1
|
Dai Z, Zhan Z, Chen Y, Li J. MiRNA-210 is involved in cigarette smoke extract-induced apoptosis of MLE-12 via the Shh signaling pathway. Tob Induc Dis 2024; 22:TID-22-92. [PMID: 38813585 PMCID: PMC11135024 DOI: 10.18332/tid/186643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/19/2023] [Accepted: 03/29/2024] [Indexed: 05/31/2024] Open
Abstract
INTRODUCTION The aim of the study is the regulatory effect of MicroRNA-210 (MiR-210) on cigarette smoke extract (CSE)-induced mouse lung epithelial type II cells (MLE-12) apoptosis and determine whether the MiR-210 is involved in cigarette smoke extract-induced apoptosis of MLE-12 via Shh signaling pathway. METHODS Expression of MiR-210 in CSE-induced MLE-12 was assessed by qRT-PCR. The emphysema mouse model and MiR-210 knockdown mice were each established by inhaling cigarette smoke or intratracheal lentiviral vector instillation. The Sonic hedgehog (Shh), Ptch1, Gli1, B-cell lymphoma-2 (Bcl-2), and Caspase 3 protein expressions were detected by Western blotting. mRNA expressions of MiR-210, Shh, Ptch1, and Gli1 were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Apoptotic ratios in mice and CSE-induced HPVEC were assessed using TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assays and flow cytometry. RESULTS Our results showed that MiR-210 mRNA levels were significantly down-regulated in the CSE-induced MLE 12. MLE 12 apoptosis with down-regulated Shh, Ptch1, Gli1, and Bcl-2 expression, increased Caspase 3 expression in the emphysema mouse model and CSE-induced MLE 12. Knockdown MiR-210 can facilitate cell apoptosis and emphysema via the Shh signaling pathway in mice. In vitro, MiR-210 can attenuate the apoptosis of CSE-exposed MLE 12. Moreover, MiR-210 regulated the Shh pathway and promoted its expression. CONCLUSIONS MiRNA-210 is involved in cigarette smoke extract-induced apoptosis of MLE-12 via the Shh signaling pathway. The present study reveals that MiRNA-210 may be a key regulator of cellular apoptosis and could be explored as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Zhongshang Dai
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zijie Zhan
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Jinhua Li
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
2
|
Zhou C, Qin Y, Zhao W, Liang Z, Li M, Liu D, Bai L, Chen Y, Chen Y, Cheng Y, Chu T, Chu Q, Deng H, Dong Y, Fang W, Fu X, Gao B, Han Y, He Y, Hong Q, Hu J, Hu Y, Jiang L, Jin Y, Lan F, Li Q, Li S, Li W, Li Y, Liang W, Lin G, Lin X, Liu M, Liu X, Liu X, Liu Z, Lv T, Mu C, Ouyang M, Qin J, Ren S, Shi H, Shi M, Su C, Su J, Sun D, Sun Y, Tang H, Wang H, Wang K, Wang K, Wang M, Wang Q, Wang W, Wang X, Wang Y, Wang Z, Wang Z, Wu L, Wu D, Xie B, Xie M, Xie X, Xie Z, Xu S, Xu X, Yang X, Yin Y, Yu Z, Zhang J, Zhang J, Zhang J, Zhang X, Zhang Y, Zhong D, Zhou Q, Zhou X, Zhou Y, Zhu B, Zhu Z, Zou C, Zhong N, He J, Bai C, Hu C, Li W, Song Y, Zhou J, Han B, Varga J, Barreiro E, Park HY, Petrella F, Saito Y, Goto T, Igai H, Bravaccini S, Zanoni M, Solli P, Watanabe S, et alZhou C, Qin Y, Zhao W, Liang Z, Li M, Liu D, Bai L, Chen Y, Chen Y, Cheng Y, Chu T, Chu Q, Deng H, Dong Y, Fang W, Fu X, Gao B, Han Y, He Y, Hong Q, Hu J, Hu Y, Jiang L, Jin Y, Lan F, Li Q, Li S, Li W, Li Y, Liang W, Lin G, Lin X, Liu M, Liu X, Liu X, Liu Z, Lv T, Mu C, Ouyang M, Qin J, Ren S, Shi H, Shi M, Su C, Su J, Sun D, Sun Y, Tang H, Wang H, Wang K, Wang K, Wang M, Wang Q, Wang W, Wang X, Wang Y, Wang Z, Wang Z, Wu L, Wu D, Xie B, Xie M, Xie X, Xie Z, Xu S, Xu X, Yang X, Yin Y, Yu Z, Zhang J, Zhang J, Zhang J, Zhang X, Zhang Y, Zhong D, Zhou Q, Zhou X, Zhou Y, Zhu B, Zhu Z, Zou C, Zhong N, He J, Bai C, Hu C, Li W, Song Y, Zhou J, Han B, Varga J, Barreiro E, Park HY, Petrella F, Saito Y, Goto T, Igai H, Bravaccini S, Zanoni M, Solli P, Watanabe S, Fiorelli A, Nakada T, Ichiki Y, Berardi R, Tsoukalas N, Girard N, Rossi A, Passaro A, Hida T, Li S, Chen L, Chen R. International expert consensus on diagnosis and treatment of lung cancer complicated by chronic obstructive pulmonary disease. Transl Lung Cancer Res 2023; 12:1661-1701. [PMID: 37691866 PMCID: PMC10483081 DOI: 10.21037/tlcr-23-339] [Show More Authors] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Lung cancer combined by chronic obstructive pulmonary disease (LC-COPD) is a common comorbidity and their interaction with each other poses significant clinical challenges. However, there is a lack of well-established consensus on the diagnosis and treatment of LC-COPD. METHODS A panel of experts, comprising specialists in oncology, respiratory medicine, radiology, interventional medicine, and thoracic surgery, was convened. The panel was presented with a comprehensive review of the current evidence pertaining to LC-COPD. After thorough discussions, the panel reached a consensus on 17 recommendations with over 70% agreement in voting to enhance the management of LC-COPD and optimize the care of these patients. RESULTS The 17 statements focused on pathogenic mechanisms (n=2), general strategies (n=4), and clinical application in COPD (n=2) and lung cancer (n=9) were developed and modified. These statements provide guidance on early screening and treatment selection of LC-COPD, the interplay of lung cancer and COPD on treatment, and considerations during treatment. This consensus also emphasizes patient-centered and personalized treatment in the management of LC-COPD. CONCLUSIONS The consensus highlights the need for concurrent treatment for both lung cancer and COPD in LC-COPD patients, while being mindful of the mutual influence of the two conditions on treatment and monitoring for adverse reactions.
