1
|
Duggan MR, Morgan DG, Price BR, Rajbanshi B, Martin-Peña A, Tansey MG, Walker KA. Immune modulation to treat Alzheimer's disease. Mol Neurodegener 2025; 20:39. [PMID: 40165251 PMCID: PMC11956194 DOI: 10.1186/s13024-025-00828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
Immune mechanisms play a fundamental role in Alzheimer's disease (AD) pathogenesis, suggesting that approaches which target immune cells and immunologically relevant molecules can offer therapeutic opportunities beyond the recently approved amyloid beta monoclonal therapies. In this review, we provide an overview of immunomodulatory therapeutics in development, including their preclinical evidence and clinical trial results. Along with detailing immune processes involved in AD pathogenesis and highlighting how these mechanisms can be therapeutically targeted to modify disease progression, we summarize knowledge gained from previous trials of immune-based interventions, and provide a series of recommendations for the development of future immunomodulatory therapeutics to treat AD.
Collapse
Affiliation(s)
- Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, 21224, USA
| | - David G Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | | | - Binita Rajbanshi
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Alfonso Martin-Peña
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
2
|
Sullivan AC, Zuniga G, Ramirez P, Fernandez R, Wang CP, Li J, Davila L, Pelton K, Gomez S, Sohn C, Gonzalez E, Lopez-Cruzan M, Gonzalez DA, Parker A, Zilli E, de Erausquin GA, Seshadri S, Espinoza S, Musi N, Frost B. A Phase IIa clinical trial to evaluate the effects of anti-retroviral therapy in Alzheimer's disease (ART-AD). NPJ DEMENTIA 2025; 1:2. [PMID: 40104524 PMCID: PMC11917871 DOI: 10.1038/s44400-024-00001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/09/2024] [Indexed: 03/20/2025]
Abstract
Retrotransposons constitute over 40% of the human genome. Studies in Drosophila, mice, cultured cells, and human brain show that retrotransposons are activated in tauopathies, including Alzheimer's disease, and causally drive neurodegeneration. The reverse transcriptase inhibitor 3TC (lamivudine) reduces retrotransposon activation and suppresses tau neurotoxicity among model systems. This phase 2a open-label trial (Pilot Study to Investigate the Safety and Feasibility of Anti-Retroviral Therapy for Alzheimer's Disease, NCT04552795, registered 09/10/2020) followed 12 participants with early Alzheimer's disease (MMSE > 24, CDR = 0.5) over 24 weeks to assess safety, tolerability, and feasibility of daily 300 mg 3TC treatment. The sample was well-educated (12-20 years) and culturally diverse (25% from underrepresented groups). In addition to a favorable safety profile and stable cognitive measures, notable significant changes in fluid-based biomarkers include reduction of glial fibrillary acidic protein (GFAP) (P = 0.03) in CSF, suggestive of reduced neuroinflammation, and elevation of Aβ42/40 (P = 0.009) in plasma, suggestive of reduced plaque load in the brain. These results warrant further exploration in a larger, placebo-controlled trial.
Collapse
Affiliation(s)
- A. Campbell Sullivan
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX USA
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX USA
| | - Gabrielle Zuniga
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX USA
| | - Paulino Ramirez
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX USA
- Brown University Center for Alzheimer’s Disease Research, Providence, RI USA
| | - Roman Fernandez
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX USA
| | - Chen-Pin Wang
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX USA
| | - Ji Li
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX USA
| | - Lisa Davila
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX USA
- Brown University Center for Alzheimer’s Disease Research, Providence, RI USA
| | - Kristine Pelton
- Brown University Center for Alzheimer’s Disease Research, Providence, RI USA
| | - Sandra Gomez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Claira Sohn
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX USA
| | - Elias Gonzalez
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX USA
| | - Marisa Lopez-Cruzan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX USA
- Department of Psychiatry and Behavioral Sciences, University of Texas Health San Antonio, Department of Neurological Sciences, San Antonio, TX USA
| | - David A. Gonzalez
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX USA
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX USA
- Rush University Medical Center, Chicago, IL USA
| | - Alicia Parker
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX USA
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX USA
| | - Eduardo Zilli
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX USA
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX USA
| | - Gabriel A. de Erausquin
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX USA
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX USA
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX USA
| | - Sara Espinoza
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Nicolas Musi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Bess Frost
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX USA
- Brown University Center for Alzheimer’s Disease Research, Providence, RI USA
| |
Collapse
|
3
|
Feng Y, Cao S, Shi Y, Sun A, Flanagan ME, Leverenz JB, Pieper AA, Jung JU, Cummings J, Fang EF, Zhang P, Cheng F. Human herpesvirus-associated transposable element activation in human aging brains with Alzheimer's disease. Alzheimers Dement 2025; 21:e14595. [PMID: 39985481 PMCID: PMC11846481 DOI: 10.1002/alz.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Human herpesvirus (HHV) has been linked to Alzheimer's disease (AD), but the underlying mechanisms remain unknown. METHODS We leveraged functional genomics data from Religious Orders Study or the Rush Memory and Aging Project (ROS/MAP) and Mount Sinai Brain Bank (MSBB) brain biobanks and single-cell RNA-sequencing data from HHV-infected forebrain organoids to investigate HHV-infection-associated transposable element (TE) dysregulation underlying AD etiologies. RESULTS We identified widespread TE dysregulation in HHV-positive human AD brains, including an astrocyte-specific upregulation of LINE1 subfamily TEs in HHV-positive human AD brains. We further pinpointed astrocyte-specific LINE1 upregulation that could potentially regulate target gene NEAT1 expression via long-range enhancer-promoter chromatin interactions. This LINE1 dysregulation can be partially reversed by the usage of anti-HHV drugs (valacyclovir and acyclovir) in a virus-infected human brain organoid model. Finally, we demonstrated that valacyclovir rescued tau-associated neuropathology and alleviated LINE1 activation in an experimental tau aggregation model. DISCUSSION Our analysis provides associations linking molecular, clinical, and neuropathological AD features with HHV infection, which warrants future clinical validation. HIGHLIGHTS Via analysis of bulk RNA-seq data in two large-scale human brain biobanks, ROS/MAP (n = 109 pathologically confirmed AD and n = 44 cognitively healthy controls) and MSBB (n = 284 AD and n = 150 cognitively healthy controls), we identified widespread TE activation in HHV-positive human AD brains and significantly positive associations of HHV RNA abundance with APOE4 genotype, Braak staging score, and CERAD score. We identified cell type-specific LINE1 upregulation in both microglia and astrocytes of human AD brains via long-range enhancer-promoter chromatin interactions on lncRNA nuclear enriched abundant transcript 1 (NEAT1). We determined that usage of valacyclovir and acyclovir was significantly associated with reduced incidence of AD in a large real-world patient database. Using the HEK293 tau P301S model and U2OS mt-Keima cell model, we determined that valacyclovir treatment rescued tau-associated neuropathology and alleviated activation of LINE1 with increased cellular autophagy-level mechanistically supported clinical benefits of valacyclovir in real-world patient data.
Collapse
Affiliation(s)
- Yayan Feng
- Cleveland Clinic Genome Center, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine Institute, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Shu‐Qin Cao
- Department of Clinical Molecular BiologyUniversity of Oslo and Akershus University HospitalLørenskogNorway
| | - Yi Shi
- Department of Biostatistics and Health Data ScienceIndiana UniversityIndianapolisIndianaUSA
| | - Anna Sun
- Department of Biostatistics and Health Data ScienceIndiana UniversityIndianapolisIndianaUSA
| | - Margaret E. Flanagan
- Department of Pathology, Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - James B. Leverenz
- Department of Molecular Medicine, Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Lou Ruvo Center for Brain Health, Neurological InstituteCleveland ClinicClevelandOhioUSA
| | - Andrew A. Pieper
- Harrington Discovery InstituteUniversity Hospitals Cleveland Medical CenterClevelandOhioUSA
- Department of PsychiatryCase Western Reserve UniversityClevelandOhioUSA
- Geriatric Psychiatry, GRECCLouis Stokes Cleveland VA Medical CenterClevelandOhioUSA
- Institute for Transformative Molecular Medicine, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Department of NeuroscienceCase Western Reserve University, School of MedicineClevelandOhioUSA
| | - Jae U. Jung
- Department of Cancer Biology, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Program of Infectious Biology, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Jeffrey Cummings
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, Kirk Kerkorian School of MedicineUniversity of Nevada Las VegasLas VegasNevadaUSA
| | - Evandro Fei Fang
- Department of Clinical Molecular BiologyUniversity of Oslo and Akershus University HospitalLørenskogNorway
| | - Pengyue Zhang
- Department of Biostatistics and Health Data ScienceIndiana UniversityIndianapolisIndianaUSA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine Institute, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOhioUSA
| |
Collapse
|
4
|
Zimyanin V, Dash BP, Großmann D, Simolka T, Glaß H, Verma R, Khatri V, Deppmann C, Zunder E, Redemann S, Hermann A. Axonal transcriptome reveals upregulation of PLK1 as a protective mechanism in response to increased DNA damage in FUS P525L spinal motor neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624439. [PMID: 39605661 PMCID: PMC11601502 DOI: 10.1101/2024.11.20.624439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mutations in the gene FUSED IN SARCOMA ( FUS ) are among the most frequently occurring genetic forms of amyotrophic lateral sclerosis (ALS). Early pathogenesis of FUS -ALS involves impaired DNA damage response and axonal degeneration. However, it is still poorly understood how these gene mutations lead to selective spinal motor neuron (MN) degeneration and how nuclear and axonal phenotypes are linked. To specifically address this, we applied a compartment specific RNA-sequencing approach using microfluidic chambers to generate axonal as well as somatodendritic compartment-specific profiles from isogenic induced pluripotent stem cells (iPSCs)-derived MNs. We demonstrate high purity of axonal and soma fractions and show that the axonal transcriptome is unique and distinct from that of somas including significantly fewer number of transcripts. Functional enrichment analysis revealed that differentially expressed genes (DEGs) in axons were mainly enriched in key pathways like RNA metabolism and DNA damage, complementing our knowledge of early phenotypes in ALS pathogenesis and known functions of FUS. In addition, we demonstrate a strong enrichment for cell cycle associated genes including significant upregulation of polo-like kinase 1 (PLK1) in FUS P525L mutant MNs. PLK1 was increased upon DNA damage induction and PLK1 inhibition further increased the number of DNA damage foci in etoposide-treated cells, an effect that was diminished in case of FUS mutant MNs. In contrast, inhibition of PLK1 increased late apoptotic or necrosis-induced neuronal cell death in mutant neurons. Taken together, our findings provide insights into compartment-specific transcriptomics in human FUS -ALS MNs and we propose that specific upregulation of PLK1 might represent an early event in the pathogenesis of ALS, possibly modulating DNA damage response and other associated pathways.
