1
|
Naeimi N, Mohseni Kouchesfehani H, Heidari Z, Mahmoudzadeh-Sagheb H. Effect of smoking on methylation and semen parameters. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:76-83. [PMID: 38299759 DOI: 10.1002/em.22583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
One type of epigenetic modification is genomic DNA methylation, which is induced by smoking, and both are associated with male infertility. In this study, the relationship between smoking and CHD5 gene methylation and semen parameters in infertile men was determined. After the MS-PCR of blood in 224 samples, 103 infertile patients (62 smokers and 41 non-smokers) and 121 fertile men, methylation level changes between groups and the effect of methylation and smoking on infertility and semen parameters in infertile men were determined. The results showed that there is a significant difference in the methylation status (MM, MU, UU) of the CHD5 gene between the patient and the control group, and this correlation also exists for the semen parameters (p < .001). The average semen parameters in smokers decreased significantly compared to non-smokers and sperm concentration was (32.21 ± 5.27 vs. 55.27 ± 3.38), respectively. MM methylation status was higher in smokers (22.5%) compared to non-smokers (14.6%). Smoking components affect the methylation pattern of CHD5 gene, and smokers had higher methylation levels and lower semen parameters than non-smokers, which can be biomarkers for evaluating semen quality and infertility risk factors. Understanding the epigenetic effects of smoking on male infertility can be very useful for predicting negative consequences of smoking and providing therapeutic solutions.
Collapse
Affiliation(s)
- Nasim Naeimi
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | | | - Zahra Heidari
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
2
|
Maity AK, Stone TC, Ward V, Webster AP, Yang Z, Hogan A, McBain H, Duku M, Ho KMA, Wolfson P, Graham DG, Beck S, Teschendorff AE, Lovat LB. Novel epigenetic network biomarkers for early detection of esophageal cancer. Clin Epigenetics 2022; 14:23. [PMID: 35164838 PMCID: PMC8845366 DOI: 10.1186/s13148-022-01243-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Early detection of esophageal cancer is critical to improve survival. Whilst studies have identified biomarkers, their interpretation and validity is often confounded by cell-type heterogeneity. RESULTS Here we applied systems-epigenomic and cell-type deconvolution algorithms to a discovery set encompassing RNA-Seq and DNA methylation data from esophageal adenocarcinoma (EAC) patients and matched normal-adjacent tissue, in order to identify robust biomarkers, free from the confounding effect posed by cell-type heterogeneity. We identify 12 gene-modules that are epigenetically deregulated in EAC, and are able to validate all 12 modules in 4 independent EAC cohorts. We demonstrate that the epigenetic deregulation is present in the epithelial compartment of EAC-tissue. Using single-cell RNA-Seq data we show that one of these modules, a proto-cadherin module centered around CTNND2, is inactivated in Barrett's Esophagus, a precursor lesion to EAC. By measuring DNA methylation in saliva from EAC cases and controls, we identify a chemokine module centered around CCL20, whose methylation patterns in saliva correlate with EAC status. CONCLUSIONS Given our observations that a CCL20 chemokine network is overactivated in EAC tissue and saliva from EAC patients, and that in independent studies CCL20 has been found to be overactivated in EAC tissue infected with the bacterium F. nucleatum, a bacterium that normally inhabits the oral cavity, our results highlight the possibility of using DNAm measurements in saliva as a proxy for changes occurring in the esophageal epithelium. Both the CTNND2/CCL20 modules represent novel promising network biomarkers for EAC that merit further investigation.
Collapse
Affiliation(s)
- Alok K Maity
- CAS Key Lab of Computational Biology, Shanghai Institute for Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Timothy C Stone
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Vanessa Ward
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Amy P Webster
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Zhen Yang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Aine Hogan
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Hazel McBain
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Margaraet Duku
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Kai Man Alexander Ho
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Paul Wolfson
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - David G Graham
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK.,Division of GI Services, University College London Hospitals NHS Foundation Trust, 235 Euston Road, London, NW1 2BU, UK
| | | | - Stephan Beck
- UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Andrew E Teschendorff
- CAS Key Lab of Computational Biology, Shanghai Institute for Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| | - Laurence B Lovat
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK. .,Division of GI Services, University College London Hospitals NHS Foundation Trust, 235 Euston Road, London, NW1 2BU, UK.
| |
Collapse
|
3
|
Schmidt M, Hackett RJ, Baker AM, McDonald SAC, Quante M, Graham TA. Evolutionary dynamics in Barrett oesophagus: implications for surveillance, risk stratification and therapy. Nat Rev Gastroenterol Hepatol 2022; 19:95-111. [PMID: 34728819 DOI: 10.1038/s41575-021-00531-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Cancer development is a dynamic evolutionary process characterized by marked intratumoural heterogeneity at the genetic, epigenetic and phenotypic levels. Barrett oesophagus, the pre-malignant condition to oesophageal adenocarcinoma (EAC), is an exemplary system to longitudinally study the evolution of malignancy. Evidence has emerged of Barrett oesophagus lesions pre-programmed for progression to EAC many years before clinical detection, indicating a considerable window for therapeutic intervention. In this Review, we explore the mechanisms underlying clonal expansion and contraction that establish the Barrett oesophagus clonal mosaicism over time and space and discuss intrinsic genotypic and extrinsic environmental drivers that direct the evolutionary trajectory of Barrett oesophagus towards a malignant phenotype. We propose that understanding and exploiting the evolutionary dynamics of Barrett oesophagus will identify novel therapeutic targets, improve prognostic tools and offer the opportunity for personalized surveillance programmes geared to prevent progression to EAC.
