
- Ying Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Guangwei Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zenghong Gao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiangping Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ruowu Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiawen Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yiting Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yabin Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
11
|
Torres-Ruesta A, Teo TH, Chan YH, Amrun SN, Yeo NKW, Lee CYP, Nguee SYT, Tay MZ, Nosten F, Fong SW, Lum FM, Carissimo G, Renia L, Ng LF. Malaria abrogates O'nyong-nyong virus pathologies by restricting virus infection in nonimmune cells. Life Sci Alliance 2022; 5:e202101272. [PMID: 35039441 PMCID: PMC8807878 DOI: 10.26508/lsa.202101272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
O'nyongnyong virus (ONNV) is a re-emerging alphavirus previously known to be transmitted by main malaria vectors, thus suggesting the possibility of coinfections with arboviruses in co-endemic areas. However, the pathological outcomes of such infections remain unknown. Using murine coinfection models, we demonstrated that a preexisting blood-stage Plasmodium infection suppresses ONNV-induced pathologies. We further showed that suppression of viremia and virus dissemination are dependent on Plasmodium-induced IFNγ and are associated with reduced infection of CD45- cells at the site of virus inoculation. We further proved that treatment with IFNγ or plasma samples from Plasmodium vivax-infected patients containing IFNγ are able to restrict ONNV infection in human fibroblast, synoviocyte, skeletal muscle, and endothelial cell lines. Mechanistically, the role of IFNγ in restricting ONNV infection was confirmed in in vitro infection assays through the generation of an IFNγ receptor 1 α chain (IFNγR1)-deficient cell line.
Collapse
Affiliation(s)
- Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Teck-Hui Teo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yi-Hao Chan
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siti Naqiah Amrun
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Nicholas Kim-Wah Yeo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Cheryl Yi-Pin Lee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Samantha Yee-Teng Nguee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Matthew Zirui Tay
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Siew-Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Fok-Moon Lum
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Guillaume Carissimo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lisa Fp Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
12
|
Zhang Y, Huang YX, Jin X, Chen J, Peng L, Wang DL, Li Y, Yao XY, Liao JY, He JH, Hu K, Lu D, Guo Y, Yin D. Overexpression of lncRNAs with endogenous lengths and functions using a lncRNA delivery system based on transposon. J Nanobiotechnology 2021; 19:303. [PMID: 34600532 PMCID: PMC8487477 DOI: 10.1186/s12951-021-01044-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play important roles in many physiological and pathological processes, this indicates that lncRNAs can serve as potential targets for gene therapy. Stable expression is a fundamental technology in the study of lncRNAs. The lentivirus is one of the most widely used delivery systems for stable expression. However, it was initially designed for mRNAs, and the applicability of lentiviral vectors for lncRNAs is largely unknown. RESULTS We found that the lentiviral vector produces lncRNAs with improper termination, appending an extra fragment of ~ 2 kb to the 3'-end. Consequently, the secondary structures were changed, the RNA-protein interactions were blocked, and the functions were impaired in certain lncRNAs, which indicated that lentiviral vectors are not ideal delivery systems of lncRNAs. Here, we developed a novel lncRNA delivery method called the Expression of LncRNAs with Endogenous Characteristics using the Transposon System (ELECTS). By inserting a termination signal after the lncRNA sequence, ELECTS produces transcripts without 3'-flanking sequences and retains the native features and function of lncRNAs, which cannot be achieved by lentiviral vectors. Moreover, ELECTS presents no potential risk of infection for the operators and it takes much less time. ELECTS provides a reliable, convenient, safe, and efficient delivery method for stable expression of lncRNAs. CONCLUSIONS Our study demonstrated that improper transcriptional termination from lentiviral vectors have fundamental effects on molecular action and cellular function of lncRNAs. The ELECTS system developed in this study will provide a convenient and reliable method for the lncRNA study.
Collapse
Affiliation(s)
- Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yong-Xin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Xin Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Li Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Dan-Lan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yun Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Xin-Yi Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jie-Hua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - KaiShun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Daning Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yabin Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
13
|
Chenouard V, Remy S, Tesson L, Ménoret S, Ouisse LH, Cherifi Y, Anegon I. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Front Genet 2021; 12:615491. [PMID: 33959146 PMCID: PMC8093876 DOI: 10.3389/fgene.2021.615491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The rat has been extensively used as a small animal model. Many genetically engineered rat models have emerged in the last two decades, and the advent of gene-specific nucleases has accelerated their generation in recent years. This review covers the techniques and advances used to generate genetically engineered rat lines and their application to the development of rat models more broadly, such as conditional knockouts and reporter gene strains. In addition, genome-editing techniques that remain to be explored in the rat are discussed. The review also focuses more particularly on two areas in which extensive work has been done: human genetic diseases and immune system analysis. Models are thoroughly described in these two areas and highlight the competitive advantages of rat models over available corresponding mouse versions. The objective of this review is to provide a comprehensive description of the advantages and potential of rat models for addressing specific scientific questions and to characterize the best genome-engineering tools for developing new projects.