Collapse
Affiliation(s)
- Chengzhi Zhou
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Yinyin Qin
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Wei Zhao
- Department of Respiratory and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhenyu Liang
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Min Li
- Department of Respiratory Medicine, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li Bai
- Department of Respiratory Medicine, Xinqiao Hospital Army Medical University, Chongqing, China
| | - Yahong Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cheng
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Tianqing Chu
- Department of Respiratory Medicine, Shanghai Chest Hospital, Jiaotong University, Shanghai, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyi Deng
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Yuchao Dong
- Department of Pulmonary and Critical Care Medicine, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiuhua Fu
- Division of Respiratory Diseases, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Beili Gao
- Department of Respiratory, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiping Han
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yong He
- Department of Pulmonary and Critical Care Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Qunying Hong
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Hu
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Hu
- Department of Medical Oncology, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Liyan Jiang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Jiaotong University, Shanghai, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fen Lan
- Department of Respiratory Medicine, The Second Affiliated Hospital of Zhejiang University of Medicine, Hangzhou, China
| | - Qiang Li
- Department of Respiratory Medicine, Shanghai Dongfang Hospital, Shanghai, China
| | - Shuben Li
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yaqing Li
- Department of Internal Medicine, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Wenhua Liang
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Gen Lin
- Department of Thoracic Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Xinqing Lin
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Ming Liu
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Xiaofang Liu
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaoju Liu
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhefeng Liu
- Department of Oncology, General Hospital of Chinese PLA, Beijing, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chuanyong Mu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ming Ouyang
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Jianwen Qin
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Huanzhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Minhua Shi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Suzhou University, Suzhou, China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin Su
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dejun Sun
- Department of Respiratory and Critical Care Medicine, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Huaping Tang
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Huijuan Wang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Kai Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Zhejiang University of Medicine, Hangzhou, China
| | - Ke Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Wang
- Department of Pulmonary and Critical Care Medicine, the First Hospital of China Medical University, Shenyang, China
| | - Xiaoping Wang
- Department of Respiratory Disease, China-Japan Friendship Hospital, Beijing, China
| | - Yuehong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zirui Wang
- Department of Respiratory and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Lin Wu
- Thoracic Medicine Department II, Hunan Cancer Hospital, Changsha, China
| | - Di Wu
- Department of Respiratory Medicine, Shenzhen People’s Hospital, Shenzhen, China
| | - Baosong Xie
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Min Xie
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Xie
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Zhanhong Xie
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Shufeng Xu
- Department of Respiratory and Critical Care Medicine, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xiaoman Xu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, the First Hospital of China Medical University, Shenyang, China
| | - Zongyang Yu
- Department of Pulmonary and Critical Care Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Jian Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jianqing Zhang