Collapse
Affiliation(s)
- Melissa Schmidt
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), München, Germany
| | - Richard J Hackett
- Clonal Dynamics in Epithelia Group; Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ann-Marie Baker
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stuart A C McDonald
- Clonal Dynamics in Epithelia Group; Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael Quante
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), München, Germany
- Department of Medicine II, Universitaetsklinikum Freiburg, Freiburg, Germany
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
4
|
Peng W, Tu G, Zhao Z, He B, Cai Q, Zhang P, Peng X, Shi S, Wang X. DNA methylome and transcriptome analysis established a model of four differentially methylated positions (DMPs) as a diagnostic marker in esophageal adenocarcinoma early detection. PeerJ 2021; 9:e11355. [PMID: 34012728 PMCID: PMC8109010 DOI: 10.7717/peerj.11355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
Background Esophageal carcinogenesis involves in alterations of DNA methylation and gene transcription. This study profiled genomic DNA methylome vs. gene expression using transcriptome data on esophageal adenocarcinoma (EAC) tissues from the online databases in order to identify methylation biomarkers in EAC early diagnosis. Materials and Methods The DNA methylome and transcriptome data were downloaded from the UCSC Xena, Gene Expression Omnibus (GEO), and The Cancer Genome Atlas (TCGA) databases and then bioinformatically analyzed for the differentially methylated positions (DMPs) vs. gene expression between EAC and normal tissues. The highly methylated DMPs vs. reduced gene expression in EAC were selected and then stratified with those of the corresponding normal blood samples and other common human cancers to construct an EAC-specific diagnostic model. The usefulness of this model was further verified in other three GEO datasets of EAC tissues. Result A total of 841 DMPs were associated with expression of 320 genes, some of which were aberrantly methylated in EAC tissues. Further analysis showed that four (cg07589773, cg10474350, cg13011388 and cg15208375 mapped to gene IKZF1, HOXA7, EFS and TSHZ3, respectively) of these 841 DMPs could form and establish a diagnostic model after stratified them with the corresponding normal blood samples and other common human cancers. The data were further validated in other three GEO datasets on EAC tissues in early EAC diagnosis. Conclusion This study revealed a diagnostic model of four genes methylation to diagnose EAC early. Further study will confirm the usefulness of this model in a prospective EAC cases.
Collapse
Affiliation(s)
- Weilin Peng
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Guangxu Tu
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Zhenyu Zhao
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Boxue He
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Qidong Cai
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Pengfei Zhang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Xiong Peng
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Shuai Shi
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Grady WM, Yu M, Markowitz SD. Epigenetic Alterations in the Gastrointestinal Tract: Current and Emerging Use for Biomarkers of Cancer. Gastroenterology 2021; 160:690-709. [PMID: 33279516 PMCID: PMC7878343 DOI: 10.1053/j.gastro.2020.09.058] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer, liver cancer, stomach cancer, pancreatic cancer, and esophageal cancer are leading causes of cancer-related deaths worldwide. A fundamental trait of virtually all gastrointestinal cancers is genomic and epigenomic DNA alterations. Cancer cells acquire genetic and epigenetic alterations that drive the initiation and progression of the cancers by altering the molecular and cell biological processes of the cells. These alterations, as well as other host and microenvironment factors, ultimately mediate the clinical behavior of the precancers and cancers and can be used as biomarkers for cancer risk determination, early detection of cancer and precancer, determination of the prognosis of cancer and prediction of the response to therapy. Epigenetic alterations have emerged as one of most robust classes of biomarkers and are the basis for a growing number of clinical tests for cancer screening and surveillance.
Collapse
Affiliation(s)
- William M. Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA,Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ming Yu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | | |
Collapse
|
6
|
Grady WM, Yu M, Markowitz SD, Chak A. Barrett's Esophagus and Esophageal Adenocarcinoma Biomarkers. Cancer Epidemiol Biomarkers Prev 2020; 29:2486-2494. [PMID: 33093162 DOI: 10.1158/1055-9965.epi-20-0223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/31/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Esophageal adenocarcinoma is a major cause of cancer-related morbidity and mortality in Western countries. The incidences of esophageal adenocarcinoma and its precursor Barrett's esophagus have increased substantially in the last four decades. Current care guidelines recommend that endoscopy be used for the early detection and monitoring of patients with Barrett's esophagus; however, the efficacy of this approach is unclear. To prevent the increasing morbidity and mortality from esophageal adenocarcinoma, there is a tremendous need for early detection and surveillance biomarker assays that are accurate, low-cost, and clinically feasible to implement. The last decade has seen remarkable advances in the development of minimally invasive molecular biomarkers, an effort led in large part by the Early Detection Research Network (EDRN). Advances in multi-omics analysis, the development of swallowable cytology collection devices, and emerging technology have led to promising assays that are likely to be implemented into clinical care in the next decade. In this review, an updated overview of the molecular pathology of Barrett's esophagus and esophageal adenocarcinoma and emerging molecular biomarker assays, as well as the role of EDRN in biomarker discovery and validation, will be discussed.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- William M Grady
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington. .,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ming Yu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sanford D Markowitz
- Oncology Division, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Amitabh Chak
- Gastroenterology Division, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
7
|
Hu C, Chen X, Yao C, Liu Y, Xu H, Zhou G, Xia H, Xia J. Body mass index-associated molecular characteristics involved in tumor immune and metabolic pathways. Cancer Metab 2020; 8:21. [PMID: 32999719 PMCID: PMC7517824 DOI: 10.1186/s40170-020-00225-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background Overweight or obesity has been evidenced as an important risk factor involved in the incidence, mortality, and therapy response of multiple malignancies. However, the differences between healthy and obesity tumor patients at the molecular and multi-omics levels remain unclear. Methods Our study performed a comprehensive and multidimensional analysis in fourteen tumor types of The Cancer Genome Atlas (TCGA) and found body mass index (BMI)-related genes in multiple tumor types. Furthermore, we compared composite expression between normal, overweight, and obese patients of each immune cell subpopulation and metabolism gene subset. Statistical significance was calculated via the Kruskal-Wallis rank-sum test. Results Our analysis revealed that BMI-related genes are enriched in multiple tumor-related biological pathways involved in intracellular signaling, immune response, and metabolism. We also found the different relationships between BMI and different immune cell infiltration and metabolic pathway activity. Importantly, we found that many clinically actionable genes were BMI-affect genes. Conclusion Overall, our data indicated that BMI-associated molecular characteristics involved in tumor immune and metabolic pathways, which may highlight the clinical importance of considering BMI-associated molecular signatures in cancer precision medicine.