Collapse
Affiliation(s)
- Vanessa Chenouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- genOway, Lyon, France
| | - Séverine Remy
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Laurent Tesson
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Séverine Ménoret
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | | | - Ignacio Anegon
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| |
Collapse
|
14
|
Guo K, Zhao C, Lang B, Wang H, Zheng H, Zhang F. Regulator of Chromosome Condensation 2 Modulates Cell Cycle Progression, Tumorigenesis, and Therapeutic Resistance. Front Mol Biosci 2021; 7:620973. [PMID: 33521058 PMCID: PMC7838589 DOI: 10.3389/fmolb.2020.620973] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/08/2020] [Indexed: 01/03/2023] Open
Abstract
Accurate regulation of cell cycle is important for normal tissue development and homeostasis. RCC2 (Regulator of Chromosome Condensation 2) play a role as chromosomal passenger complex (CPC) implicated in all cell cycle phases. RCC2 was initially identified as Ran guanine exchange factor (GEF) for small G proteins. Therefore, RCC2 plays a key role in oncogenesis of most cancers. RCC2 is implicated in Colorectal Cancer (CRC), Lung Adenocarcinoma (LUAD), breast cancer, and ovarian cancer. Expression level of RCC2 protein determines regulation of tumor cell proliferation, invasion, metastasis, and radio-chemotherapeutic resistance. In this review, we explored proteins that interact with RCC2 to modulate tumor development and cancer therapeutic resistance by regulation of cell cycle process through various signaling pathways.
Collapse
Affiliation(s)
- Kun Guo
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Cheng Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Bin Lang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Huiqin Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hang Zheng
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Feng Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
15
|
Hu K, Li Y, Wu W, Xie L, Yan H, Cai Y, Chen D, Jiang Q, Lin L, Chen Z, Liao J, Zhang Y, Koeffler HP, Yin D, Song E. ATM-Dependent Recruitment of BRD7 is required for Transcriptional Repression and DNA Repair at DNA Breaks Flanking Transcriptional Active Regions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000157. [PMID: 33101843 PMCID: PMC7578904 DOI: 10.1002/advs.202000157] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Repair of DNA double-strand breaks (DSBs) is essential for genome integrity, and is accompanied by transcriptional repression at the DSB regions. However, the mechanisms how DNA repair induces transcriptional inhibition remain elusive. Here, it is identified that BRD7 participates in DNA damage response (DDR) and is recruited to the damaged chromatin via ATM signaling. Mechanistically, BRD7 joins the polycomb repressive complex 2 (PRC2), the nucleosome remodeling and histone deacetylation (NuRD) complex at the damaged DNA and recruits E3 ubiquitin ligase RNF168 to the DSBs. Furthermore, ATM-mediated BRD7 phosphorylation is required for recruitment of the PRC2 complex, NuRD complex, DSB sensor complex MRE11-RAD50-NBS1 (MRN), and RNF168 to the active transcription sites at DSBs, resulting in transcriptional repression and DNA repair. Moreover, BRD7 deficiency sensitizes cancer cells to PARP inhibition. Collectively, BRD7 is crucial for DNA repair and DDR-mediated transcription repression, which may serve as a therapeutic target. The findings identify the missing link between DNA repair and transcription regulation that maintains genome integrity.
Collapse
Affiliation(s)
- Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Department of Breast OncologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Limin Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Haiyan Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yuexin Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Dong Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Qiongchao Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Department of UltrasoundSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Lehang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Zhen Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Jian‐You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - H. Phillip Koeffler
- Division of Hematology/OncologyCedars‐Sinai Medical CenterUniversity of California Los Angeles School of MedicineLos AngelesCA90048USA
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Department of Breast OncologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| |
Collapse
|
16
|
Li Y, Xiao X, Chen H, Chen Z, Hu K, Yin D. Transcription factor NFYA promotes G1/S cell cycle transition and cell proliferation by transactivating cyclin D1 and CDK4 in clear cell renal cell carcinoma. Am J Cancer Res 2020; 10:2446-2463. [PMID: 32905496 PMCID: PMC7471361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023] Open
Abstract
NFYA (nuclear transcription factor Y, subunit A) is a CCAAT-binding transcription factor. Accumulating evidence suggests that NFYA plays an important role in breast, ovarian, lung and gastric cancer. However, the role of NFYA in clear cell renal cell carcinoma (ccRCC) remains unclear. In this study, it was discovered that the expression of NFYA is elevated in tissues of ccRCC patient and high NFYA expression is linked to poor overall survival in ccRCC patient. Inhibition of G1/S cell cycle transition and decreased cell proliferation were observed upon NFYA knockdown in ccRCC cells. Moreover, further investigation revealed that NFYA binds directly to the promoter region of both CDK4 and cyclin D1 (CCND1) thus transactivating their expression, resulting in RB phosphorylation and the activation of subsequent E2F pathway activation. Taken together, these findings imply the oncogenic role of NFYA in ccRCC progression and its potential as a target for ccRCC therapy.