- Second Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Zhang
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Zhang
- Department of Medical Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yanbin Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Zhu
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chenxi Zou
- Department of Respiratory and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Nanshan Zhong
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Jianxing He
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chengping Hu
- Department of Pulmonary Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing, China
| | - Jianying Zhou
- Department of Respiratory Diseases, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China
| | - Baohui Han
- Department of Pulmonology, Shanghai Chest Hospital, Shanghai, China
| | - Janos Varga
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Esther Barreiro
- Pulmonology Department-Lung Cancer and Muscle Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Pompeu Fabra University (UPF), CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII) Barcelona, Spain
| | - Hye Yun Park
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Francesco Petrella
- Division of Thoracic Surgery, IRCCS European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Yuichi Saito
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Hitoshi Igai
- Department of General Thoracic Surgery, Japanese Red Cross Maebashi Hospital, Maebashi, Gunma, Japan
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Michele Zanoni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Piergiorgio Solli
- Department of Cardio-Thoracic Surgery and Hearth & Lung Transplantation, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Alfonso Fiorelli
- Thoracic Surgery Unit, Universitàdella Campania Luigi Vanvitelli, Naples, Italy
| | - Takeo Nakada
- Division of Thoracic Surgery, Department of Surgery, the Jikei University School of Medicine, Tokyo, Japan
| | - Yoshinobu Ichiki
- Department of General Thoracic Surgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Rossana Berardi
- Clinica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria delle Marche, Ancona, Italy
| | | | - Nicolas Girard
- Institut du Thorax Curie Montsouris, Institut Curie, Paris, France
- Paris Saclay, UVSQ, Versailles, France
| | - Antonio Rossi
- Oncology Center of Excellence, Therapeutic Science & Strategy Unit, IQVIA, Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Toyoaki Hida
- Lung Cancer Center, Central Japan International Medical Center, Minokamo, Japan
| | - Shiyue Li
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Liang’an Chen
- Department of Respiratory and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Rongchang Chen
- Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital, Shenzhen, China
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Forder A, Zhuang R, Souza VGP, Brockley LJ, Pewarchuk ME, Telkar N, Stewart GL, Benard K, Marshall EA, Reis PP, Lam WL. Mechanisms Contributing to the Comorbidity of COPD and Lung Cancer. Int J Mol Sci 2023; 24:ijms24032859. [PMID: 36769181 PMCID: PMC9918127 DOI: 10.3390/ijms24032859] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
Lung cancer and chronic obstructive pulmonary disease (COPD) often co-occur, and individuals with COPD are at a higher risk of developing lung cancer. While the underlying mechanism for this risk is not well understood, its major contributing factors have been proposed to include genomic, immune, and microenvironment dysregulation. Here, we review the evidence and significant studies that explore the mechanisms underlying the heightened lung cancer risk in people with COPD. Genetic and epigenetic changes, as well as the aberrant expression of non-coding RNAs, predispose the lung epithelium to carcinogenesis by altering the expression of cancer- and immune-related genes. Oxidative stress generated by tobacco smoking plays a role in reducing genomic integrity, promoting epithelial-mesenchymal-transition, and generating a chronic inflammatory environment. This leads to abnormal immune responses that promote cancer development, though not all smokers develop lung cancer. Sex differences in the metabolism of tobacco smoke predispose females to developing COPD and accumulating damage from oxidative stress that poses a risk for the development of lung cancer. Dysregulation of the lung microenvironment and microbiome contributes to chronic inflammation, which is observed in COPD and known to facilitate cancer initiation in various tumor types. Further, there is a need to better characterize and identify the proportion of individuals with COPD who are at a high risk for developing lung cancer. We evaluate possible novel and individualized screening strategies, including biomarkers identified in genetic studies and exhaled breath condensate analysis. We also discuss the use of corticosteroids and statins as chemopreventive agents to prevent lung cancer. It is crucial that we optimize the current methods for the early detection and management of lung cancer and COPD in order to improve the health outcomes for a large affected population.