Collapse
Affiliation(s)
- Chao Hu
- Department of Pathology in the School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China
| | - Xiong Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chengyun Yao
- Department of Pathology in the School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.,The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Yu Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Haojun Xu
- Department of Pathology in the School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China
| | - Guoren Zhou
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Hongping Xia
- Department of Pathology in the School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.,The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China.,Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Jinglin Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
8
|
Zhu J, Ling Y, Mi S, Chen H, Fan J, Cai S, Fan C, Shen Q, Li Y. Association between dietary inflammatory index and upper aerodigestive tract cancer risk: A systematic review and dose-response meta-analysis. Oral Oncol 2020; 103:104587. [PMID: 32050153 DOI: 10.1016/j.oraloncology.2020.104587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The relationship between dietary inflammatory index (DII) and upper aerodigestive tract (UADT) cancer risk have been investigated in a growing number of epidemiological studies. However, their findings were inconsistent, and no systematic review or meta-analysis has been conducted up to now. This meta-analysis was carried out to examine potential dose-response relationship between DII score and UADT cancer risk. MATERIAL AND METHODS A systematic search was conducted for relevant studies in PubMed and Web of Science up to March 28, 2019. Categorical meta-analysis as well as linear and non-linear dose-response meta-analysis were performed to evaluate association between DII and UADT cancer risk. RESULTS Nine case-control studies with a total of 4138 cases and 15,326 healthy controls were eligible in the present meta-analysis. The pooled odds ratios (ORs) of UADT cancer risk were 2.07 [95% confidence interval (CI): 1.82, 2.35] for the highest DII score compared with the lowest and 1.53 (95% CI: 1.39, 1.69) for higher DII score compared with lower score, respectively. Furthermore, a one-unit increment in DII score was associated with an increased risk of 18% for UADT cancers (OR: 1.18; 95% CI: 1.15, 1.21). An upward trend towards a positive association between elevated DII score and UADT cancer risk was also observed in non-linear dose-response meta-analysis. CONCLUSIONS The present meta-analysis provides evidence of highly pro-inflammatory diets that might increase risk of UADT cancers. Therefore, reducing pro-inflammatory components in diets should be considered to prevent and control UADT cancers.
Collapse
Affiliation(s)
- Jiahao Zhu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuxiao Ling
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shuai Mi
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hanzhu Chen
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiayao Fan
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shaofang Cai
- Department of Science and Education, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Chunhong Fan
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qing Shen
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yingjun Li
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Specific DNA methylation markers in the diagnosis and prognosis of esophageal cancer. Aging (Albany NY) 2019; 11:11640-11658. [PMID: 31834866 PMCID: PMC6932928 DOI: 10.18632/aging.102569] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/23/2019] [Indexed: 12/14/2022]
Abstract
The early diagnosis and accurate prognosis prediction of esophageal cancer is an essential part of improving survival. However, these diseases lack effective and specific markers. A total of 1,744 samples of HumanMethylation450 data were integrated to identify and validate specific methylation markers for esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC) as well as for Barrett's esophagus (BE) using The Cancer Genome Atlas and the Gene Expression Omnibus. The diagnostic and prognostic methylation classifiers were constructed by moderated t-statistics and the least absolute shrinkage and selection operator method. The diagnostic methylation classifier using 12 CpG sites was constructed in training set (377 samples) that could effectively discriminate samples of BE, EAC, and ESCC from normal tissue (AUC = 0.992), which achieved highly predictive ability in both internal (187 samples, AUC = 0.990) and external validation (184 samples, AUC = 0.978). The prognostic methylation classifier with 3 CpG and 2 CpG sites for EAC and ESCC respectively, could accurately estimate the prognosis of an individual patient and improved the predictive ability of the tumor node metastasis staging system. Overall, our study systematically analyzed large-scale methylation data and provided promising markers for the diagnosis and prognosis of esophageal cancer.