Collapse
|
5
|
Deng W, Citu C, Liu A, Zhao Z. Dynamic dysregulation of retrotransposons in neurodegenerative diseases at the single-cell level. Genome Res 2024; 34:1687-1699. [PMID: 39424325 PMCID: PMC11529867 DOI: 10.1101/gr.279363.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Retrotransposable elements (RTEs) are common mobile genetic elements comprising ∼42% of the human genome. RTEs play critical roles in gene regulation and function, but how they are specifically involved in complex diseases is largely unknown. Here, we investigate the cellular heterogeneity of RTEs using 12 single-cell transcriptome profiles covering three neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease, and multiple sclerosis. We identify cell type marker RTEs in neurons, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells that are related to these diseases. The differential expression analysis reveals the landscape of dysregulated RTE expression, especially L1s, in excitatory neurons of multiple neurodegenerative diseases. Machine learning algorithms for predicting cell disease stage using a combination of RTE and gene expression features suggests dynamic regulation of RTEs in AD. Furthermore, we construct a single-cell atlas of retrotransposable elements in neurodegenerative disease (scARE) using these data sets and features. scARE has six feature analysis modules to explore RTE dynamics in a user-defined condition. To our knowledge, scARE represents the first systematic investigation of RTE dynamics at the single-cell level within the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Wankun Deng
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Citu Citu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Andi Liu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA;
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| |
Collapse
|
6
|
Dayama G, Gupta S, Connizzo BK, Labadorf AT, Myers RH, Lau NC. Transposable element small and long RNAs in aging brains and implications in Huntington's and Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619758. [PMID: 39484439 PMCID: PMC11526979 DOI: 10.1101/2024.10.22.619758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Transposable Elements (TEs) are implicated in aging and neurodegenerative disorders, but the impact of brain TE RNA dynamics on these phenomena is not fully understood. Therefore, we quantified TE RNA changes in aging post-mortem human and mouse brains and in the neurodegenerative disorders Huntington's Disease (HD) and Parkinson's Disease (PD). We tracked TE small RNAs (smRNAs) expression landscape to assess the relationship to the active processing from TE long RNAs (lnRNAs). Human brain transcriptomes from the BrainSpan Atlas displayed a significant shift of TE smRNA patterns at age 20 years, whereas aging mouse brains lacked any such marked change, despite clear shift in aging-associated mRNA levels. Human frontal cortex displayed pronounced sense TE smRNAs during aging with a negative relationship between the TE smRNAs and lnRNAs indicative of age associated regulatory effects. Our analysis revealed TE smRNAs dysregulation in HD, while PD showed a stronger impact on TE lnRNAs, potentially correlating with the early average age of death for HD relative to PD. Furthermore, TE-silencing factor TRIM28 was down-regulated only in aging human brains, possibly explaining the lack of substantial TE RNA changes in aging mouse brains. Our study suggests brain TE RNAs may serve as novel biomarkers of human brain aging and neurodegenerative disorders.
Collapse
|
7
|
Ye R, Zhao H, Wang X, Xue Y. Technological advancements in deciphering RNA-RNA interactions. Mol Cell 2024; 84:3722-3736. [PMID: 39047724 DOI: 10.1016/j.molcel.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
RNA-RNA interactions (RRIs) can dictate RNA molecules to form intricate higher-order structures and bind their RNA substrates in diverse biological processes. To elucidate the function, binding specificity, and regulatory mechanisms of various RNA molecules, especially the vast repertoire of non-coding RNAs, advanced technologies and methods that globally map RRIs are extremely valuable. In the past decades, many state-of-the-art technologies have been developed for this purpose. This review focuses on those high-throughput technologies for the global mapping of RRIs. We summarize the key concepts and the pros and cons of different technologies. In addition, we highlight the novel biological insights uncovered by these RRI mapping methods and discuss the future challenges for appreciating the crucial roles of RRIs in gene regulation across bacteria, viruses, archaea, and mammals.
Collapse
Affiliation(s)
- Rong Ye
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailian Zhao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Wang
- State Key Laboratory of Female Fertility Promotion, Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yuanchao Xue
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Kulski JK, Pfaff AL, Koks S. SVA Regulation of Transposable Element Clustered Transcription within the Major Histocompatibility Complex Genomic Class II Region of the Parkinson's Progression Markers Initiative. Genes (Basel) 2024; 15:1185. [PMID: 39336776 PMCID: PMC11431313 DOI: 10.3390/genes15091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
SINE-VNTR-Alu (SVA) retrotransposons can regulate expression quantitative trait loci (eQTL) of coding and noncoding genes including transposable elements (TEs) distributed throughout the human genome. Previously, we reported that expressed SVAs and human leucocyte antigen (HLA) class II genotypes on chromosome 6 were associated significantly with Parkinson's disease (PD). Here, our aim was to follow-up our previous study and evaluate the SVA associations and their regulatory effects on the transcription of TEs within the HLA class II genomic region. We reanalyzed the transcriptome data of peripheral blood cells from the Parkinson's Progression Markers Initiative (PPMI) for 1530 subjects for TE and gene RNAs with publicly available computing packages. Four structurally polymorphic SVAs regulate the transcription of 20 distinct clusters of 235 TE loci represented by LINES (37%), SINES (28%), LTR/ERVs (23%), and ancient transposon DNA elements (12%) that are located in close proximity to HLA genes. The transcribed TEs were mostly short length, with an average size of 389 nucleotides. The numbers, types and profiles of positive and negative regulation of TE transcription varied markedly between the four regulatory SVAs. The expressed SVA and TE RNAs in blood cells appear to be enhancer-like elements that are coordinated differentially in the regulation of HLA class II genes. Future work on the mechanisms underlying their regulation and potential impact is essential for elucidating their roles in normal cellular processes and disease pathogenesis.
Collapse
Affiliation(s)
- Jerzy K. Kulski
- Faculty of Health and Medical Sciences, School of Biomedical Science, The University of Western Australia, Crawley, WA 6009, Australia;
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
9
|
Katsanou A, Kostoulas C, Liberopoulos E, Tsatsoulis A, Georgiou I, Tigas S. Retrotransposons and Diabetes Mellitus. EPIGENOMES 2024; 8:35. [PMID: 39311137 PMCID: PMC11417941 DOI: 10.3390/epigenomes8030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Retrotransposons are invasive genetic elements, which replicate by copying and pasting themselves throughout the genome in a process called retrotransposition. The most abundant retrotransposons by number in the human genome are Alu and LINE-1 elements, which comprise approximately 40% of the human genome. The ability of retrotransposons to expand and colonize eukaryotic genomes has rendered them evolutionarily successful and is responsible for creating genetic alterations leading to significant impacts on their hosts. Previous research suggested that hypomethylation of Alu and LINE-1 elements is associated with global hypomethylation and genomic instability in several types of cancer and diseases, such as neurodegenerative diseases, obesity, osteoporosis, and diabetes mellitus (DM). With the advancement of sequencing technologies and computational tools, the study of the retrotransposon's association with physiology and diseases is becoming a hot topic among researchers. Quantifying Alu and LINE-1 methylation is thought to serve as a surrogate measurement of global DNA methylation level. Although Alu and LINE-1 hypomethylation appears to serve as a cellular senescence biomarker promoting genomic instability, there is sparse information available regarding their potential functional and biological significance in DM. This review article summarizes the current knowledge on the involvement of the main epigenetic alterations in the methylation status of Alu and LINE-1 retrotransposons and their potential role as epigenetic markers of global DNA methylation in the pathogenesis of DM.
Collapse
Affiliation(s)
- Andromachi Katsanou
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
- Department of Internal Medicine, Hatzikosta General Hospital, 45445 Ioannina, Greece
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Evangelos Liberopoulos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Agathocles Tsatsoulis
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Stelios Tigas
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| |
Collapse
|
10
|
Adler GL, Le K, Fu Y, Kim WS. Human Endogenous Retroviruses in Neurodegenerative Diseases. Genes (Basel) 2024; 15:745. [PMID: 38927681 PMCID: PMC11202925 DOI: 10.3390/genes15060745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are DNA transposable elements that have integrated into the human genome via an ancestral germline infection. The potential importance of HERVs is underscored by the fact that they comprise approximately 8% of the human genome. HERVs have been implicated in the pathogenesis of neurodegenerative diseases, a group of CNS diseases characterized by a progressive loss of structure and function of neurons, resulting in cell death and multiple physiological dysfunctions. Much evidence indicates that HERVs are initiators or drivers of neurodegenerative processes in multiple sclerosis and amyotrophic lateral sclerosis, and clinical trials have been designed to target HERVs. In recent years, the role of HERVs has been explored in other major neurodegenerative diseases, including frontotemporal dementia, Alzheimer's disease and Parkinson's disease, with some interesting discoveries. This review summarizes and evaluates the past and current research on HERVs in neurodegenerative diseases. It discusses the potential role of HERVs in disease manifestation and neurodegeneration. It critically reviews antiretroviral strategies used in the therapeutic intervention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gabrielle L. Adler
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Kelvin Le
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - YuHong Fu
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
D'Ordine AM, Jogl G, Sedivy JM. Identification and characterization of small molecule inhibitors of the LINE-1 retrotransposon endonuclease. Nat Commun 2024; 15:3883. [PMID: 38719805 PMCID: PMC11078990 DOI: 10.1038/s41467-024-48066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
The long interspersed nuclear element-1 (LINE-1 or L1) retrotransposon is the only active autonomously replicating retrotransposon in the human genome. L1 harms the cell by inserting new copies, generating DNA damage, and triggering inflammation. Therefore, L1 inhibition could be used to treat many diseases associated with these processes. Previous research has focused on inhibition of the L1 reverse transcriptase due to the prevalence of well-characterized inhibitors of related viral enzymes. Here we present the L1 endonuclease as another target for reducing L1 activity. We characterize structurally diverse small molecule endonuclease inhibitors using computational, biochemical, and biophysical methods. We also show that these inhibitors reduce L1 retrotransposition, L1-induced DNA damage, and inflammation reinforced by L1 in senescent cells. These inhibitors could be used for further pharmacological development and as tools to better understand the life cycle of this element and its impact on disease processes.
Collapse
Affiliation(s)
- Alexandra M D'Ordine
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
12
|
Beltrán-Velasco AI, Reiriz M, Uceda S, Echeverry-Alzate V. Lactiplantibacillus (Lactobacillus) plantarum as a Complementary Treatment to Improve Symptomatology in Neurodegenerative Disease: A Systematic Review of Open Access Literature. Int J Mol Sci 2024; 25:3010. [PMID: 38474254 PMCID: PMC10931784 DOI: 10.3390/ijms25053010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
This systematic review addresses the use of Lactiplantibacillus (Lactobacillus) plantarum in the symptomatological intervention of neurodegenerative disease. The existence of gut microbiota dysbiosis has been associated with systemic inflammatory processes present in neurodegenerative disease, creating the opportunity for new treatment strategies. This involves modifying the strains that constitute the gut microbiota to enhance synaptic function through the gut-brain axis. Recent studies have evaluated the beneficial effects of the use of Lactiplantibacillus plantarum on motor and cognitive symptomatology, alone or in combination. This systematic review includes 20 research articles (n = 3 in human and n = 17 in animal models). The main result of this research was that the use of Lactiplantibacillus plantarum alone or in combination produced improvements in symptomatology related to neurodegenerative disease. However, one of the studies included reported negative effects after the administration of Lactiplantibacillus plantarum. This systematic review provides current and relevant information about the use of this probiotic in pathologies that present neurodegenerative processes such as Alzheimer's disease, Parkinson's disease and Multiple Sclerosis.