Collapse
Affiliation(s)
- Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Rebecca Zhuang
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Vanessa G P Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Liam J Brockley
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michelle E Pewarchuk
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Greg L Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Katya Benard
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Erin A Marshall
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Patricia P Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Wan L Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Albano GD, Gagliardo R, Montalbano AM, Profita M. Non-Coding RNAs in Airway Diseases: A Brief Overview of Recent Data. Cancers (Basel) 2022; 15:cancers15010054. [PMID: 36612051 PMCID: PMC9817765 DOI: 10.3390/cancers15010054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Inflammation of the human lung is mediated in response to different stimuli (e.g., physical, radioactive, infective, pro-allergenic, or toxic) such as cigarette smoke and environmental pollutants. These stimuli often promote an increase in different inflammatory activities in the airways, manifesting themselves as chronic diseases (e.g., allergic airway diseases, asthma chronic bronchitis/chronic obstructive pulmonary disease, or even lung cancer). Non-coding RNA (ncRNAs) are single-stranded RNA molecules of few nucleotides that regulate the gene expression involved in many cellular processes. ncRNA are molecules typically involved in the reduction of translation and stability of the genes of mRNAs s. They regulate many biological aspects such as cellular growth, proliferation, differentiation, regulation of cell cycle, aging, apoptosis, metabolism, and neuronal patterning, and influence a wide range of biologic processes essential for the maintenance of cellular homeostasis. The relevance of ncRNAs in the pathogenetic mechanisms of respiratory diseases has been widely established and in the last decade many papers were published. However, once their importance is established in pathogenetic mechanisms, it becomes important to further deepen the research in this direction. In this review we describe several of most recent knowledge concerning ncRNA (overall miRNAs) expression and activities in the lung.
Collapse
|
5
|
Xia Y, Zha J, Curull V, Sánchez-Font A, Guitart M, Rodríguez-Fuster A, Aguiló R, Barreiro E. Gene expression profile of epithelial-mesenchymal transition in tumors of patients with nsclc: the influence of COPD. ERJ Open Res 2022; 8:00105-2022. [PMID: 35854873 PMCID: PMC9289374 DOI: 10.1183/23120541.00105-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is involved in the pathophysiology of lung cancer (LC) and COPD, and the latter is an important risk factor for LC. We hypothesised that the EMT gene expression profile and signalling cascade may differ in LC patients with COPD from those with no respiratory diseases. In lung tumour specimens obtained through video-assisted thoracoscopic surgery from LC (n=20, control group) and LC-COPD patients (n=30), gene expression (quantitative real-time PCR amplification) of EMT markers SMAD3, SMAD4, ZEB2, TWIST1, SNAI1, ICAM1, VIM, CDH2, MMP1 and MMP9 was detected. In lung tumours of LC-COPD compared to LC patients, gene expression of SMAD3, SMAD4, ZEB2 and CDH2 significantly declined, while no significant differences were detected for the other analysed markers. A significant correlation was found between pack-years (smoking burden) and SMAD3 gene expression among LC-COPD patients. LC-COPD patients exhibited mild-to-moderate airway obstruction and a significant reduction in diffusion capacity compared to LC patients. In lung tumour samples of patients with COPD, several markers of EMT expression, namely SMAD3, SMAD4, ZEB2 and CDH2, were differentially expressed suggesting that these markers are likely to play a role in the regulation of EMT in patients with this respiratory disease. Cigarette smoke did not seem to influence the expression of EMT markers in this study. These results have potential clinical implications in the management of patients with LC, particularly in those with underlying respiratory diseases. The downregulation of the epithelial–mesenchymal transition repressor SMAD pathway may favour a pro-tumoural micro-environment in patients with chronic airway diseases, namely COPD, which could be targeted therapeuticallyhttps://bit.ly/39oXnoG