Collapse
|
10
|
Wu X, Huang Q, Javed R, Zhong J, Gao H, Liang H. Effect of tobacco smoking on the epigenetic age of human respiratory organs. Clin Epigenetics 2019; 11:183. [PMID: 31801625 PMCID: PMC6894291 DOI: 10.1186/s13148-019-0777-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Smoking leads to the aging of organs. However, no studies have been conducted to quantify the effect of smoking on the aging of respiratory organs and the aging-reversing ability of smoking cessation. RESULTS We collected genome-wide methylation datasets of buccal cells, airway cells, esophagus tissue, and lung tissue from non-smokers, smokers, and ex-smokers. We used the "epigenetic clock" method to quantify the epigenetic age acceleration in the four organs. The statistical analyses showed the following: (1) Smoking increased the epigenetic age of airway cells by an average of 4.9 years and lung tissue by 4.3 years. (2) After smoking ceased, the epigenetic age acceleration in airway cells (but not in lung tissue) slowed to a level that non-smokers had. (3) The epigenetic age acceleration in airway cells and lung tissue showed no gender difference. CONCLUSIONS Smoking can accelerate the epigenetic age of human respiratory organs, but the effect varies among organs and can be reversed by smoking cessation. Our study provides a powerful incentive to reduce tobacco consumption autonomously.
Collapse
Affiliation(s)
- Xiaohui Wu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.,Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong, China
| | - Qingsheng Huang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Ruheena Javed
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Jiayong Zhong
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huan Gao
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huiying Liang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
11
|
Caspa Gokulan R, Garcia-Buitrago MT, Zaika AI. From genetics to signaling pathways: molecular pathogenesis of esophageal adenocarcinoma. Biochim Biophys Acta Rev Cancer 2019; 1872:37-48. [PMID: 31152823 PMCID: PMC6692203 DOI: 10.1016/j.bbcan.2019.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Esophageal adenocarcinoma (EAC) has one of the fastest rising incidence rates in the U.S. and many other Western countries. One of the unique risk factors for EAC is gastroesophageal reflux disease (GERD), a chronic digestive condition in which acidic contents from the stomach, frequently mixed with duodenal bile, enter the esophagus resulting in esophageal tissue injury. At the cellular level, progression to EAC is underlined by continuous DNA damage caused by reflux and chronic inflammatory factors that increase the mutation rate and promote genomic instability. Despite recent successes in cancer diagnostics and treatment, EAC remains a poorly treatable disease. Recent research has shed new light on molecular alterations underlying progression to EAC and revealed novel treatment options. This review focuses on the genetic and molecular studies of EAC. The molecular changes that occur during the transformation of normal Barrett's esophagus to esophageal adenocarcinoma are also discussed.
Collapse
Affiliation(s)
| | | | - Alexander I Zaika
- Department of Surgery, University of Miami, Miami, FL, United States of America; Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, United States of America.
| |
Collapse
|
12
|
UGT2B17 and miR-224 contribute to hormone dependency trends in adenocarcinoma and squamous cell carcinoma of esophagus. Biosci Rep 2019; 39:BSR20190472. [PMID: 31164411 PMCID: PMC6609598 DOI: 10.1042/bsr20190472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EA) are the two main subtypes of esophageal cancer. Genetics underpinnings of EA are substantially less understood than that of ESCC. A large-scale relation data analysis was conducted to explore the genes implicated with either EA or ESCC, or both. Each gene linked to ESCC but not EA was further explored in mega-analysis of six independently collected EA RNA expression datasets. A multiple linear regression (MLR) model was built to study the possible influence of sample size, population region, and study date on the gene expression data in EA. Finally, a functional pathway analysis was conducted to identify the possible linkage between EA and the genes identified as novel significant contributors. We have identified 276 genes associated with EA, 1088 with ESCC, with a significant (P<5.14e-143) overlap between these two gene groups (n=157). Mega-analysis showed that two ESCC-related genes, UGT2B17 and MIR224, were significantly associated with EA (P-value <1e-10), with multiple connecting pathways revealed by functional analysis. ESCC and EA share some common pathophysiological pathways. Further study of UGT2B17 and MIR224, which are differentially dysregulated in ESCC and EA tumors, is warranted. Enhanced expression of UGT2B17 and the lack of miR-224 signaling may contribute to the responsiveness of EA to the male sex steroids.
Collapse
|
13
|
Wu PC, Chen YH, Wu FZ, Lin KH, Hsu CL, Chen CS, Chen YH, Lin PH, Mar GY, Yu HC. Risk factors for Barrett's esophagus in young adults who underwent upper gastrointestinal endoscopy in a health examination center. Therap Adv Gastroenterol 2019; 12:1756284819853115. [PMID: 31210784 PMCID: PMC6547171 DOI: 10.1177/1756284819853115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/03/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Barrett's esophagus (BE) is a premalignant condition with increased incidence worldwide both in old and young individuals. However, the role of certain potential risk factors remains unclear in young adults (< 50 years). We aimed to determine the risk factors of BE in young adults. METHODS A total of 4943 young adults who underwent upper gastrointestinal endoscopy at our health check-up center were enrolled. The diagnosis of BE was based on histological confirmation. We analyzed demographic factors, laboratory data, potential risk factors such as smoking, alcohol consumption, presence of gastroesophageal reflux disease (GERD) symptoms, and metabolic syndrome for the risk of BE by using binary logistic regression analysis. RESULTS The prevalence of BE was 1.8% (88/4943). Male sex, the presence of GERD symptoms, and smoking were three significant risk factors related to BE. Furthermore, participants who had smoked for 10 pack-years or more had increased risk of BE with dose-dependent phenomenon (p trend < 0.001). The proportion of BE in male participants with both GERD symptoms and a smoking history of 10 pack-years or more was as high as 10.3% (16/155). CONCLUSIONS Significant risk factors of BE in young adults are male sex, the presence of GERD symptoms, and smoking. The risk also increases with an increase in cumulative exposure to smoking.
