1
|
Bunik V. The Therapeutic Potential of Vitamins B1, B3 and B6 in Charcot-Marie-Tooth Disease with the Compromised Status of Vitamin-Dependent Processes. BIOLOGY 2023; 12:897. [PMID: 37508330 PMCID: PMC10376249 DOI: 10.3390/biology12070897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
Understanding the molecular mechanisms of neurological disorders is necessary for the development of personalized medicine. When the diagnosis considers not only the disease symptoms, but also their molecular basis, treatments tailored to individual patients may be suggested. Vitamin-responsive neurological disorders are induced by deficiencies in vitamin-dependent processes. These deficiencies may occur due to genetic impairments of proteins whose functions are involved with the vitamins. This review considers the enzymes encoded by the DHTKD1, PDK3 and PDXK genes, whose mutations are observed in patients with Charcot-Marie-Tooth (CMT) disease. The enzymes bind or produce the coenzyme forms of vitamins B1 (thiamine diphosphate, ThDP) and B6 (pyridoxal-5'-phosphate, PLP). Alleviation of such disorders through administration of the lacking vitamin or its derivative calls for a better introduction of mechanistic knowledge to medical diagnostics and therapies. Recent data on lower levels of the vitamin B3 derivative, NAD+, in the blood of patients with CMT disease vs. control subjects are also considered in view of the NAD-dependent mechanisms of pathological axonal degeneration, suggesting the therapeutic potential of vitamin B3 in these patients. Thus, improved diagnostics of the underlying causes of CMT disease may allow patients with vitamin-responsive disease forms to benefit from the administration of the vitamins B1, B3, B6, their natural derivatives, or their pharmacological forms.
Collapse
Affiliation(s)
- Victoria Bunik
- Belozersky Institute of Physicochemical Biology, Department of Biokinetics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119048 Moscow, Russia
| |
Collapse
|
2
|
Onaolapo OJ, Odeniyi AO, Onaolapo AY. Parkinson's Disease: Is there a Role for Dietary and Herbal Supplements? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 20:343-365. [PMID: 33602107 DOI: 10.2174/1871527320666210218082954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Parkinson's Disease (PD) is characterised by degeneration of the neurons of the nigrostriatal dopaminergic pathway of the brain. The pharmacological cornerstone of PD management is mainly the use of dopamine precursors, dopamine receptor agonists, and agents that inhibit the biochemical degradation of dopamine. While these drugs initially provide relief to the symptoms and improve the quality of life of the patients, progression of the underlying pathological processes, such as oxidative stress and neuroinflammation (which have been strongly associated with PD and other neurodegenerative disorders), eventually reduce their benefits, making further benefits achievable, only at high doses due to which the magnitude and frequency of side-effects are amplified. Also, while it is becoming obvious that mainstream pharmacological agents may not always provide the much-needed answer, the question remains what succour can nature provide through dietary supplements, nutraceuticals and herbal remedies? This narrative review examines current literature for evidence of the possible roles (if any) of nutraceuticals, dietary supplements and herbal remedies in the prevention or management of PD by examining how these compounds could modulate key factors and pathways that are crucial to the pathogenesis and/or progression of PD. The likely limitations of this approach and its possible future roles in PD prevention and management are also considered.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Ademola O Odeniyi
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Adejoke Y Onaolapo
- Behavioural Neuroscience Unit, Neurobiology Subdivision, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| |
Collapse
|
3
|
Xiong LL, Qin YX, Xiao QX, Jin Y, Al-Hawwas M, Ma Z, Wang YC, Belegu V, Zhou XF, Xue LL, Du RL, Liu J, Bai X, Wang TH. MicroRNA339 Targeting PDXK Improves Motor Dysfunction and Promotes Neurite Growth in the Remote Cortex Subjected to Spinal Cord Transection. Front Cell Dev Biol 2020; 8:577. [PMID: 32793586 PMCID: PMC7386314 DOI: 10.3389/fcell.2020.00577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/15/2020] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a fatal disease that can cause severe disability. Cortical reorganization subserved the recovery of spontaneous function after SCI, although the potential molecular mechanism in this remote control is largely unknown. Therefore, using proteomics analysis, RNA interference/overexpression, and CRISPR/Cas9 in vivo and in vitro, we analyzed how the molecular network functions in neurological improvement, especially in the recovery of motor function after spinal cord transection (SCT) via the remote regulation of cerebral cortex. We discovered that the overexpression of pyridoxal kinase (PDXK) in the motor cortex enhanced neuronal growth and survival and improved locomotor function in the hindlimb. In addition, PDXK was confirmed as a target of miR-339 but not miR-124. MiR-339 knockout (KO) significantly increased the neurite outgrowth and decreased cell apoptosis in cortical neurons. Moreover, miR-339 KO rats exhibited functional recovery indicated by improved Basso, Beattie, and Bresnehan (BBB) score. Furthermore, bioinformatics prediction showed that PDXK was associated with GAP43, a crucial molecule related to neurite growth and functional improvement. The current research therefore confirmed that miR-339 targeting PDXK facilitated neurological recovery in the motor cortex of SCT rats, and the underlying mechanism was associated with regulating GAP43 in the remote cortex of rats subjected to SCT. These findings may uncover a new understanding of remoting cortex control following SCI and provide a new therapeutic strategy for the recovery of SCI in future clinical trials.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neurobiological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiac and Cerebral Diseases, Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.,School of Pharmacy and Medical Sciences, Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Yan-Xia Qin
- Department of Histology and Neurobiology, College of Preclinic and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qiu-Xia Xiao
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiac and Cerebral Diseases, Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yuan Jin
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Mohammed Al-Hawwas
- School of Pharmacy and Medical Sciences, Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Zheng Ma