Collapse
|
6
|
Chronic Obstructive Pulmonary Disease: The Present and Future. Biomedicines 2022; 10:biomedicines10020499. [PMID: 35203708 PMCID: PMC8962403 DOI: 10.3390/biomedicines10020499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023] Open
|
7
|
PERROTTA F, D’AGNANO V, SCIALÒ F, KOMICI K, ALLOCCA V, NUCERA F, SALVI R, STELLA GM, BIANCO A. Evolving concepts in COPD and lung cancer: a narrative review. Minerva Med 2022; 113:436-448. [DOI: 10.23736/s0026-4806.22.07962-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Deng M, Tong R, Zhang Z, Wang T, Liang C, Zhou X, Hou G. EFNA3 as a predictor of clinical prognosis and immune checkpoint therapy efficacy in patients with lung adenocarcinoma. Cancer Cell Int 2021; 21:535. [PMID: 34645436 PMCID: PMC8513303 DOI: 10.1186/s12935-021-02226-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/24/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Ephrin receptors (Eph) and their ligands, called ephrins, function in various disease processes. However, the expression level and prognostic value of Eph/ephrins in lung adenocarcinoma (LUAD) are still unclear. METHODS The Oncomine and GEPIA databases were used to explore the differential expression of Eph/ephrins in LUAD. Kaplan-Meier plotter was selected to explore the prognostic value of Eph/ephrins. The cBioPortal database was used to analyze the genetic variation of the EFNA3 gene. Immunohistochemistry was used to analyze the expression level and clinical value of ephrin-A3 protein in clinical LUAD tissue. Weighted coexpression network analysis (WGCNA) and gene set enrichment analysis (GSEA) identified the potential regulatory mechanism of EFNA3. CCK-8 assays and colony-forming experiments were used to investigate whether EFNA3 can regulate cell proliferation ability in LUAD. Analysis of lactate, ATP, and glucose uptake levels was used to explore the effect of EFNA3 on glycolysis ability. In addition, we investigated the relationship between EFNA3 and tumor infiltrating immune cells (TIICs). Finally, the potential immunotherapy response prediction value of EFNA3 was also explored. RESULTS In this study, we found that EFNA3 expression was significantly correlated with both overall survival (OS) and progression-free survival (PFS) in LUAD patients based on a comprehensive analysis of the Eph/Ephrin family. Next, the expression of the EFNA3 protein was increased in LUAD tissues and was designated an independent prognostic risk factor. Mechanistically, EFNA3 may be involved in nuclear division, synaptic function, and ion channel activity-related pathways. In vitro experiments confirmed the role of EFNA3 in promoting LUAD cells and showed that it could regulate glycolytic capacity. Moreover, EFNA3 was negatively associated with immunity, stromal infiltration, and several TIICs. Finally, EFNA3 was found to be positively related to multiple immunotherapy biomarkers. CONCLUSIONS In conclusion, increased EFNA3 in LUAD patients predicted worse clinical prognosis, promoted LUAD cell proliferation and glycolysis ability, and was related to immunotherapy response.
Collapse
Affiliation(s)
- Mingming Deng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100029, China
- National Center for Respiratory Medicine, Beijing, 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- National Clinical Research Center for Respiratory Diseases, Beijing, 100029, China
| | - Run Tong
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- National Center for Respiratory Medicine, Beijing, 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- National Clinical Research Center for Respiratory Diseases, Beijing, 100029, China
| | - Zhe Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, 110001, China
| | - Tao Wang
- Department of Pathology, Shenyang KingMed Center for Clinical Laboratory Co., Ltd., Shenyang, 110001, China
| | - Chaonan Liang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoming Zhou
- Department of Pulmonary and Critical Care Medicine, Fourth Hospital of China Medical University, Shenyang, 110001, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100029, China.