Collapse
Affiliation(s)
- Pin-Chieh Wu
- Health Management Center, Kaohsiung Veterans
General Hospital, Kaohsiung, Taiwan, Republic of China
- Department of Nursing, Meiho University,
Pingtung, Taiwan, Republic of China
| | - Yan-Hua Chen
- Health Management Center, Kaohsiung Veterans
General Hospital, Kaohsiung, Taiwan, Republic of China
- Department of Nursing, Meiho University,
Pingtung, Taiwan, Republic of China
- Department of Internal Medicine, Kaohsiung
Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Fu-Zong Wu
- Department of Radiology, Kaohsiung Veterans
General Hospital, Kaohsiung, Taiwan, Republic of China
- School of Medicine, National Yang Ming
University, Taipei, Taiwan, Republic of China
- Institute of Clinical Medicine, National Yang
Ming University, Taipei, Taiwan, Republic of China
| | - Kung-Hung Lin
- Health Management Center, Kaohsiung Veterans
General Hospital, Kaohsiung, Taiwan, Republic of China
- Department of Nursing, Meiho University,
Pingtung, Taiwan, Republic of China Department of Internal Medicine,
Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of
China
| | - Chiao-Lin Hsu
- Health Management Center, Kaohsiung Veterans
General Hospital, Kaohsiung, Taiwan, Republic of China
- Department of Nursing, Meiho University,
Pingtung, Taiwan, Republic of China
| | - Chi-Shen Chen
- Health Management Center, Kaohsiung Veterans
General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Yu-Hsun Chen
- Health Management Center, Kaohsiung Veterans
General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Po-Hsiang Lin
- Department of Emergency Medicine, Kaohsiung
Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Guang-Yuan Mar
- Health Management Center, Kaohsiung Veterans
General Hospital, Kaohsiung, Taiwan, Republic of China
- Department of Nursing, Meiho University,
Pingtung, Taiwan, Republic of China
- Department of Internal Medicine, Kaohsiung
Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Hsien-Chung Yu
- Division of Gastroenterology and Hepatology,
Department of Internal Medicine, Kaohsiung Veterans General Hospital, 386,
Ta-Chung 1st Road, Kaohsiung 813, Taiwan, Republic of China
| |
Collapse
|
14
|
Gonsalves N, Berdnikovs S, Schroeder H, Zalewski A, Bryce PJ. Gender-specific differences in the molecular signatures of adult Eosinophilic Oesophagitis. Clin Exp Allergy 2019; 47:969-971. [PMID: 28580626 DOI: 10.1111/cea.12960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- N Gonsalves
- Division of Gastroenterology and Hepatology, Northwestern University, Chicago, IL, USA
| | - S Berdnikovs
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - H Schroeder
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - A Zalewski
- Division of Gastroenterology and Hepatology, Northwestern University, Chicago, IL, USA
| | - P J Bryce
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
15
|
Fragou D, Pakkidi E, Aschner M, Samanidou V, Kovatsi L. Smoking and DNA methylation: Correlation of methylation with smoking behavior and association with diseases and fetus development following prenatal exposure. Food Chem Toxicol 2019; 129:312-327. [PMID: 31063835 DOI: 10.1016/j.fct.2019.04.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
Among epigenetic mechanisms, DNA methylation has been widely studied with respect to many environmental factors. Smoking is a common factor which affects both global and gene-specific DNA methylation. It is supported that smoking directly affects DNA methylation, and these effects contribute to the development and progression of various diseases, such as cancer, lung and cardiovascular diseases and male infertility. In addition, prenatal smoking influences the normal development of the fetus via DNA methylation changes. The DNA methylation profile and its smoking-induced alterations helps to distinguish current from former smokers and non-smokers and can be used to predict the risk for the development of a disease. This review summarizes the DNA methylation changes induced by smoking, their correlation with smoking behavior and their association with various diseases and fetus development.
Collapse
Affiliation(s)
- Domniki Fragou
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Eleni Pakkidi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Greece
| | - Michael Aschner
- Departments of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Greece
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
16
|
Wang Z, Kambhampati Thiruvengadam S, Cheng Y, Ma K, Simsek C, Tieu AH, Abraham JM, Liu X, Prasath V, Duncan M, Stark A, Trick A, Tsai HL, Wang H, He Y, Khashab MA, Ngamruengphong S, Shin EJ, Wang TH, Meltzer SJ. Methylation Biomarker Panel Performance in EsophaCap Cytology Samples for Diagnosing Barrett's Esophagus: A Prospective Validation Study. Clin Cancer Res 2019; 25:2127-2135. [PMID: 30670490 PMCID: PMC6594757 DOI: 10.1158/1078-0432.ccr-18-3696] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/28/2018] [Accepted: 01/17/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Barrett's esophagus is the only known precursor of esophageal adenocarcinoma (EAC). Although endoscopy and biopsy are standard methods for Barrett's esophagus diagnosis, their high cost and risk limit their use as a screening modality. Here, we sought to develop a Barrett's esophagus detection method based on methylation status in cytology samples captured by EsophaCap using a streamlined sensitive technique, methylation on beads (MOB). EXPERIMENTAL DESIGN We conducted a prospective cohort study on 80 patients (52 in the training set; 28 in the test set). We used MOB to extract and bisulfite-convert DNA, followed by quantitative methylation-specific PCR to assess methylation levels of 8 previously selected candidate markers. Lasso regression was applied to establish a prediction model in the training set, which was then tested on the independent test set. RESULTS In the training set, five of eight candidate methylation biomarkers (p16, HPP1, NELL1, TAC1, and AKAP12) were significantly higher in Barrett's esophagus patients than in controls. We built a four-biomarker-plus-age lasso regression model for Barrett's esophagus diagnosis. The AUC was 0.894, with sensitivity 94.4% [95% confidence interval (CI), 71%-99%] and specificity 62.2% (95% CI, 44.6%-77.3%) in the training set. This model also performed with high accuracy for Barrett's esophagus diagnosis in an independent test set: AUC = 0.929 (P < 0.001; 95% CI, 0.810%-1%), with sensitivity=78.6% (95% CI, 48.8%-94.3%) and specificity = 92.8% (95% CI, 64.1%-99.6%). CONCLUSIONS EsophaCap, in combination with an epigenetic biomarker panel and the MOB method, is a promising, well-tolerated, low-cost esophageal sampling strategy for Barrett's esophagus diagnosis. This approach merits further prospective studies in larger populations.