Collapse
Affiliation(s)
| | | | - Sara Uceda
- Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain; (A.I.B.-V.); (M.R.)
| | - Víctor Echeverry-Alzate
- Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain; (A.I.B.-V.); (M.R.)
| |
Collapse
|
13
|
Sullivan AC, Zuniga G, Ramirez P, Fernandez R, Wang CP, Li J, Davila L, Pelton K, Gomez S, Sohn C, Gonzalez E, Lopez-Cruzan M, Gonzalez DA, Parker A, Zilli E, de Erausquin GA, Seshadri S, Espinoza S, Musi N, Frost B. A pilot study to investigate the safety and feasibility of antiretroviral therapy for Alzheimer's disease (ART-AD). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.26.24303316. [PMID: 38464267 PMCID: PMC10925371 DOI: 10.1101/2024.02.26.24303316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Retrotransposons are viral-like DNA sequences that constitute approximately 41% of the human genome. Studies in Drosophila, mice, cultured cells, and human brain indicate that retrotransposons are activated in settings of tauopathy, including Alzheimer's disease, and causally drive neurodegeneration. The anti-retroviral medication 3TC (lamivudine), a nucleoside analog reverse transcriptase inhibitor, limits retrotransposon activation and suppresses neurodegeneration in tau transgenic Drosophila, two mouse models of tauopathy, and in brain assembloids derived from patients with sporadic Alzheimer's disease. We performed a 24-week phase 2a open-label clinical trial of 300 mg daily oral 3TC (NCT04552795) in 12 participants aged 52-83 years with a diagnosis of mild cognitive impairment due to suspected Alzheimer's disease. Primary outcomes included feasibility, blood brain barrier penetration, effects of 3TC on reverse transcriptase activity in the periphery, and safety. Secondary outcomes included changes in cognition and fluid-based biomarkers of neurodegeneration and neuroinflammation. All participants completed the six-month trial; one event of gastrointestinal bleeding due to a peptic ulcer was reported. 3TC was detected in blood and cerebrospinal fluid (CSF) of all participants, suggestive of adherence to study drug and effective brain penetration. Cognitive measures remained stable throughout the study. Glial fibrillary acidic protein (GFAP) (P=0.03) and Flt1 (P=0.05) were significantly reduced in CSF over the treatment period; Aβ42/40 (P=0.009) and IL-15 (P=0.006) were significantly elevated in plasma. While this is an open label study of small sample size, the significant decrease of some neurodegeneration- and neuroinflammation-related biomarkers in CSF, significantly elevated levels of plasma Aβ42/40, and a trending decrease of CSF NfL after six months of 3TC exposure suggest a beneficial effect on subjects with mild cognitive impairment due to suspected Alzheimer's disease. Feasibility, safety, tolerability, and central nervous system (CNS) penetration assessments further support clinical evaluation of 3TC in a larger placebo-controlled, multi-dose clinical trial.
Collapse
Affiliation(s)
- A. Campbell Sullivan
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Department of Neurology, University of Texas Health San Antonio
| | - Gabrielle Zuniga
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio
| | - Paulino Ramirez
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio
| | - Roman Fernandez
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Department of Population Health Sciences, University of Texas Health San Antonio
| | - Chen-Pin Wang
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Department of Population Health Sciences, University of Texas Health San Antonio
| | - Ji Li
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio
| | - Lisa Davila
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio
| | - Kristine Pelton
- Brown University Center for Alzheimer’s Disease Research, Providence, RI
| | - Sandra Gomez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio
- Department of Medicine, Cedars-Sinai Medical Center
| | - Claira Sohn
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio
| | - Elias Gonzalez
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio
| | - Marisa Lopez-Cruzan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio
- Department of Psychiatry and Behavioral Sciences, University of Texas Health San Antonio
| | - David A. Gonzalez
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Department of Neurology, University of Texas Health San Antonio
- Department of Neurological Sciences, Rush University Medical Center
| | - Alicia Parker
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Department of Neurology, University of Texas Health San Antonio
| | - Eduardo Zilli
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Department of Neurology, University of Texas Health San Antonio
| | - Gabriel A. de Erausquin
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Department of Neurology, University of Texas Health San Antonio
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Department of Neurology, University of Texas Health San Antonio
| | | | - Nicolas Musi
- Department of Medicine, Cedars-Sinai Medical Center
| | - Bess Frost
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio
| |
Collapse
|
14
|
Xu J, Erlendsson S, Singh M, Holling GA, Regier M, Ibiricu I, Einstein J, Hantak MP, Day GS, Piquet AL, Smith TL, Clardy SL, Whiteley AM, Feschotte C, Briggs JAG, Shepherd JD. PNMA2 forms immunogenic non-enveloped virus-like capsids associated with paraneoplastic neurological syndrome. Cell 2024; 187:831-845.e19. [PMID: 38301645 PMCID: PMC10922747 DOI: 10.1016/j.cell.2024.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
The paraneoplastic Ma antigen (PNMA) proteins are associated with cancer-induced paraneoplastic syndromes that present with an autoimmune response and neurological symptoms. Why PNMA proteins are associated with this severe autoimmune disease is unclear. PNMA genes are predominantly expressed in the central nervous system and are ectopically expressed in some tumors. We show that PNMA2, which has been co-opted from a Ty3 retrotransposon, encodes a protein that is released from cells as non-enveloped virus-like capsids. Recombinant PNMA2 capsids injected into mice induce autoantibodies that preferentially bind external "spike" PNMA2 capsid epitopes, whereas a capsid-assembly-defective PNMA2 protein is not immunogenic. PNMA2 autoantibodies in cerebrospinal fluid of patients with anti-Ma2 paraneoplastic disease show similar preferential binding to spike capsid epitopes. PNMA2 capsid-injected mice develop learning and memory deficits. These observations suggest that PNMA2 capsids act as an extracellular antigen, capable of generating an autoimmune response that results in neurological deficits.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Simon Erlendsson
- The Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - G Aaron Holling
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew Regier
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Iosune Ibiricu
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jenifer Einstein
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Michael P Hantak
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Amanda L Piquet
- Department of Neurology, University of Colorado, Aurora, CO, USA
| | - Tammy L Smith
- Department of Neurology, University of Utah and George E Wahlen VA Medical Center, Salt Lake City, UT, USA
| | - Stacey L Clardy
- Department of Neurology, University of Utah and George E Wahlen VA Medical Center, Salt Lake City, UT, USA
| | | | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - John A G Briggs
- The Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK; Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jason D Shepherd
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
15
|
Takahashi Ueda M. Retrotransposon-derived transcripts and their functions in immunity and disease. Genes Genet Syst 2024; 98:305-319. [PMID: 38199240 DOI: 10.1266/ggs.23-00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Retrotransposons, which account for approximately 42% of the human genome, have been increasingly recognized as "non-self" pathogen-associated molecular patterns (PAMPs) due to their virus-like sequences. In abnormal conditions such as cancer and viral infections, retrotransposons that are aberrantly expressed due to impaired epigenetic suppression display PAMPs, leading to their recognition by pattern recognition receptors (PRRs) of the innate immune system and triggering inflammation. This viral mimicry mechanism has been observed in various human diseases, including aging and autoimmune disorders. However, recent evidence suggests that retrotransposons possess highly regulated immune reactivity and play important roles in the development and function of the immune system. In this review, I discuss a wide range of retrotransposon-derived transcripts, their role as targets in immune recognition, and the diseases associated with retrotransposon activity. Furthermore, I explore the implications of chimeric transcripts formed between retrotransposons and known gene mRNAs, which have been previously underestimated, for the increase of immune-related gene isoforms and their influence on immune function. Retrotransposon-derived transcripts have profound and multifaceted effects on immune system function. The aim of this comprehensive review is to provide a better understanding of the complex relationship between retrotransposon transcripts and immune defense.
Collapse
Affiliation(s)
- Mahoko Takahashi Ueda
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University
| |
Collapse
|
16
|
Luqman-Fatah A, Nishimori K, Amano S, Fumoto Y, Miyoshi T. Retrotransposon life cycle and its impacts on cellular responses. RNA Biol 2024; 21:11-27. [PMID: 39396200 PMCID: PMC11485995 DOI: 10.1080/15476286.2024.2409607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024] Open
Abstract
Approximately 45% of the human genome is comprised of transposable elements (TEs), also known as mobile genetic elements. However, their biological function remains largely unknown. Among them, retrotransposons are particularly abundant, and some of the copies are still capable of mobilization within the genome through RNA intermediates. This review focuses on the life cycle of human retrotransposons and summarizes their regulatory mechanisms and impacts on cellular processes. Retrotransposons are generally epigenetically silenced in somatic cells, but are transcriptionally reactivated under certain conditions, such as tumorigenesis, development, stress, and ageing, potentially leading to genetic instability. We explored the dual nature of retrotransposons as genomic parasites and regulatory elements, focusing on their roles in genetic diversity and innate immunity. Furthermore, we discuss how host factors regulate retrotransposon RNA and cDNA intermediates through their binding, modification, and degradation. The interplay between retrotransposons and the host machinery provides insight into the complex regulation of retrotransposons and the potential for retrotransposon dysregulation to cause aberrant responses leading to inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kei Nishimori
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shota Amano
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yukiko Fumoto
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomoichiro Miyoshi
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Guo Y, Li TD, Modzelewski AJ, Siomi H. Retrotransposon renaissance in early embryos. Trends Genet 2024; 40:39-51. [PMID: 37949723 DOI: 10.1016/j.tig.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Despite being the predominant genetic elements in mammalian genomes, retrotransposons were often dismissed as genomic parasites with ambiguous biological significance. However, recent studies reveal their functional involvement in early embryogenesis, encompassing crucial processes such as zygotic genome activation (ZGA) and cell fate decision. This review underscores the paradigm shift in our understanding of retrotransposon roles during early preimplantation development, as well as their rich functional reservoir that is exploited by the host to provide cis-regulatory elements, noncoding RNAs, and functional proteins. The rapid advancement in long-read sequencing, low input multiomics profiling, advanced in vitro systems, and precise gene editing techniques encourages further dissection of retrotransposon functions that were once obscured by the intricacies of their genomic footprints.
Collapse
Affiliation(s)
- Youjia Guo
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Ten D Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA
| | - Andrew J Modzelewski
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA.