- National Center for Respiratory Medicine, Beijing, 100029, China.
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China.
- National Clinical Research Center for Respiratory Diseases, Beijing, 100029, China.
| |
Collapse
|
9
|
Qin L, Guitart M, Curull V, Sánchez-Font A, Duran X, Tang J, Admetlló M, Barreiro E. Systemic Profiles of microRNAs, Redox Balance, and Inflammation in Lung Cancer Patients: Influence of COPD. Biomedicines 2021; 9:biomedicines9101347. [PMID: 34680465 PMCID: PMC8533450 DOI: 10.3390/biomedicines9101347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023] Open
Abstract
Lung cancer (LC) risk increases in patients with chronic respiratory diseases (COPD). MicroRNAs and redox imbalance are involved in lung tumorigenesis in COPD patients. Whether systemic alterations of those events may also take place in LC patients remains unknown. Our objectives were to assess the plasma levels of microRNAs, redox balance, and cytokines in LC patients with/without COPD. MicroRNAs (RT-PCR) involved in LC, oxidized DNA, MDA-protein adducts, GSH, TEAC, VEGF, and TGF-beta (ELISA) were quantified in plasma samples from non-LC controls (n = 45), LC-only patients (n = 32), and LC-COPD patients (n = 91). In LC-COPD patients compared to controls and LC-only, MDA-protein adduct levels increased, while those of GSH decreased, and two patterns of plasma microRNA were detected. In both LC patient groups, miR-451 expression was downregulated, while those of microRNA-let7c were upregulated, and levels of TEAC and TGF-beta increased compared to the controls. Correlations were found between clinical and biological variables. A differential expression profile of microRNAs was detected in patients with LC. Moreover, in LC patients with COPD, plasma oxidative stress levels increased, whereas those of GSH declined. Systemic oxidative and antioxidant markers are differentially expressed in LC patients with respiratory diseases, thus implying its contribution to the pathogenesis of tumorigenesis in these patients.
Collapse
Affiliation(s)
- Liyun Qin
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
| | - Maria Guitart
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Víctor Curull
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Albert Sánchez-Font
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Xavier Duran
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Jun Tang
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Mireia Admetlló
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0385; Fax: +34-93-316-0410
| |
Collapse
|
10
|
Szalontai K, Gémes N, Furák J, Varga T, Neuperger P, Balog JÁ, Puskás LG, Szebeni GJ. Chronic Obstructive Pulmonary Disease: Epidemiology, Biomarkers, and Paving the Way to Lung Cancer. J Clin Med 2021; 10:jcm10132889. [PMID: 34209651 PMCID: PMC8268950 DOI: 10.3390/jcm10132889] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), the frequently fatal pathology of the respiratory tract, accounts for half a billion cases globally. COPD manifests via chronic inflammatory response to irritants, frequently to tobacco smoke. The progression of COPD from early onset to advanced disease leads to the loss of the alveolar wall, pulmonary hypertension, and fibrosis of the respiratory epithelium. Here, we focus on the epidemiology, progression, and biomarkers of COPD with a particular connection to lung cancer. Dissecting the cellular and molecular players in the progression of the disease, we aim to shed light on the role of smoking, which is responsible for the disease, or at least for the more severe symptoms and worse patient outcomes. We summarize the inflammatory conditions, as well as the role of EMT and fibroblasts in establishing a cancer-prone microenvironment, i.e., the soil for ‘COPD-derived’ lung cancer. We highlight that the major health problem of COPD can be alleviated via smoking cessation, early diagnosis, and abandonment of the usage of biomass fuels on a global basis.