Collapse
Affiliation(s)
- Zhixiong Wang
- Gastrointestinal Surgical Center, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Center of Gastric Cancer, Sun Yat-Sen University, Guangzhou, China
| | - Swetha Kambhampati Thiruvengadam
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, UCSF Medical Center, San Francisco, California
- Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | - Yulan Cheng
- Division of Gastroenterology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ke Ma
- Division of Gastroenterology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cem Simsek
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alan H Tieu
- Division of Gastroenterology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John M Abraham
- Division of Gastroenterology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xi Liu
- Department of Pathology, the First Affiliated Hospital of Xi' an Jiaotong University, Xi' an, Shaanxi, China
| | - Vishnu Prasath
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Mark Duncan
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Alejandro Stark
- Departments of Mechanical Engineering and Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Alexander Trick
- Departments of Mechanical Engineering and Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Hua-Ling Tsai
- Division of Biostatistics, Department of Oncology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hao Wang
- Division of Biostatistics, Department of Oncology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yulong He
- Gastrointestinal Surgical Center, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Center of Gastric Cancer, Sun Yat-Sen University, Guangzhou, China
- Gastrointestinal Surgical Center, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Mouen A Khashab
- Division of Gastroenterology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Saowanee Ngamruengphong
- Division of Gastroenterology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eun J Shin
- Division of Gastroenterology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tza-Huei Wang
- Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | - Stephen J Meltzer
- Division of Gastroenterology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
17
|
Dilworth MP, Nieto T, Stockton JD, Whalley CM, Tee L, James JD, Noble F, Underwood TJ, Hallissey MT, Hejmadi R, Trudgill N, Tucker O, Beggs AD. Whole Genome Methylation Analysis of Nondysplastic Barrett Esophagus that Progresses to Invasive Cancer. Ann Surg 2019; 269:479-485. [PMID: 29384778 PMCID: PMC6369874 DOI: 10.1097/sla.0000000000002658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate differences in methylation between patients with nondysplastic Barrett esophagus who progress to invasive adenocarcinoma and those who do not. BACKGROUND Identifying patients with nondysplastic Barrett esophagus who progress to invasive adenocarcinoma remains a challenge. Previous studies have demonstrated the potential utility of epigenetic markers for identifying this group. METHODS A whole genome methylation interrogation using the Illumina HumanMethylation 450 array of patients with nondysplastic Barrett esophagus who either develop adenocarcinoma or remain static, with validation of findings by bisulfite pyrosequencing. RESULTS In all, 12 patients with "progressive" versus 12 with "nonprogressive" nondysplastic Barrett esophagus were analyzed via methylation array. Forty-four methylation markers were identified that may be able to discriminate between nondysplastic Barrett esophagus that either progress to adenocarcinoma or remain static. Hypomethylation of the recently identified tumor suppressor OR3A4 (probe cg09890332) validated in a separate cohort of samples (median methylation in progressors 67.8% vs 96.7% in nonprogressors; P = 0.0001, z = 3.85, Wilcoxon rank-sum test) and was associated with the progression to adenocarcinoma. There were no differences in copy number between the 2 groups, but a global trend towards hypomethylation in the progressor group was observed. CONCLUSION Hypomethylation of OR3A4 has the ability to risk stratify the patient with nondysplastic Barrett esophagus and may form the basis of a future surveillance program.