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo 160-8582, Japan.
| |
Collapse
|
18
|
Scopa C, Barnada SM, Cicardi ME, Singer M, Trotti D, Trizzino M. JUN upregulation drives aberrant transposable element mobilization, associated innate immune response, and impaired neurogenesis in Alzheimer's disease. Nat Commun 2023; 14:8021. [PMID: 38049398 PMCID: PMC10696058 DOI: 10.1038/s41467-023-43728-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
Adult neurogenic decline, inflammation, and neurodegeneration are phenotypic hallmarks of Alzheimer's disease (AD). Mobilization of transposable elements (TEs) in heterochromatic regions was recently reported in AD, but the underlying mechanisms are still underappreciated. Combining functional genomics with the differentiation of familial and sporadic AD patient derived-iPSCs into hippocampal progenitors, CA3 neurons, and cerebral organoids, we found that the upregulation of the AP-1 subunit, c-Jun, triggers decondensation of genomic regions containing TEs. This leads to the cytoplasmic accumulation of HERVK-derived RNA-DNA hybrids, the activation of the cGAS-STING cascade, and increased levels of cleaved caspase-3, suggesting the initiation of programmed cell death in AD progenitors and neurons. Notably, inhibiting c-Jun effectively blocks all these downstream molecular processes and rescues neuronal death and the impaired neurogenesis phenotype in AD progenitors. Our findings open new avenues for identifying therapeutic strategies and biomarkers to counteract disease progression and diagnose AD in the early, pre-symptomatic stages.
Collapse
Affiliation(s)
- Chiara Scopa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Samantha M Barnada
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria E Cicardi
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mo Singer
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
19
|
Mucke HAM. Drug Repurposing Patent Applications April-June 2023. Assay Drug Dev Technol 2023; 21:288-295. [PMID: 37668595 DOI: 10.1089/adt.2023.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
|
20
|
Cornec A, Poirier EZ. Interplay between RNA interference and transposable elements in mammals. Front Immunol 2023; 14:1212086. [PMID: 37475864 PMCID: PMC10354258 DOI: 10.3389/fimmu.2023.1212086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
RNA interference (RNAi) plays pleiotropic roles in animal cells, from the post-transcriptional control of gene expression via the production of micro-RNAs, to the inhibition of RNA virus infection. We discuss here the role of RNAi in regulating the expression of self RNAs, and particularly transposable elements (TEs), which are genomic sequences capable of influencing gene expression and disrupting genome architecture. Dicer proteins act as the entry point of the RNAi pathway by detecting and degrading RNA of TE origin, ultimately leading to TE silencing. RNAi similarly targets cellular RNAs such as repeats transcribed from centrosomes. Dicer proteins are thus nucleic acid sensors that recognize self RNA in the form of double-stranded RNA, and trigger a silencing RNA interference response.
Collapse
Affiliation(s)
| | - Enzo Z. Poirier
- Stem Cell Immunity Team, Institut Curie, PSL Research University, INSERM U932, Paris, France
| |
Collapse
|
21
|
Sun B, Kim H, Mello CC, Priess JR. The CERV protein of Cer1, a C. elegans LTR retrotransposon, is required for nuclear export of viral genomic RNA and can form giant nuclear rods. PLoS Genet 2023; 19:e1010804. [PMID: 37384599 PMCID: PMC10309623 DOI: 10.1371/journal.pgen.1010804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Retroviruses and closely related LTR retrotransposons export full-length, unspliced genomic RNA (gRNA) for packaging into virions and to serve as the mRNA encoding GAG and POL polyproteins. Because gRNA often includes splice acceptor and donor sequences used to splice viral mRNAs, retroelements must overcome host mechanisms that retain intron-containing RNAs in the nucleus. Here we examine gRNA expression in Cer1, an LTR retrotransposon in C. elegans which somehow avoids silencing and is highly expressed in germ cells. Newly exported Cer1 gRNA associates rapidly with the Cer1 GAG protein, which has structural similarity with retroviral GAG proteins. gRNA export requires CERV (C. elegans regulator of viral expression), a novel protein encoded by a spliced Cer1 mRNA. CERV phosphorylation at S214 is essential for gRNA export, and phosphorylated CERV colocalizes with nuclear gRNA at presumptive sites of transcription. By electron microscopy, tagged CERV proteins surround clusters of distinct, linear fibrils that likely represent gRNA molecules. Single fibrils, or groups of aligned fibrils, also localize near nuclear pores. During the C. elegans self-fertile period, when hermaphrodites fertilize oocytes with their own sperm, CERV concentrates in two nuclear foci that are coincident with gRNA. However, as hermaphrodites cease self-fertilization, and can only produce cross-progeny, CERV undergoes a remarkable transition to form giant nuclear rods or cylinders that can be up to 5 microns in length. We propose a novel mechanism of rod formation, in which stage-specific changes in the nucleolus induce CERV to localize to the nucleolar periphery in flattened streaks of protein and gRNA; these streaks then roll up into cylinders. The rods are a widespread feature of Cer1 in wild strains of C. elegans, but their function is not known and might be limited to cross-progeny. We speculate that the adaptive strategy Cer1 uses for the identical self-progeny of a host hermaphrodite might differ for heterozygous cross-progeny sired by males. For example, mating introduces male chromosomes which can have different, or no, Cer1 elements.
Collapse
Affiliation(s)
- Bing Sun
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester,United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Haram Kim
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Craig C. Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester,United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
22
|
Krupp S, Tam O, Hammell MG, Dubnau J. TDP-43 pathology in Drosophila induces glial-cell type specific toxicity that can be ameliorated by knock-down of SF2/SRSF1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539439. [PMID: 37205372 PMCID: PMC10187300 DOI: 10.1101/2023.05.04.539439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Accumulation of cytoplasmic inclusions of TAR-DNA binding protein 43 (TDP-43) is seen in both neurons and glia in a range of neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD) and Alzheimer's disease (AD). Disease progression involves non-cell autonomous interactions among multiple cell types, including neurons, microglia and astrocytes. We investigated the effects in Drosophila of inducible, glial cell type-specific TDP-43 overexpression, a model that causes TDP-43 protein pathology including loss of nuclear TDP-43 and accumulation of cytoplasmic inclusions. We report that TDP-43 pathology in Drosophila is sufficient to cause progressive loss of each of the 5 glial sub-types. But the effects on organismal survival were most pronounced when TDP-43 pathology was induced in the perineural glia (PNG) or astrocytes. In the case of PNG, this effect is not attributable to loss of the glial population, because ablation of these glia by expression of pro-apoptotic reaper expression has relatively little impact on survival. To uncover underlying mechanisms, we used cell-type-specific nuclear RNA sequencing to characterize the transcriptional changes induced by pathological TDP-43 expression. We identified numerous glial cell-type specific transcriptional changes. Notably, SF2/SRSF1 levels were found to be decreased in both PNG and in astrocytes. We found that further knockdown of SF2/SRSF1 in either PNG or astrocytes lessens the detrimental effects of TDP-43 pathology on lifespan, but extends survival of the glial cells. Thus TDP-43 pathology in astrocytes or PNG causes systemic effects that shorten lifespan and SF2/SRSF1 knockdown rescues the loss of these glia, and also reduces their systemic toxicity to the organism.
Collapse
Affiliation(s)
- S. Krupp
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, NY 11794, USA
| | - O Tam
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY.,11794
| | - M Gale Hammell
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY.,11794
| | - J Dubnau
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, NY 11794, USA
- Department of Anesthesiology, Stony Brook School of Medicine, NY 11794, USA
| |
Collapse
|
23
|
Yushkova E, Moskalev A. Transposable elements and their role in aging. Ageing Res Rev 2023; 86:101881. [PMID: 36773759 DOI: 10.1016/j.arr.2023.101881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Transposable elements (TEs) are an important part of eukaryotic genomes. The role of somatic transposition in aging, carcinogenesis, and other age-related diseases has been determined. This review discusses the fundamental properties of TEs and their complex interactions with cellular processes, which are crucial for understanding the diverse effects of their activity on the genetics and epigenetics of the organism. The interactions of TEs with recombination, replication, repair, and chromosomal regulation; the ability of TEs to maintain a balance between their own activity and repression, the involvement of TEs in the creation of new or alternative genes, the expression of coding/non-coding RNA, and the role in DNA damage and modification of regulatory networks are reviewed. The contribution of the derepressed TEs to age-dependent effects in individual cells/tissues in different organisms was assessed. Conflicting information about TE activity under stress as well as theories of aging mechanisms related to TEs is discussed. On the one hand, transposition activity in response to stressors can lead to organisms acquiring adaptive innovations of great importance for evolution at the population level. On the other hand, the TE expression can cause decreased longevity and stress tolerance at the individual level. The specific features of TE effects on aging processes in germline and soma and the ways of their regulation in cells are highlighted. Recent results considering somatic mutations in normal human and animal tissues are indicated, with the emphasis on their possible functional consequences. In the context of aging, the correlation between somatic TE activation and age-related changes in the number of proteins required for heterochromatin maintenance and longevity regulation was analyzed. One of the original features of this review is a discussion of not only effects based on the TEs insertions and the associated consequences for the germline cell dynamics and somatic genome, but also the differences between transposon- and retrotransposon-mediated structural genome changes and possible phenotypic characteristics associated with aging and various age-related pathologies. Based on the analysis of published data, a hypothesis about the influence of the species-specific features of number, composition, and distribution of TEs on aging dynamics of different animal genomes was formulated.
Collapse
Affiliation(s)
- Elena Yushkova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation; Laboratory of Genetics and Epigenetics of Aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow 129226, Russian Federation; Longaevus Technologies, London, UK.