Collapse
Affiliation(s)
- Klára Szalontai
- Csongrád County Hospital of Chest Diseases, Alkotmány u. 36., H6772 Deszk, Hungary;
| | - Nikolett Gémes
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- PhD School in Biology, University of Szeged, H6726 Szeged, Hungary
| | - József Furák
- Department of Surgery, University of Szeged, Semmelweis u. 8., H6725 Szeged, Hungary;
| | - Tünde Varga
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
| | - Patrícia Neuperger
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- PhD School in Biology, University of Szeged, H6726 Szeged, Hungary
| | - József Á. Balog
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- PhD School in Biology, University of Szeged, H6726 Szeged, Hungary
| | - László G. Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- Avicor Ltd. Alsó Kikötő sor 11/D, H6726 Szeged, Hungary
| | - Gábor J. Szebeni
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
- CS-Smartlab Devices Ltd., Ady E. u. 14., H7761 Kozármisleny, Hungary
- Correspondence:
| |
Collapse
|
11
|
The Expression Patterns of BECN1, LAMP2, and PINK1 Genes in Colorectal Cancer Are Potentially Regulated by Micrornas and CpG Islands: An In Silico Study. J Clin Med 2020; 9:jcm9124020. [PMID: 33322704 PMCID: PMC7764710 DOI: 10.3390/jcm9124020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Autophagy plays a dual role of tumor suppression and tumor promotion in colorectal cancer. The study aimed to find those microRNAs (miRNAs) important in BECN1, LAMP2, and PINK1 regulation and to determine the possible role of the epigenetic changes in examined colorectal cancer using an in silico approach. Methods: A total of 44 pairs of surgically removed tumors at clinical stages I‒IV and healthy samples (marginal tissues) from patients’ guts were analyzed. Analysis of the obtained results was conducted using the PL-Grid Infrastructure and Statistica 12.0 program. The miRNAs and CpG islands were estimated using the microrna.org database and MethPrimer program. Results: The autophagy-related genes were shown to be able to be regulated by miRNAs (BECN1—49 mRNA, LAMP2—62 mRNA, PINK1—6 mRNA). It was observed that promotion regions containing at least one CpG region were present in the sequence of each gene. Conclusions: The in silico analysis performed allowed us to determine the possible role of epigenetic mechanisms of regulation gene expression, which may be an interesting therapeutic target in the treatment of colorectal cancer.
Collapse
|
12
|
Li XF, Shen WZ, Jin X, Ren P, Zhang J. Let-7c regulated epithelial-mesenchymal transition leads to osimertinib resistance in NSCLC cells with EGFR T790M mutations. Sci Rep 2020; 10:11236. [PMID: 32641854 PMCID: PMC7343825 DOI: 10.1038/s41598-020-67908-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor- tyrosine kinase inhibitors (EGFR-TKIs) have shown promise against non-small cell lung cancers (NSCLCs) in clinics but the utility is often short-lived because of T790M mutations in EGFR that help evade TKIs’ action. Osimertinib is the third and latest generation TKI that targets EGFRs with T790M mutations. However, there are already reports on acquired resistance against Osimertinib. Recent work has revealed the role that miRNAs, particularly tumor suppressor let-7c, play in the invasiveness and acquired resistance of NSCLCs, but the mechanistic details, particularly in Osimertinib resistance, remain elusive. Using two cells lines, H1975 (endogenous T790M mutation) and HCC827-T790M (with acquired T790M mutation), we found that let-7c is a regulator of EMT, as well as it affects CSC phenotype. In both the cell lines, transfection with pre-let-7c led to reversal of EMT as studied through EMT markers e-cadherin and ZEB1. This resulted in reduced proliferation and invasion. Conversely, reduced expression of let-7c through anti-let-7c transfections significantly increased proliferation and invasion of lung cancer cells. Expression of let-7c was functionally relevant as EMT correlated with resistance to Osimertinib. High let-7c expression reversed EMT and made cells sensitive to Osimertinib, and vice versa. WNT1 and TCF-4 were found to be two targets of let-7c which were epigenetic suppressed by let-7c through increased methylation. In vivo, pre-let-7c inhibited while anti-let-7c potentiated tumor growth and WNT1 and TCF-4 were downregulated in xenografts with pre-let-7c. Silencing of both WNT1 and TCF-4 resulted in potentiation of Osimertinib action. Our results suggest an important role of let-7c in regulating EMT and the resulting Osimertinib resistance in T790M NSCLCs. More clinical studies need to be performed to fully understand the translational relevance of this novel mechanism.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Department of Oncology and Hematology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - Wei-Zhang Shen
- Department of Oncology and Hematology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - Xin Jin
- Department of Oncology and Hematology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin University, Chaoyang, Changchun, 130021, Jilin, People's Republic of China.