Collapse
Affiliation(s)
- Mark P. Dilworth
- Institute of Cancer and Genomic Science, University of Birmingham, UK
| | - Tom Nieto
- Institute of Cancer and Genomic Science, University of Birmingham, UK
| | - Jo D. Stockton
- Institute of Cancer and Genomic Science, University of Birmingham, UK
| | - Celina M. Whalley
- Institute of Cancer and Genomic Science, University of Birmingham, UK
| | - Louise Tee
- Institute of Cancer and Genomic Science, University of Birmingham, UK
| | - Jonathan D. James
- Institute of Cancer and Genomic Science, University of Birmingham, UK
| | - Fergus Noble
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tim J. Underwood
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Rahul Hejmadi
- Institute of Cancer and Genomic Science, University of Birmingham, UK
| | | | | | - Andrew D. Beggs
- Institute of Cancer and Genomic Science, University of Birmingham, UK
- Queen Elizabeth Hospital, Birmingham, UK
| |
Collapse
|
18
|
Talukdar FR, di Pietro M, Secrier M, Moehler M, Goepfert K, Lima SSC, Pinto LFR, Hendricks D, Parker MI, Herceg Z. Molecular landscape of esophageal cancer: implications for early detection and personalized therapy. Ann N Y Acad Sci 2018; 1434:342-359. [PMID: 29917250 DOI: 10.1111/nyas.13876] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
Esophageal cancer (EC) is one of the most lethal cancers and a public health concern worldwide, owing to late diagnosis and lack of efficient treatment. Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are main histopathological subtypes of EC that show striking differences in geographical distribution, possibly due to differences in exposure to risk factors and lifestyles. ESCC and EAC are distinct diseases in terms of cell of origin, epidemiology, and molecular architecture of tumor cells. Past efforts aimed at translating potential molecular candidates into clinical practice proved to be challenging, underscoring the need for identifying novel candidates for early diagnosis and therapy of EC. Several major international efforts have brought about important advances in identifying molecular landscapes of ESCC and EAC toward understanding molecular mechanisms and critical molecular events driving the progression and pathological features of the disease. In our review, we summarize recent advances in the areas of genomics and epigenomics of ESCC and EAC, their mutational signatures and immunotherapy. We also discuss implications of recent advances in characterizing the genome and epigenome of EC for the discovery of diagnostic/prognostic biomarkers and development of new targets for personalized treatment and prevention.
Collapse
Affiliation(s)
- Fazlur Rahman Talukdar
- Section of Mechanisms of Carcinogenesis, International Agency for Research on Cancer (WHO), Lyon, France
| | | | - Maria Secrier
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Markus Moehler
- First Department of Internal Medicine, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Katrin Goepfert
- First Department of Internal Medicine, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | | | | | - Denver Hendricks
- Division of Medical Biochemistry & Structural Biology, University of Cape Town, Cape Town, South Africa
| | - Mohamed Iqbal Parker
- Division of Medical Biochemistry & Structural Biology, University of Cape Town, Cape Town, South Africa
| | - Zdenko Herceg
- Section of Mechanisms of Carcinogenesis, International Agency for Research on Cancer (WHO), Lyon, France
| |
Collapse
|
19
|
Abstract
CDKN2A is a tumor suppressor gene and is frequently inactivated in human cancers by hypermethylation of its promoter. However, the role and diagnostic value of CDKN2A methylation in esophageal cancer (EC) remains controversial. Therefore, we performed a meta-analysis, including data from 42 articles (2656 ECs, 612 precancerous lesions, and 2367 controls). A significant increase in the frequency of CDKN2A methylation was identified during EC carcinogenesis: cancer vs. controls, odds ratio (OR) = 12.60 (95 % CI, 8.90–17.85); cancer vs. precancerous lesions, OR = 2.89 (95% CI, 2.20–3.79); and precancerous lesions vs. controls, OR = 7.38, 95% (CI, 4.31–12.66). CDKN2A promoter methylation was associated with EC tumor grade (OR = 1.79; 95% CI, 1.20–2.67) and clinical stage (OR = 2.56; 95% CI, 1.33–4.92). Additionally, the sensitivity, specificity, and area under the summary receiver operating characteristic curve (AUC) for diagnosis of EC based on CDKN2A methylation were 0.52 (95% CI, 0.44–0.59), 0.96 (95% CI, 0.93–0.98), and 0.83 (95% CI, 0.79–0.86), respectively. AUCs for blood and tissue sample subgroups were 0.90 and 0.82, respectively. Our findings indicate that CDKN2A methylation has a vital role in EC tumorigenesis and could be a biomarker for early diagnosis of EC.
Collapse
|
20
|
Coleman HG, Xie SH, Lagergren J. The Epidemiology of Esophageal Adenocarcinoma. Gastroenterology 2018; 154:390-405. [PMID: 28780073 DOI: 10.1053/j.gastro.2017.07.046] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022]
Abstract
The incidence of esophageal adenocarcinoma (EAC) has increased in many Western countries and is higher in men than women. Some risk factors for EAC have been identified-mainly gastroesophageal reflux disease, Barrett's esophagus, obesity, and tobacco smoking. It is not clear whether interventions to address these factors can reduce risk of EAC, although some evidence exists for smoking cessation. Although consumption of alcohol is not associated with EAC risk, other exposures, such as physical activity, nutrition, and medication use, require further study. Genetic variants have been associated with risk for EAC, but their overall contribution is low. Studies are needed to investigate associations between risk factors and the molecular subtypes of EAC. The prognosis for patients with EAC has slightly improved, but remains poor-screening and surveillance trials of high-risk individuals are needed.
Collapse
Affiliation(s)
- Helen G Coleman
- Cancer Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, UK.