Collapse
Affiliation(s)
- Yu Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, Guangdong, China
| | - Xing Xiao
- Department of Dermatology, Shenzhen Children’s HospitalShenzhen 518000, Guangdong, China
| | - Hengxing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, Guangdong, China
| | - Zhen Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, Guangdong, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, Guangdong, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, Guangdong, China
| |
Collapse
|
17
|
Lanigan TM, Kopera HC, Saunders TL. Principles of Genetic Engineering. Genes (Basel) 2020; 11:E291. [PMID: 32164255 PMCID: PMC7140808 DOI: 10.3390/genes11030291] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic engineering is the use of molecular biology technology to modify DNA sequence(s) in genomes, using a variety of approaches. For example, homologous recombination can be used to target specific sequences in mouse embryonic stem (ES) cell genomes or other cultured cells, but it is cumbersome, poorly efficient, and relies on drug positive/negative selection in cell culture for success. Other routinely applied methods include random integration of DNA after direct transfection (microinjection), transposon-mediated DNA insertion, or DNA insertion mediated by viral vectors for the production of transgenic mice and rats. Random integration of DNA occurs more frequently than homologous recombination, but has numerous drawbacks, despite its efficiency. The most elegant and effective method is technology based on guided endonucleases, because these can target specific DNA sequences. Since the advent of clustered regularly interspaced short palindromic repeats or CRISPR/Cas9 technology, endonuclease-mediated gene targeting has become the most widely applied method to engineer genomes, supplanting the use of zinc finger nucleases, transcription activator-like effector nucleases, and meganucleases. Future improvements in CRISPR/Cas9 gene editing may be achieved by increasing the efficiency of homology-directed repair. Here, we describe principles of genetic engineering and detail: (1) how common elements of current technologies include the need for a chromosome break to occur, (2) the use of specific and sensitive genotyping assays to detect altered genomes, and (3) delivery modalities that impact characterization of gene modifications. In summary, while some principles of genetic engineering remain steadfast, others change as technologies are ever-evolving and continue to revolutionize research in many fields.
Collapse
Affiliation(s)
- Thomas M. Lanigan
- Biomedical Research Core Facilities, Vector Core, University of Michigan, Ann Arbor, MI 48109, USA; (T.M.L.); (H.C.K.)
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huira C. Kopera
- Biomedical Research Core Facilities, Vector Core, University of Michigan, Ann Arbor, MI 48109, USA; (T.M.L.); (H.C.K.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas L. Saunders
- Biomedical Research Core Facilities, Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Huang Z, Zhang Y, Li H, Zhou Y, Zhang Q, Chen R, Jin T, Hu K, Li S, Wang Y, Chen W, Huang Z. Vitamin D promotes the cisplatin sensitivity of oral squamous cell carcinoma by inhibiting LCN2-modulated NF-κB pathway activation through RPS3. Cell Death Dis 2019; 10:936. [PMID: 31819048 PMCID: PMC6901542 DOI: 10.1038/s41419-019-2177-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022]
Abstract
Chemoresistance is a major cause of cancer progression and the mortality of cancer patients. Developing a safe strategy for enhancing chemosensitivity is a challenge for biomedical science. Recent studies have suggested that vitamin D supplementation may decrease the risk of many cancers. However, the role of vitamin D in chemotherapy remains unknown. We found that vitamin D sensitised oral cancer cells to cisplatin and partially reversed cisplatin resistance. Using RNA-seq, we discovered that lipocalin 2 (LCN2) is an important mediator. Cisplatin enhanced the expression of LCN2 by decreasing methylation at the promoter, whereas vitamin D enhanced methylation and thereby inhibited the expression of LCN2. Overexpression of LCN2 increased cell survival and cisplatin resistance both in vitro and in vivo. High LCN2 expression was positively associated with differentiation, lymph node metastasis, and T staging and predicted a poor prognosis in oral squamous cell carcinoma (OSCC) patients. LCN2 was also associated with post-chemotherapy recurrence. Moreover, we found that LCN2 promoted the activation of NF-κB by binding to ribosomal protein S3 (RPS3) and enhanced the interaction between RPS3 and p65. Our study reveals that vitamin D can enhance cisplatin chemotherapy and suggests that vitamin D should be supplied during chemotherapy; however, more follow-up clinical studies are needed.
Collapse
Affiliation(s)
- Zixian Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haigang Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yufeng Zhou
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qianyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingting Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shihao Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiliang Chen
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhiquan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
19
|
Hu K, Li Y, Wu W, Chen H, Chen Z, Zhang Y, Guo Y, Yin D. Correction to: High-performance gene expression and knockout tools using sleeping beauty transposon system. Mob DNA 2019; 10:2. [PMID: 30636978 PMCID: PMC6325852 DOI: 10.1186/s13100-019-0145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 12/04/2022] Open
Abstract
[This corrects the article DOI: 10.1186/s13100-018-0139-y.].
Collapse
Affiliation(s)
- Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Hengxing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Zhen Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Yabin Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| |
Collapse
|