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - You-Cui Wang
- Institute of Neurobiological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Visar Belegu
- International Center for Spinal Cord Injury, Kennedy Krieger Institute, Baltimore, MD, United States.,Department of Neurology and Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Lu-Lu Xue
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Ruo-Lan Du
- Institute of Neurobiological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Liu
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Xue Bai
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiac and Cerebral Diseases, Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ting-Hua Wang
- Institute of Neurobiological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China.,Department of Histology and Neurobiology, College of Preclinic and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
LaRese TP, Rheaume BA, Abraham R, Eipper BA, Mains RE. Sex-Specific Gene Expression in the Mouse Nucleus Accumbens Before and After Cocaine Exposure. J Endocr Soc 2019; 3:468-487. [PMID: 30746506 PMCID: PMC6364626 DOI: 10.1210/js.2018-00313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/09/2019] [Indexed: 12/18/2022] Open
Abstract
The nucleus accumbens plays a major role in the response of mammals to cocaine. In animal models and human studies, the addictive effects of cocaine and relapse probability have been shown to be greater in females. Sex-specific differential expression of key transcripts at baseline and after prolonged withdrawal could underlie these differences. To distinguish between these possibilities, gene expression was analyzed in four groups of mice (cycling females, ovariectomized females treated with estradiol or placebo, and males) 28 days after they had received seven daily injections of saline or cocaine. As expected, sensitization to the locomotor effects of cocaine was most pronounced in the ovariectomized mice receiving estradiol, was greater in cycling females than in males, and failed to occur in ovariectomized/placebo mice. After the 28-day withdrawal period, RNA prepared from the nucleus accumbens of the individual cocaine- or saline-injected mice was subjected to RNA sequencing analysis. Baseline expression of 3% of the nucleus accumbens transcripts differed in the cycling female mice compared with the male mice. Expression of a similar number of transcripts was altered by ovariectomy or was responsive to estradiol treatment. Nucleus accumbens transcripts differentially expressed in cycling female mice withdrawn from cocaine exhibited substantial overlap with those differentially expressed in cocaine-withdrawn male mice. A small set of transcripts were similarly affected by cocaine in the placebo- or estradiol-treated ovariectomized mice. Sex and hormonal status have profound effects on RNA expression in the nucleus accumbens of naive mice. Prolonged withdrawal from cocaine alters the expression of a much smaller number of common and sex hormone-specific transcripts.
Collapse
Affiliation(s)
- Taylor P LaRese
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Bruce A Rheaume
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Ron Abraham
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
5
|
Luo H, Cao L, Liang X, Du A, Peng T, Li H. Herp Promotes Degradation of Mutant Huntingtin: Involvement of the Proteasome and Molecular Chaperones. Mol Neurobiol 2018; 55:7652-7668. [PMID: 29430620 DOI: 10.1007/s12035-018-0900-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/09/2018] [Indexed: 01/18/2023]
Abstract
In neurodegenerative diseases, pathogenic proteins tend to misfold and form aggregates that are difficult to remove and able to induce excessive endoplasmic reticulum (ER) stress, leading to neuronal injury and apoptosis. Homocysteine-induced endoplasmic reticulum protein (Herp), an E3 ubiquitin ligase, is an important early marker of ER stress and is involved in the ubiquitination and degradation of many neurodegenerative proteins. However, in Huntington's disease (HD), a typical polyglutamine disease, whether Herp is also involved in the metabolism and degradation of the pathogenic protein, mutant huntingtin, has not been reported. Therefore, we studied the relationship between Herp and N-terminal fragments of huntingtin (HttN-20Q and HttN-160Q). We found that Herp was able to bind to the overexpressed Htt N-terminal, and this interaction was enhanced by expansion of the polyQ fragment. Confocal microscopy demonstrated that Herp was co-localized with the HttN-160Q aggregates in the cytoplasm and tightly surrounded the aggregates. Overexpression of Herp significantly decreased the amount of soluble and insoluble HttN-160Q, promoted its ubiquitination, and inhibited its cytotoxicity. In contrast, knockdown of Herp resulted in more HttN-160Q protein, less ubiquitination, and stronger cytotoxicity. Inhibition of the autophagy-lysosomal pathway (ALP) had no effect on the function of Herp. However, blocking the ubiquitin-proteasome pathway (UPP) inhibited the reduction in soluble HttN-160Q caused by Herp. Interestingly, blocking the UPP did not weaken the ability of Herp to reduce HttN-160Q aggregates. Deletions of the N-terminal of Herp weakened its ability to inhibit HttN-160Q aggregation but did not result in a significant increase in its soluble form. However, loss of the C-terminal led to a significant increase in soluble HttN-160Q, but Herp still maintained the ability to inhibit aggregate formation. We further found that the expression level of Herp was significantly increased in HD animal and cell models. Our findings suggest that Herp is a newly identified huntingtin-interacting protein that is able to reduce the cytotoxicity of mutant huntingtin by inhibiting its aggregation and promoting its degradation. The N-terminal of Herp serves as the molecular chaperone to inhibit protein aggregation, while its C-terminal functions as an E3 ubiquitin ligase to promote the degradation of misfolded proteins through the UPP. Increased expression of Herp in HD models may be a pro-survival mechanism under stress.
Collapse
Affiliation(s)
- Huanhuan Luo
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Histology and Embryology, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Liying Cao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xuan Liang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ana Du
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ting Peng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China. .,Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - He Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China. .,Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China. .,Department of Histology and Embryology, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
| |
Collapse
|