| |
Collapse
|
24
|
Wang H, Wang LS, Schellenberg G, Lee WP. The role of structural variations in Alzheimer's disease and other neurodegenerative diseases. Front Aging Neurosci 2023; 14:1073905. [PMID: 36846102 PMCID: PMC9944073 DOI: 10.3389/fnagi.2022.1073905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/31/2022] [Indexed: 02/10/2023] Open
Abstract
Dozens of single nucleotide polymorphisms (SNPs) related to Alzheimer's disease (AD) have been discovered by large scale genome-wide association studies (GWASs). However, only a small portion of the genetic component of AD can be explained by SNPs observed from GWAS. Structural variation (SV) can be a major contributor to the missing heritability of AD; while SV in AD remains largely unexplored as the accurate detection of SVs from the widely used array-based and short-read technology are still far from perfect. Here, we briefly summarized the strengths and weaknesses of available SV detection methods. We reviewed the current landscape of SV analysis in AD and SVs that have been found associated with AD. Particularly, the importance of currently less explored SVs, including insertions, inversions, short tandem repeats, and transposable elements in neurodegenerative diseases were highlighted.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gerard Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
25
|
Ahn HW, Worman ZF, Lechsinska A, Payer LM, Wang T, Malik N, Li W, Burns KH, Nath A, Levin HL. Retrotransposon insertions associated with risk of neurologic and psychiatric diseases. EMBO Rep 2023; 24:e55197. [PMID: 36367221 PMCID: PMC9827563 DOI: 10.15252/embr.202255197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
Transposable elements (TEs) are active in neuronal cells raising the question whether TE insertions contribute to risk of neuropsychiatric disease. While genome-wide association studies (GWAS) serve as a tool to discover genetic loci associated with neuropsychiatric diseases, unfortunately GWAS do not directly detect structural variants such as TEs. To examine the role of TEs in psychiatric and neurologic disease, we evaluated 17,000 polymorphic TEs and find 76 are in linkage disequilibrium with disease haplotypes (P < 10-6 ) defined by GWAS. From these 76 polymorphic TEs, we identify potentially causal candidates based on having insertions in genomic regions of regulatory chromatin and on having associations with altered gene expression in brain tissues. We show that lead candidate insertions have regulatory effects on gene expression in human neural stem cells altering the activity of a minimal promoter. Taken together, we identify 10 polymorphic TE insertions that are potential candidates on par with other variants for having a causal role in neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Hyo Won Ahn
- Division of Molecular and Cellular BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | - Zelia F Worman
- Division of Molecular and Cellular BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
- Present address:
Seven BridgesCharlestownMAUSA
| | - Arianna Lechsinska
- Division of Molecular and Cellular BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | - Lindsay M Payer
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Tongguang Wang
- Translational Neuroscience CenterNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Nasir Malik
- Translational Neuroscience CenterNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Wenxue Li
- Section of Infections of the Nervous SystemNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Kathleen H Burns
- Department of Oncologic PathologyDana‐Farber Cancer InstituteBostonMAUSA
| | - Avindra Nath
- Translational Neuroscience CenterNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
- Section of Infections of the Nervous SystemNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Henry L Levin
- Division of Molecular and Cellular BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
26
|
Zhang L, Xia J. N6-Methyladenosine Methylation of mRNA in Cell Senescence. Cell Mol Neurobiol 2023; 43:27-36. [PMID: 34767142 PMCID: PMC11415202 DOI: 10.1007/s10571-021-01168-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/03/2021] [Indexed: 01/07/2023]
Abstract
Cell senescence is the growth arrest caused by the accumulation of irreparable cell damage, which is involved in physiological and pathological processes and regulated by the post-transcriptional level. This regulation is performed by transcriptional regulators and driven by aging-related small RNAs, long non-coding RNAs, and RNA-binding proteins. N6-methyladenosine (m6A) is the most common chemical modification in eukaryotic mRNA, which can enhance or reduce the binding of transcriptional regulators. Increasing studies have confirmed the crucial role of m6A in controlling mRNA in various physiological processes. Remarkably, recent reports have indicated that abnormal methylation of m6A-related RNA may affect cell senescence. In this review, we clarified the association between m6A modification and cell senescence and analyzed the limitations of the current research.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
27
|
Wang L, Tracy L, Su W, Yang F, Feng Y, Silverman N, Zhang ZZZ. Retrotransposon activation during Drosophila metamorphosis conditions adult antiviral responses. Nat Genet 2022; 54:1933-1945. [PMID: 36396707 PMCID: PMC9795486 DOI: 10.1038/s41588-022-01214-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022]
Abstract
Retrotransposons are one type of mobile genetic element that abundantly reside in the genomes of nearly all animals. Their uncontrolled activation is linked to sterility, cancer and other pathologies, thereby being largely considered detrimental. Here we report that, within a specific time window of development, retrotransposon activation can license the host's immune system for future antiviral responses. We found that the mdg4 (also known as Gypsy) retrotransposon selectively becomes active during metamorphosis at the Drosophila pupal stage. At this stage, mdg4 activation educates the host's innate immune system by inducing the systemic antiviral function of the nuclear factor-κB protein Relish in a dSTING-dependent manner. Consequently, adult flies with mdg4, Relish or dSTING silenced at the pupal stage are unable to clear exogenous viruses and succumb to viral infection. Altogether, our data reveal that hosts can establish a protective antiviral response that endows a long-term benefit in pathogen warfare due to the developmental activation of mobile genetic elements.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Lauren Tracy
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Weijia Su
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Fu Yang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yu Feng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Z Z Zhao Zhang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
28
|
Human Endogenous Retroviruses: Friends and Foes in Urology Clinics. Int Neurourol J 2022; 26:275-287. [PMID: 36599336 PMCID: PMC9816444 DOI: 10.5213/inj.2244284.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are originated from ancient exogenous retroviruses, which infected human germ line cells millions of years ago. HERVs have generally lost their replication and retrotransposition abilities, but adopted physiological roles in human biology. Though mostly inactive, HERVs can be reactivated by internal and external factors such as inflammations and environmental conditions. Their aberrant expression can participate in various human malignancies with complex etiology. This review describes the features and functions of HERVs in urological subjects, such as urological cancers and human reproduction. It provides the current knowledge of the HERVs and useful insights helping practice in urology clinics.
Collapse
|
29
|
Savage AL, Iacoangeli A, Schumann GG, Rubio-Roldan A, Garcia-Perez JL, Al Khleifat A, Koks S, Bubb VJ, Al-Chalabi A, Quinn JP. Characterisation of retrotransposon insertion polymorphisms in whole genome sequencing data from individuals with amyotrophic lateral sclerosis. Gene 2022; 843:146799. [PMID: 35963498 DOI: 10.1016/j.gene.2022.146799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022]
Abstract
The genetics of an individual is a crucial factor in understanding the risk of developing the neurodegenerative disease amyotrophic lateral sclerosis (ALS). There is still a large proportion of the heritability of ALS, particularly in sporadic cases, to be understood. Among others, active transposable elements drive inter-individual variability, and in humans long interspersed element 1 (LINE1, L1), Alu and SINE-VNTR-Alu (SVA) retrotransposons are a source of polymorphic insertions in the population. We undertook a pilot study to characterise the landscape of non-reference retrotransposon insertion polymorphisms (non-ref RIPs) in 15 control and 15 ALS individuals' whole genomes from Project MinE, an international project to identify potential genetic causes of ALS. The combination of two bioinformatics tools (mobile element locator tool (MELT) and TEBreak) identified on average 1250 Alu, 232 L1 and 77 SVA non-ref RIPs per genome across the 30 analysed. Further PCR validation of individual polymorphic retrotransposon insertions showed a similar level of accuracy for MELT and TEBreak. Our preliminary study did not identify a specific RIP or a significant difference in the total number of non-ref RIPs in ALS compared to control genomes. The use of multiple bioinformatic tools improved the accuracy of non-ref RIP detection and our study highlights the potential importance of studying these elements further in ALS.
Collapse
Affiliation(s)
- Abigail L Savage
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Alfredo Iacoangeli
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 9RT, UK; Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen 63225, Germany
| | - Alejandro Rubio-Roldan
- Department of Genomic Medicine and Department of Oncology, GENYO, Centre for Genomics & Oncology, PTS Granada, 18007, Spain
| | - Jose L Garcia-Perez
- Department of Genomic Medicine and Department of Oncology, GENYO, Centre for Genomics & Oncology, PTS Granada, 18007, Spain; MRC-HGU Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ahmad Al Khleifat
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 9RT, UK
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, Western Australia 6009, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 9RT, UK; Department of Neurology, King's College Hospital, London SE5 9RS, UK
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
30
|
Yushkova EA. The effects of transpositions of functional I retrotransposons depend on the conditions and dose of parental exposure. Int J Radiat Biol 2022; 99:737-749. [PMID: 36318749 DOI: 10.1080/09553002.2023.2142978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/16/2022] [Accepted: 09/27/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE Transposable elements (TEs) cause destabilization of animal genomes. I retrotransposons of Drosophila melanogaster, as well as human LINE1 retrotransposons, are sources of intra- and interindividual diversity and responses to the action of internal and external factors. The aim of this study was to investigate the response to irradiation for the offspring of Drosophila melanogaster with the increased activity of inherited functional I elements. MATERIALS AND METHODS The material used was dysgenic Drosophila females with active I retrotransposons obtained as a result of crossing irradiated/non-irradiated parents of a certain genotype. Non-dysgenic females (without functional I elements) were used as controls. The effects of different conditions (irradiation of both parents simultaneously or separately) and doses (1-100 Gy) of parental irradiation have been assessed by analyzing SF-sterility, DNA damage and lifespan. The presence of full-size I retrotransposons was determined by PCR analysis. RESULTS The maternal exposure and exposure of both parents are efficient in contrast with paternal exposure. Irradiation of mothers reduces the reproductive potential and viability of their female offspring which undergo high activity of functional I retrotransposons. Though I retrotranspositions negatively affect the female gonads, irradiation of the paternal line can increase the lifespan of SF-sterile females. Radiation stress in the range of 1-100 Gy increases DNA fragmentation in both somatic and germ cells of the ovaries with high I-retrotransposition. CONCLUSIONS These results allow for the specificity of the radiation-induced behavior of I retrotransposons and their role in survival under conditions of strong radiation stress.
Collapse
Affiliation(s)
- Elena A Yushkova
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Science, Syktyvkar, Russia
| |
Collapse
|
31
|
Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z, Zhang W, Ren J, Zhu F, Liu GH. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther 2022; 7:374. [PMID: 36336680 PMCID: PMC9637765 DOI: 10.1038/s41392-022-01211-8] [Citation(s) in RCA: 232] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Aging is accompanied by the decline of organismal functions and a series of prominent hallmarks, including genetic and epigenetic alterations. These aging-associated epigenetic changes include DNA methylation, histone modification, chromatin remodeling, non-coding RNA (ncRNA) regulation, and RNA modification, all of which participate in the regulation of the aging process, and hence contribute to aging-related diseases. Therefore, understanding the epigenetic mechanisms in aging will provide new avenues to develop strategies to delay aging. Indeed, aging interventions based on manipulating epigenetic mechanisms have led to the alleviation of aging or the extension of the lifespan in animal models. Small molecule-based therapies and reprogramming strategies that enable epigenetic rejuvenation have been developed for ameliorating or reversing aging-related conditions. In addition, adopting health-promoting activities, such as caloric restriction, exercise, and calibrating circadian rhythm, has been demonstrated to delay aging. Furthermore, various clinical trials for aging intervention are ongoing, providing more evidence of the safety and efficacy of these therapies. Here, we review recent work on the epigenetic regulation of aging and outline the advances in intervention strategies for aging and age-associated diseases. A better understanding of the critical roles of epigenetics in the aging process will lead to more clinical advances in the prevention of human aging and therapy of aging-related diseases.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Hospital of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Zikai Zheng
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jie Ren
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
| |
Collapse
|
32
|
Rodríguez-Quiroz R, Valdebenito-Maturana B. SoloTE for improved analysis of transposable elements in single-cell RNA-Seq data using locus-specific expression. Commun Biol 2022; 5:1063. [PMID: 36202992 PMCID: PMC9537157 DOI: 10.1038/s42003-022-04020-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022] Open
Abstract
Transposable Elements (TEs) contribute to the repetitive fraction in almost every eukaryotic genome known to date, and their transcriptional activation can influence the expression of neighboring genes in healthy and disease states. Single cell RNA-Seq (scRNA-Seq) is a technical advance that allows the study of gene expression on a cell-by-cell basis. Although a current computational approach is available for the single cell analysis of TE expression, it omits their genomic location. Here we show SoloTE, a pipeline that outperforms the previous approach in terms of computational resources and by allowing the inclusion of locus-specific TE activity in scRNA-Seq expression matrixes. We then apply SoloTE to several datasets to reveal the repertoire of TEs that become transcriptionally active in different cell groups, and based on their genomic location, we predict their potential impact on gene expression. As our tool takes as input the resulting files from standard scRNA-Seq processing pipelines, we expect it to be widely adopted in single cell studies to help researchers discover patterns of cellular diversity associated with TE expression.