| | - Shao-Hua Xie
- Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Lagergren
- Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Division of Cancer Studies, King's College London, United Kingdom
| |
Collapse
|
21
|
Pirini F, Rodriguez-Torres S, Ayandibu BG, Orera-Clemente M, Gonzalez-de la Vega A, Lawson F, Thorpe RJ, Sidransky D, Guerrero-Preston R. INSIG2 rs7566605 single nucleotide variant and global DNA methylation index levels are associated with weight loss in a personalized weight reduction program. Mol Med Rep 2017; 17:1699-1709. [PMID: 29138870 PMCID: PMC5780113 DOI: 10.3892/mmr.2017.8039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/17/2017] [Indexed: 12/27/2022] Open
Abstract
Single nucleotide polymorphisms associated with lipid metabolism and energy balance are implicated in the weight loss response caused by nutritional interventions. Diet-induced weight loss is also associated with differential global DNA methylation. DNA methylation has been proposed as a predictive biomarker for weight loss response. Personalized biomarkers for successful weight loss may inform clinical decisions when deciding between behavioral and surgical weight loss interventions. The aim of the present study was to investigate the association between global DNA methylation, genetic variants associated with energy balance and lipid metabolism, and weight loss following a non-surgical weight loss regimen. The present study included 105 obese participants that were enrolled in a personalized weight loss program based on their allelic composition of the following five energy balance and lipid metabolism-associated loci: Near insulin-induced gene 2 (INSIG2); melanocortin 4 receptor; adrenoceptor β2; apolipoprotein A5; and G-protein subunit β3. The present study investigated the association between a global DNA methylation index (GDMI), the allelic composition of the five energy balance and lipid metabolism-associated loci, and weight loss during a 12 month program, after controlling for age, sex and body mass index (BMI). The results demonstrated a significant association between the GDMI and near INSIG2 locus, after adjusting for BMI and weight loss, and significant trends were observed when stratifying by gender. In conclusion, a combination of genetic and epigenetic biomarkers may be used to design personalized weight loss interventions, enabling adherence and ensuring improved outcomes for obesity treatment programs. Precision weight loss programs designed based on molecular information may enable the creation of personalized interventions for patients, that use genomic biomarkers for treatment design and for treatment adherence monitoring, thus improving response to treatment.
Collapse
Affiliation(s)
- Francesca Pirini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, I‑47014 Meldola, Italy
| | | | - Bola Grace Ayandibu
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - María Orera-Clemente
- Genetic Laboratory, University General Hospital Gregorio Marañón, 28007 Madrid, Spain
| | | | - Fahcina Lawson
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Roland J Thorpe
- Johns Hopkins University Centre for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - David Sidransky
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Rafael Guerrero-Preston
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
22
|
Smith E, Palethorpe HM, Hayden AL, Young JP, Underwood TJ, Drew PA. Fibroblasts derived from oesophageal adenocarcinoma differ in DNA methylation profile from normal oesophageal fibroblasts. Sci Rep 2017; 7:3368. [PMID: 28611465 PMCID: PMC5469830 DOI: 10.1038/s41598-017-03501-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
Oesophageal adenocarcinoma (OAC) is increasing in incidence and has a poor prognosis. Tumour derived fibroblasts (TDFs) differ functionally from normal fibroblasts (NDFs), and play a pivotal role in cancer. Many of the differences persist through subculture. We measured the DNA methylation profiles of 10 TDFs from OAC with 12 NDF from normal oesophageal mucosa using Infinium HumanMethylation450 Beadchips and found they differed in multidimensional scaling analysis. We identified 4,856 differentially methylated CpGs (DMCs, adjusted p < 0.01 and absolute difference in average β-value > 0.15), of which 3,243 (66.8%) were hypomethylated in TDFs compared to NDFs. Hypermethylated DMCs were enriched at transcription start sites (TSSs) and in CpG islands, and depleted in transcriptional enhancers. Gene ontology analysis of genes with DMCs at TSSs revealed an enrichment of genes involved in development, morphogenesis, migration, adhesion, regulation of processes and response to stimuli. Alpha-smooth muscle actin (α-SMA) is a marker of activated fibroblasts and a poor prognostic indicator in OAC. Hypomethylated DMCs were observed at the TSS of transcript variant 2 of α-SMA, which correlated with an increase in α-SMA protein expression. These data suggest that DNA methylation may contribute to the maintenance of the TDF phenotype.
Collapse
Affiliation(s)
- Eric Smith
- Discipline of Surgical Specialities, Adelaide Medical School, Faculty of Health Sciences, The University of Adelaide, South Australia, 5000, Australia.
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville, South Australia, 5011, Australia.
| | - Helen M Palethorpe
- Discipline of Surgical Specialities, Adelaide Medical School, Faculty of Health Sciences, The University of Adelaide, South Australia, 5000, Australia
| | - Annette L Hayden
- Cancer Sciences Unit, Somers Cancer Research Building, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Joanne P Young
- Discipline of Surgical Specialities, Adelaide Medical School, Faculty of Health Sciences, The University of Adelaide, South Australia, 5000, Australia
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville, South Australia, 5011, Australia
| | - Timothy J Underwood
- Cancer Sciences Unit, Somers Cancer Research Building, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Paul A Drew
- Discipline of Surgical Specialities, Adelaide Medical School, Faculty of Health Sciences, The University of Adelaide, South Australia, 5000, Australia
- School of Nursing and Midwifery, Flinders University, PO Box 2100, Adelaide, South Australia, 5001, Australia
| |
Collapse
|
23
|
Kaz AM, Wong CJ, Varadan V, Willis JE, Chak A, Grady WM. Erratum to: Global DNA methylation patterns in Barrett's esophagus, dysplastic Barrett's, and esophageal adenocarcinoma are associated with BMI, gender, and tobacco use. Clin Epigenetics 2017; 9:23. [PMID: 28265303 PMCID: PMC5333432 DOI: 10.1186/s13148-017-0324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/27/2017] [Indexed: 11/10/2022] Open
Abstract
[This corrects the article DOI: 10.1186/s13148-016-0273-7.].
Collapse
Affiliation(s)
- Andrew M Kaz
- Gastroenterology Section, VA Puget Sound Health Care System, Seattle, WA 98108 USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA.,Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Chao-Jen Wong
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Vinay Varadan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Joseph E Willis
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Amitabh Chak
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 USA.,Division of Gastroenterology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA.,Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| |
Collapse
|