Collapse
Affiliation(s)
- Rocío Rodríguez-Quiroz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | |
Collapse
|
33
|
Di Stefano L. All Quiet on the TE Front? The Role of Chromatin in Transposable Element Silencing. Cells 2022; 11:cells11162501. [PMID: 36010577 PMCID: PMC9406493 DOI: 10.3390/cells11162501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that constitute a sizeable portion of many eukaryotic genomes. Through their mobility, they represent a major source of genetic variation, and their activation can cause genetic instability and has been linked to aging, cancer and neurodegenerative diseases. Accordingly, tight regulation of TE transcription is necessary for normal development. Chromatin is at the heart of TE regulation; however, we still lack a comprehensive understanding of the precise role of chromatin marks in TE silencing and how chromatin marks are established and maintained at TE loci. In this review, I discuss evidence documenting the contribution of chromatin-associated proteins and histone marks in TE regulation across different species with an emphasis on Drosophila and mammalian systems.
Collapse
Affiliation(s)
- Luisa Di Stefano
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
34
|
Fueyo R, Judd J, Feschotte C, Wysocka J. Roles of transposable elements in the regulation of mammalian transcription. Nat Rev Mol Cell Biol 2022; 23:481-497. [PMID: 35228718 PMCID: PMC10470143 DOI: 10.1038/s41580-022-00457-y] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
Abstract
Transposable elements (TEs) comprise about half of the mammalian genome. TEs often contain sequences capable of recruiting the host transcription machinery, which they use to express their own products and promote transposition. However, the regulatory sequences carried by TEs may affect host transcription long after the TEs have lost the ability to transpose. Recent advances in genome analysis and engineering have facilitated systematic interrogation of the regulatory activities of TEs. In this Review, we discuss diverse mechanisms by which TEs contribute to transcription regulation. Notably, TEs can donate enhancer and promoter sequences that influence the expression of host genes, modify 3D chromatin architecture and give rise to novel regulatory genes, including non-coding RNAs and transcription factors. We discuss how TEs spur regulatory evolution and facilitate the emergence of genetic novelties in mammalian physiology and development. By virtue of their repetitive and interspersed nature, TEs offer unique opportunities to dissect the effects of mutation and genomic context on the function and evolution of cis-regulatory elements. We argue that TE-centric studies hold the key to unlocking general principles of transcription regulation and evolution.
Collapse
Affiliation(s)
- Raquel Fueyo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
35
|
Lee HJ, Hou Y, Maeng JH, Shah NM, Chen Y, Lawson HA, Yang H, Yue F, Wang T. Epigenomic analysis reveals prevalent contribution of transposable elements to cis-regulatory elements, tissue-specific expression, and alternative promoters in zebrafish. Genome Res 2022; 32:1424-1436. [PMID: 35649578 PMCID: PMC9341505 DOI: 10.1101/gr.276052.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 05/27/2022] [Indexed: 12/04/2022]
Abstract
Transposable elements (TEs) encode regulatory elements that impact gene expression in multiple species, yet a comprehensive analysis of zebrafish TEs in the context of gene regulation is lacking. Here, we systematically investigate the epigenomic and transcriptomic landscape of TEs across 11 adult zebrafish tissues using multidimensional sequencing data. We find that TEs contribute substantially to a diverse array of regulatory elements in the zebrafish genome and that 37% of TEs are positioned in active regulatory states in adult zebrafish tissues. We identify TE subfamilies enriched in highly specific regulatory elements among different tissues. We use transcript assembly to discover TE-derived transcriptional units expressed across tissues. Finally, we show that novel TE-derived promoters can initiate tissue-specific transcription of alternate gene isoforms. This work provides a comprehensive profile of TE activity across normal zebrafish tissues, shedding light on mechanisms underlying the regulation of gene expression in this widely used model organism.
Collapse
Affiliation(s)
- Hyung Joo Lee
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Yiran Hou
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Ju Heon Maeng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nakul M Shah
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Yujie Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| |
Collapse
|
36
|
Lin X, Yang Y, Melton PE, Singh V, Simpson-Yap S, Burdon KP, Taylor BV, Zhou Y. Integrating Genetic Structural Variations and Whole-Genome Sequencing Into Clinical Neurology. Neurol Genet 2022. [DOI: 10.1212/nxg.0000000000200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Advances in genome sequencing technologies have unlocked new possibilities in identifying disease-associated and causative genetic markers, which may in turn enhance disease diagnosis and improve prognostication and management strategies. With the capability of examining genetic variations ranging from single-nucleotide mutations to large structural variants, whole-genome sequencing (WGS) is an increasingly adopted approach to dissect the complex genetic architecture of neurologic diseases. There is emerging evidence for different structural variants and their roles in major neurologic and neurodevelopmental diseases. This review first describes different structural variants and their implicated roles in major neurologic and neurodevelopmental diseases, and then discusses the clinical relevance of WGS applications in neurology. Notably, WGS-based detection of structural variants has shown promising potential in enhancing diagnostic power of genetic tests in clinical settings. Ongoing WGS-based research in structural variations and quantifying mutational constraints can also yield clinical benefits by improving variant interpretation and disease diagnosis, while supporting biomarker discovery and therapeutic development. As a result, wider integration of WGS technologies into health care will likely increase diagnostic yields in difficult-to-diagnose conditions and define potential therapeutic targets or intervention points for genome-editing strategies.
Collapse
|
37
|
Shridharan RV, Kalakuntla N, Chirmule N, Tiwari B. The Happy Hopping of Transposons: The Origins of V(D)J Recombination in Adaptive Immunity. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.836066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nearly 50% of the human genome is derived from transposable elements (TEs). Though dysregulated transposons are deleterious to humans and can lead to diseases, co-opted transposons play an important role in generating alternative or new DNA sequence combinations to perform novel cellular functions. The appearance of an adaptive immune system in jawed vertebrates, wherein the somatic rearrangement of T and B cells generates a repertoire of antibodies and receptors, is underpinned by Class II TEs. This review follows the evolution of recombination activation genes (RAGs), components of adaptive immunity, from TEs, focusing on the structural and mechanistic similarities between RAG recombinases and DNA transposases. As evolution occurred from a transposon precursor, DNA transposases developed a more targeted and constrained mechanism of mobilization. As DNA repair is integral to transposition and recombination, we note key similarities and differences in the choice of DNA repair pathways following these processes. Understanding the regulation of V(D)J recombination from its evolutionary origins may help future research to specifically target RAG proteins to rectify diseases associated with immune dysregulation.
Collapse
|
38
|
Pfaff AL, Bubb VJ, Quinn JP, Koks S. Locus specific reduction of L1 expression in the cortices of individuals with amyotrophic lateral sclerosis. Mol Brain 2022; 15:25. [PMID: 35346298 PMCID: PMC8961898 DOI: 10.1186/s13041-022-00914-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
The activation and dysregulation of retrotransposons has been identified in the CNS of individuals with the fatal neurodegenerative disorder Amyotrophic lateral sclerosis (ALS). This includes elements from multiple different families and subfamilies of retrotransposons, however there is limited knowledge of the specific loci from which this expression occurs in ALS. The long interspersed element-1 (L1) is the only autonomous retrotransposon in the human genome and members of this family of elements maintain the ability to mobilise. Despite L1s contributing to 17% of the human genome only 80-100 L1s encode the required proteins for mobilisation and are retrotransposition competent. Identifying the specific loci from which L1 expression occurs will inform on the potential functional consequences of their expression, such as the potential for somatic retrotransposition or DNA damage caused by the endonuclease activity of the ORF2 protein of the L1. Here we characterised L1 loci expression using the L1EM tool ( https://github.com/FenyoLab/L1EM ) in RNA sequencing data from 518 samples across four tissues (motor cortex, frontal cortex, cerebellum and cervical spinal cord) in the Target ALS cohort obtained from the New York Genome Center. There was a significant reduction in total intact L1 expression (those that encode functional proteins) in two brain regions of individuals with ALS compared to controls and clustering of the ALS brain regions occurred based on their intact L1 expression profile. Although overall the levels of L1 expression were reduced in ALS/ALS with other neurological disorder (ND) there were individuals in which L1s were expressed at much higher levels than the rest of the ALS/ALSND cohort. Expressed L1 loci were more frequently located in introns compared to those not expressed and the level of L1 expression positively correlated with the expression of the gene in which it was located. Significant differences were observed in the expression profiles of L1s in ALS and specific features of these elements, such as location in the genome and whether or not they are intact, were significantly associated with those that were expressed in the cohort.
Collapse
Affiliation(s)
- Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Perth, 8 Verdun Street, Nedlands, WA 6009 Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA Australia
| | - Vivien J. Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, 8 Verdun Street, Nedlands, WA 6009 Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA Australia
| |
Collapse
|
39
|
Fernandes AO, Barros GS, Batista MVA. Metatranscriptomics Analysis Reveals Diverse Viral RNA in Cutaneous Papillomatous Lesions of Cattle. Evol Bioinform Online 2022; 18:11769343221083960. [PMID: 35633934 PMCID: PMC9133864 DOI: 10.1177/11769343221083960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine papillomavirus (BPV) is associated with bovine papillomatosis, a disease that forms benign warts in epithelial tissues, as well as malignant lesions. Previous studies have detected a co-infection between BPV and other viruses, making it likely that these co-infections could influence disease progression. Therefore, this study aimed to identify and annotate viral genes in cutaneous papillomatous lesions of cattle. Sequences were obtained from the GEO database, and an RNA-seq computational pipeline was used to analyze 3 libraries from bovine papillomatous lesions. In total, 25 viral families were identified, including Poxviridae, Retroviridae, and Herpesviridae. All libraries shared similarities in the viruses and genes found. The viral genes shared similarities with BPV genes, especially for functions as virion entry pathway, malignant progression by apoptosis suppression and immune system control. Therefore, this study presents relevant data extending the current knowledge regarding the viral microbiome in BPV lesions and how other viruses could affect this disease.
Collapse
Affiliation(s)
- Adriana O Fernandes
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Gerlane S Barros
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marcus VA Batista
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
40
|
Casale AM, Liguori F, Ansaloni F, Cappucci U, Finaurini S, Spirito G, Persichetti F, Sanges R, Gustincich S, Piacentini L. Transposable element activation promotes neurodegeneration in a Drosophila model of Huntington's disease. iScience 2022; 25:103702. [PMID: 35036881 PMCID: PMC8752904 DOI: 10.1016/j.isci.2021.103702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/22/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant disorder with progressive motor dysfunction and cognitive decline. The disease is caused by a CAG repeat expansion in the IT15 gene, which elongates a polyglutamine stretch of the HD protein, Huntingtin. No therapeutic treatments are available, and new pharmacological targets are needed. Retrotransposons are transposable elements (TEs) that represent 40% and 30% of the human and Drosophila genomes and replicate through an RNA intermediate. Mounting evidence suggests that mammalian TEs are active during neurogenesis and may be involved in diseases of the nervous system. Here we show that TE expression and mobilization are increased in a Drosophila melanogaster HD model. By inhibiting TE mobilization with Reverse Transcriptase inhibitors, polyQ-dependent eye neurodegeneration and genome instability in larval brains are rescued and fly lifespan is increased. These results suggest that TE activation may be involved in polyQ-induced neurotoxicity and a potential pharmacological target.
Collapse
Affiliation(s)
- Assunta Maria Casale
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Francesco Liguori
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Federico Ansaloni
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Ugo Cappucci
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Sara Finaurini
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Giovanni Spirito
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | - Remo Sanges
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Lucia Piacentini
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
41
|
Floreani L, Ansaloni F, Mangoni D, Agostoni E, Sanges R, Persichetti F, Gustincich S. Analysis of LINE1 Retrotransposons in Huntington’s Disease. Front Cell Neurosci 2022; 15:743797. [PMID: 35095420 PMCID: PMC8795916 DOI: 10.3389/fncel.2021.743797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that made up about half the human genome. Among them, the autonomous non-LTR retrotransposon long interspersed nuclear element-1 (L1) is the only currently active TE in mammals and covers about 17% of the mammalian genome. L1s exert their function as structural elements in the genome, as transcribed RNAs to influence chromatin structure and as retrotransposed elements to shape genomic variation in somatic cells. L1s activity has been shown altered in several diseases of the nervous system. Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by an expansion of a CAG repeat in the HTT gene which leads to a gradual loss of neurons most prominently in the striatum and, to a lesser extent, in cortical brain regions. The length of the expanded CAG tract is related to age at disease onset, with longer repeats leading to earlier onset. Here we carried out bioinformatic analysis of public RNA-seq data of a panel of HD mouse models showing that a decrease of L1 RNA expression recapitulates two hallmarks of the disease: it correlates to CAG repeat length and it occurs in the striatum, the site of neurodegeneration. Results were then experimentally validated in HttQ111 knock-in mice. The expression of L1-encoded proteins was independent from L1 RNA levels and differentially regulated in time and tissues. The pattern of expression L1 RNAs in human HD post-mortem brains showed similarity to mouse models of the disease. This work suggests the need for further study of L1s in HD and adds support to the current hypothesis that dysregulation of TEs may be involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lavinia Floreani
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Federico Ansaloni
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia—IIT, Genova, Italy
| | - Damiano Mangoni
- Central RNA Laboratory, Istituto Italiano di Tecnologia—IIT, Genova, Italy
| | - Elena Agostoni
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Remo Sanges
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia—IIT, Genova, Italy
- *Correspondence: Remo Sanges,
| | - Francesca Persichetti
- Department of Health Sciences, University of Piemonte Orientale “ A. Avogadro,”Novara, Italy
- Francesca Persichetti,
| | - Stefano Gustincich
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia—IIT, Genova, Italy
- Stefano Gustincich,
| |
Collapse
|
42
|
Abdelhamid RF, Ogawa K, Beck G, Ikenaka K, Takeuchi E, Yasumizu Y, Jinno J, Kimura Y, Baba K, Nagai Y, Okada Y, Saito Y, Murayama S, Mochizuki H, Nagano S. piRNA/PIWI Protein Complex as a Potential Biomarker in Sporadic Amyotrophic Lateral Sclerosis. Mol Neurobiol 2022; 59:1693-1705. [PMID: 35015250 PMCID: PMC8882100 DOI: 10.1007/s12035-021-02686-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
The pathological hallmark of the majority of amyotrophic lateral sclerosis (ALS) cases is the mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43), an RNA-binding protein. Several studies have attributed disease processes of ALS to abnormal RNA metabolism. However, dysregulated biogenesis of RNA, especially non-coding RNA (ncRNA), is poorly understood. To resolve it, RNA-Seq, biochemical, and immunohistochemical analyses were performed on the pyramidal tract of the medulla oblongata of sporadic ALS (sALS) and control postmortem brain samples. Here, we report perturbation of ncRNA biogenesis in PIWI-interacting RNA (piRNA) in several sALS brain samples associated with TDP-43 pathology. In addition, we confirmed the dysregulation of two PIWI homologs, PIWI-like-mediated gene silencing 1 (PIWIL1) and PIWIL4, which bind to piRNAs to regulate their expression. PIWIL1 was mislocalized and co-localized with TDP-43 in motor neurons of sporadic ALS lumbar cords. Our results imply that dysregulation of piRNA, PIWIL1, and PIWIL4 is linked to pathogenesis of ALS. Based on these results, piRNAs and PIWI proteins are potential diagnostic biomarkers and therapeutic targets of ALS.
Collapse
Affiliation(s)
- Rehab F Abdelhamid
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kotaro Ogawa
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Goichi Beck
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Eriko Takeuchi
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshiaki Yasumizu
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Experimental Immunology, Osaka University Immunology Frontier Research Center, Suita, Osaka, Japan
| | - Jyunki Jinno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasuyoshi Kimura
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kousuke Baba
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Neurology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuko Saito
- Department of Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan.,Brain Bank for Neurodevelopmental, Molecular Research Center for Children's Mental Development, Neurological and Psychiatric Disorders, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seiichi Nagano
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan. .,Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
43
|
Peze-Heidsieck E, Bonnifet T, Znaidi R, Ravel-Godreuil C, Massiani-Beaudoin O, Joshi RL, Fuchs J. Retrotransposons as a Source of DNA Damage in Neurodegeneration. Front Aging Neurosci 2022; 13:786897. [PMID: 35058771 PMCID: PMC8764243 DOI: 10.3389/fnagi.2021.786897] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
The etiology of aging-associated neurodegenerative diseases (NDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD), still remains elusive and no curative treatment is available. Age is the major risk factor for PD and AD, but the molecular link between aging and neurodegeneration is not fully understood. Aging is defined by several hallmarks, some of which partially overlap with pathways implicated in NDs. Recent evidence suggests that aging-associated epigenetic alterations can lead to the derepression of the LINE-1 (Long Interspersed Element-1) family of transposable elements (TEs) and that this derepression might have important implications in the pathogenesis of NDs. Almost half of the human DNA is composed of repetitive sequences derived from TEs and TE mobility participated in shaping the mammalian genomes during evolution. Although most TEs are mutated and no longer mobile, more than 100 LINE-1 elements have retained their full coding potential in humans and are thus retrotransposition competent. Uncontrolled activation of TEs has now been reported in various models of neurodegeneration and in diseased human brain tissues. We will discuss in this review the potential contribution of LINE-1 elements in inducing DNA damage and genomic instability, which are emerging pathological features in NDs. TEs might represent an important molecular link between aging and neurodegeneration, and a potential target for urgently needed novel therapeutic disease-modifying interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Collège de France, Université PSL, Paris, France
| |
Collapse
|
44
|
Neuron-specific chromosomal megadomain organization is adaptive to recent retrotransposon expansions. Nat Commun 2021; 12:7243. [PMID: 34903713 PMCID: PMC8669064 DOI: 10.1038/s41467-021-26862-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/27/2021] [Indexed: 01/16/2023] Open
Abstract
Regulatory mechanisms associated with repeat-rich sequences and chromosomal conformations in mature neurons remain unexplored. Here, we map cell-type specific chromatin domain organization in adult mouse cerebral cortex and report strong enrichment of Endogenous Retrovirus 2 (ERV2) repeat sequences in the neuron-specific heterochromatic B2NeuN+ megabase-scaling subcompartment. Single molecule long-read sequencing and comparative Hi-C chromosomal contact mapping in wild-derived SPRET/EiJ (Mus spretus) and laboratory inbred C57BL/6J (Mus musculus) reveal neuronal reconfigurations tracking recent ERV2 expansions in the murine germline, with significantly higher B2NeuN+ contact frequencies at sites with ongoing insertions in Mus musculus. Neuronal ablation of the retrotransposon silencer Kmt1e/Setdb1 triggers B2NeuN+ disintegration and rewiring with open chromatin domains enriched for cellular stress response genes, along with severe neuroinflammation and proviral assembly with infiltration of dendrites . We conclude that neuronal megabase-scale chromosomal architectures include an evolutionarily adaptive heterochromatic organization which, upon perturbation, results in transcriptional dysregulation and unleashes ERV2 proviruses with strong neuronal tropism.
Collapse
|
45
|
Phan K, He Y, Fu Y, Dzamko N, Bhatia S, Gold J, Rowe D, Ke YD, Ittner LM, Hodges JR, Piguet O, Kiernan MC, Halliday GM, Kim WS. Pathological manifestation of human endogenous retrovirus K in frontotemporal dementia. COMMUNICATIONS MEDICINE 2021; 1:60. [PMID: 35083468 PMCID: PMC8788987 DOI: 10.1038/s43856-021-00060-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Behavioral variant frontotemporal dementia (bvFTD) is a common form of younger-onset dementia with a proportion of cases overlapping pathologically and genetically with amyotrophic lateral sclerosis (ALS). Previous studies have identified that the human endogenous retrovirus K (HERV-K) is elevated in ALS serum and is associated with ALS TDP-43 pathology. In contrast, little is known about HERV-K changes in bvFTD. Here, we investigated the possible role of HERV-K in bvFTD. METHODS We measured the HERV-K env gene in sporadic bvFTD (N = 63), sporadic ALS (N = 89), and control (N = 21) serum by ddPCR. We also analyzed HERV-K env, by qPCR, and the HERV-K reverse transcriptase protein, by confocal immunofluorescence microscopy, in the disease-affected superior frontal cortex of bvFTD with TDP-43 pathology. RESULTS Here, we show that HERV-K env levels are significantly elevated (P = 3.5 × 10-6) in bvFTD compared to control serum, differentiating cases with an AUC value of 0.867. HERV-K env levels are also specifically elevated in the superior frontal cortex of bvFTD with TDP-43 pathology, with the HERV-K reverse transcriptase protein and TDP-43 deposit localized to the neuronal cytoplasm. Furthermore, in a neuronal cell line overexpression of TDP-43 induces HERV-K env transcription. CONCLUSIONS These results suggest that manifestation of HERV-K is associated with bvFTD TDP-43 pathology. Analysis of HERV-K in bvFTD may provide insight into an unrecognized but targetable perturbed pathology.
Collapse
Affiliation(s)
- Katherine Phan
- grid.1013.30000 0004 1936 834XThe University of Sydney, Brain and Mind Centre, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XThe University of Sydney, School of Medical Sciences, Sydney, NSW Australia
| | - Ying He
- grid.1013.30000 0004 1936 834XThe University of Sydney, Brain and Mind Centre, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XThe University of Sydney, School of Medical Sciences, Sydney, NSW Australia
| | - YuHong Fu
- grid.1013.30000 0004 1936 834XThe University of Sydney, Brain and Mind Centre, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XThe University of Sydney, School of Medical Sciences, Sydney, NSW Australia
| | - Nicolas Dzamko
- grid.1013.30000 0004 1936 834XThe University of Sydney, Brain and Mind Centre, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XThe University of Sydney, School of Medical Sciences, Sydney, NSW Australia
| | - Surabhi Bhatia
- grid.1013.30000 0004 1936 834XThe University of Sydney, Brain and Mind Centre, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XThe University of Sydney, School of Medical Sciences, Sydney, NSW Australia
| | - Julian Gold
- grid.452312.30000 0004 0644 0381The University of Sydney, The Albion Centre, Sydney, NSW Australia
| | - Dominic Rowe
- grid.1004.50000 0001 2158 5405Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Yazi D. Ke
- grid.1004.50000 0001 2158 5405Dementia Research Centre and Department of Biomedical Sciences, Macquarie University, Sydney, NSW Australia
| | - Lars M. Ittner
- grid.1004.50000 0001 2158 5405Dementia Research Centre and Department of Biomedical Sciences, Macquarie University, Sydney, NSW Australia
| | - John R. Hodges
- grid.1013.30000 0004 1936 834XThe University of Sydney, Brain and Mind Centre, Sydney, NSW Australia
| | - Olivier Piguet
- grid.1013.30000 0004 1936 834XThe University of Sydney, Brain and Mind Centre, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XThe University of Sydney, School of Psychology, Sydney, NSW Australia
| | - Matthew C. Kiernan
- grid.1013.30000 0004 1936 834XThe University of Sydney, Brain and Mind Centre, Sydney, NSW Australia ,grid.413249.90000 0004 0385 0051Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW Australia
| | - Glenda M. Halliday
- grid.1013.30000 0004 1936 834XThe University of Sydney, Brain and Mind Centre, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XThe University of Sydney, School of Medical Sciences, Sydney, NSW Australia
| | - Woojin Scott Kim
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia. .,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia.
| |
Collapse
|
46
|
Senft AD, Macfarlan TS. Transposable elements shape the evolution of mammalian development. Nat Rev Genet 2021; 22:691-711. [PMID: 34354263 DOI: 10.1038/s41576-021-00385-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Transposable elements (TEs) promote genetic innovation but also threaten genome stability. Despite multiple layers of host defence, TEs actively shape mammalian-specific developmental processes, particularly during pre-implantation and extra-embryonic development and at the maternal-fetal interface. Here, we review how TEs influence mammalian genomes both directly by providing the raw material for genetic change and indirectly via co-evolving TE-binding Krüppel-associated box zinc finger proteins (KRAB-ZFPs). Throughout mammalian evolution, individual activities of ancient TEs were co-opted to enable invasive placentation that characterizes live-born mammals. By contrast, the widespread activity of evolutionarily young TEs may reflect an ongoing co-evolution that continues to impact mammalian development.
Collapse
Affiliation(s)
- Anna D Senft
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA.
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
47
|
Li M, Larsen PA. Primate-specific retrotransposons and the evolution of circadian networks in the human brain. Neurosci Biobehav Rev 2021; 131:988-1004. [PMID: 34592258 DOI: 10.1016/j.neubiorev.2021.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/03/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022]
Abstract
The circadian rhythm of the human brain is attuned to sleep-wake cycles that entail global alterations in neuronal excitability. This periodicity involves a highly coordinated regulation of gene expression. A growing number of studies are documenting a fascinating connection between primate-specific retrotransposons (Alu elements) and key epigenetic regulatory processes in the primate brain. Collectively, these studies indicate that Alu elements embedded in the human neuronal genome mediate post-transcriptional processes that unite human-specific neuroepigenetic landscapes and circadian rhythm. Here, we review evidence linking Alu retrotransposon-mediated posttranscriptional pathways to circadian gene expression. We hypothesize that Alu retrotransposons participate in the organization of circadian brain function through multidimensional neuroepigenetic pathways. We anticipate that these pathways are closely tied to the evolution of human cognition and their perturbation contributes to the manifestation of human-specific neurological diseases. Finally, we address current challenges and accompanying opportunities in studying primate- and human-specific transposable elements.
Collapse
Affiliation(s)
- Manci Li
- University of Minnesota, St. Paul, MN, 55108, United States
| | - Peter A Larsen
- University of Minnesota, St. Paul, MN, 55108, United States.
| |
Collapse
|
48
|
Grundman J, Spencer B, Sarsoza F, Rissman RA. Transcriptome analyses reveal tau isoform-driven changes in transposable element and gene expression. PLoS One 2021; 16:e0251611. [PMID: 34587152 PMCID: PMC8480850 DOI: 10.1371/journal.pone.0251611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Alternative splicing of the gene MAPT produces several isoforms of tau protein. Overexpression of these isoforms is characteristic of tauopathies, which are currently untreatable neurodegenerative diseases. Though non-canonical functions of tau have drawn interest, the role of tau isoforms in these diseases has not been fully examined and may reveal new details of tau-driven pathology. In particular, tau has been shown to promote activation of transposable elements-highly regulated nucleotide sequences that replicate throughout the genome and can promote immunologic responses and cellular stress. This study examined tau isoforms' roles in promoting cell damage and dysregulation of genes and transposable elements at a family-specific and locus-specific level. We performed immunofluorescence, Western blot and cytotoxicity assays, along with paired-end RNA sequencing on differentiated SH-SY5Y cells infected with lentiviral constructs of tau isoforms and treated with amyloid-beta oligomers. Our transcriptomic findings were validated using publicly available RNA-sequencing data from Alzheimer's disease, progressive supranuclear palsy and control human samples from the Accelerating Medicine's Partnership for AD (AMP-AD). Significance for biochemical assays was determined using Wilcoxon ranked-sum tests and false discovery rate. Transcriptome analysis was conducted through DESeq2 and the TEToolkit suite available from the Hammell lab at Cold Spring Harbor Laboratory. Our analyses show overexpression of different tau isoforms and their interactions with amyloid-beta in SH-SY5Y cells result in isoform-specific changes in the transcriptome, with locus-specific transposable element dysregulation patterns paralleling those seen in patients with Alzheimer's disease and progressive supranuclear palsy. Locus-level transposable element expression showed increased dysregulation of L1 and Alu sites, which have been shown to drive pathology in other neurological diseases. We also demonstrated differences in rates of cell death in SH-SY5Y cells depending on tau isoform overexpression. These results demonstrate the importance of examining tau isoforms' role in neurodegeneration and of further examining transposable element dysregulation in tauopathies and its role in activating the innate immune system.
Collapse
Affiliation(s)
- Jennifer Grundman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Brian Spencer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Floyd Sarsoza
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States of America
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States of America
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States of America
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States of America
- * E-mail:
| |
Collapse
|
49
|
Fonseca Cabral G, Schaan AP, Cavalcante GC, Sena-dos-Santos C, de Souza TP, Souza Port’s NM, dos Santos Pinheiro JA, Ribeiro-dos-Santos Â, Vidal AF. Nuclear and Mitochondrial Genome, Epigenome and Gut Microbiome: Emerging Molecular Biomarkers for Parkinson's Disease. Int J Mol Sci 2021; 22:9839. [PMID: 34576000 PMCID: PMC8471599 DOI: 10.3390/ijms22189839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is currently the second most common neurodegenerative disorder, burdening about 10 million elderly individuals worldwide. The multifactorial nature of PD poses a difficult obstacle for understanding the mechanisms involved in its onset and progression. Currently, diagnosis depends on the appearance of clinical signs, some of which are shared among various neurologic disorders, hindering early diagnosis. There are no effective tools to prevent PD onset, detect the disease in early stages or accurately report the risk of disease progression. Hence, there is an increasing demand for biomarkers that may identify disease onset and progression, as treatment-based medicine may not be the best approach for PD. Over the last few decades, the search for molecular markers to predict susceptibility, aid in accurate diagnosis and evaluate the progress of PD have intensified, but strategies aimed to improve individualized patient care have not yet been established. CONCLUSIONS Genomic variation, regulation by epigenomic mechanisms, as well as the influence of the host gut microbiome seem to have a crucial role in the onset and progress of PD, thus are considered potential biomarkers. As such, the human nuclear and mitochondrial genome, epigenome, and the host gut microbiome might be the key elements to the rise of personalized medicine for PD patients.
Collapse
Affiliation(s)
- Gleyce Fonseca Cabral
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ana Paula Schaan
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Giovanna C. Cavalcante
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Camille Sena-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Tatiane Piedade de Souza
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Natacha M. Souza Port’s
- Laboratório de Neurofarmacologia Molecular, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Jhully Azevedo dos Santos Pinheiro
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará–R. dos Mundurucus, Belém 66073-000, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
| | - Amanda F. Vidal
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
- ITVDS—Instituto Tecnológico Vale Desenvolvimento Sustentável–R. Boaventura da Silva, Belém 66055-090, Brazil
| |
Collapse
|
50
|
Playfoot CJ, Duc J, Sheppard S, Dind S, Coudray A, Planet E, Trono D. Transposable elements and their KZFP controllers are drivers of transcriptional innovation in the developing human brain. Genome Res 2021; 31:1531-1545. [PMID: 34400477 PMCID: PMC8415367 DOI: 10.1101/gr.275133.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 07/15/2021] [Indexed: 11/25/2022]
Abstract
Transposable elements (TEs) account for more than 50% of the human genome and many have been co-opted throughout evolution to provide regulatory functions for gene expression networks. Several lines of evidence suggest that these networks are fine-tuned by the largest family of TE controllers, the KRAB-containing zinc finger proteins (KZFPs). One tissue permissive for TE transcriptional activation (termed "transposcription") is the adult human brain, however comprehensive studies on the extent of this process and its potential contribution to human brain development are lacking. To elucidate the spatiotemporal transposcriptome of the developing human brain, we have analyzed two independent RNA-seq data sets encompassing 16 brain regions from eight weeks postconception into adulthood. We reveal a distinct KZFP:TE transcriptional profile defining the late prenatal to early postnatal transition, and the spatiotemporal and cell type-specific activation of TE-derived alternative promoters driving the expression of neurogenesis-associated genes. Long-read sequencing confirmed these TE-driven isoforms as significant contributors to neurogenic transcripts. We also show experimentally that a co-opted antisense L2 element drives temporal protein relocalization away from the endoplasmic reticulum, suggestive of novel TE dependent protein function in primate evolution. This work highlights the widespread dynamic nature of the spatiotemporal KZFP:TE transcriptome and its importance throughout TE mediated genome innovation and neurotypical human brain development. To facilitate interactive exploration of these spatiotemporal gene and TE expression dynamics, we provide the "Brain TExplorer" web application freely accessible for the community.
Collapse
Affiliation(s)
- Christopher J Playfoot
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Shaoline Sheppard
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sagane Dind
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alexandre Coudray
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Evarist Planet
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|