| | - Jie Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
13
|
Immune Cell Subtypes and Cytokines in Lung Tumor Microenvironment: Influence of COPD. Cancers (Basel) 2020; 12:cancers12051217. [PMID: 32414037 PMCID: PMC7281434 DOI: 10.3390/cancers12051217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 05/09/2020] [Indexed: 01/24/2023] Open
Abstract
Background: The immune microenvironment plays a role in tumorigenesis. Chronic Obstructive Pulmonary Disease (COPD) is an independent risk factor for lung cancer (LC). We hypothesized that immune profile characterized by T regulatory (Treg), natural killer (NK), and plasma cells, as well as interleukin (IL)-10 and interferon-gamma, may differ within tumors of LC patients with/without COPD. Methods: Treg (anti-CD3 and anti-forkhead boxP3 antibodies), NK (anti-NCR1 antibody), IgG (anti-CD138-IgG antibody), IgA (anti-CD138-IgA antibody) using immunohistochemistry, and both IL-10 and interferon-gamma (ELISA) were quantified in tumor and non-tumor specimens (thoracotomy for lung tumor resection) from 33 LC–COPD patients and 20 LC-only patients. Results: Immune profile in tumor versus non-tumor specimens: Treg cell counts significantly increased in tumors of both LC and LC–COPD patients, while in tumors of the latter group, IgG-secreting plasma cells significantly decreased and IL-10 increased. No significant differences were seen in levels of NK cells, IgA-secreting cells, IgA/IgG, or interferon-gamma. Immune profile in tumors of LC–COPD versus LC: No significant differences were observed in tumors between LC–COPD and LC patients for any study marker. Conclusions: Immune cell subtypes and cytokines are differentially expressed in lung tumors, and the presence of COPD elicited a decline in IgG-secreting plasma cell levels but not in other cell types.
Collapse
|
14
|
Parris BA, O'Farrell HE, Fong KM, Yang IA. Chronic obstructive pulmonary disease (COPD) and lung cancer: common pathways for pathogenesis. J Thorac Dis 2019; 11:S2155-S2172. [PMID: 31737343 DOI: 10.21037/jtd.2019.10.54] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer comprise the leading causes of lung disease-related mortality worldwide. Exposure to tobacco smoke is a mutual aetiology underlying the two diseases, accounting for almost 90% of cases. There is accumulating evidence supporting the role of immune dysfunction, the lung microbiome, extracellular vesicles and underlying genetic susceptibility in the development of COPD and lung cancer. Further, epigenetic factors, involving DNA methylation and microRNA expression, have been implicated in both diseases. Chronic inflammation is a key feature of COPD and could be a potential driver of lung cancer development. Using next generation technologies, further studies investigating the genomics, epigenetics and gene-environment interaction in key molecular pathways will continue to elucidate the pathogenic mechanisms underlying the development of COPD and lung cancer, and contribute to the development of novel diagnostic and prognostic tools for early intervention and personalised therapeutic strategies.
Collapse
Affiliation(s)
- Brielle A Parris
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia
| | - Hannah E O'Farrell
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia
| | - Kwun M Fong
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, Australia
| | - Ian A Yang
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, Australia
| |
Collapse
|
15
|
Immunotherapy with Monoclonal Antibodies in Lung Cancer of Mice: Oxidative Stress and Other Biological Events. Cancers (Basel) 2019; 11:cancers11091301. [PMID: 31487876 PMCID: PMC6770046 DOI: 10.3390/cancers11091301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Lung cancer (LC) is a major leading cause of death worldwide. Immunomodulators that target several immune mechanisms have proven to reduce tumor burden in experimental models through induction of the immune microenvironment. We hypothesized that other biological mechanisms may also favor tumor burden reduction in lung cancer-bearing mice treated with immunomodulators. Methods: Tumor weight, area, T cells and tumor growth (immunohistochemistry), oxidative stress, apoptosis, autophagy, and signaling (NF-κB and sirtuin-1) markers were analyzed (immunoblotting) in subcutaneous tumor of BALB/c mice injected with LP07 adenocarcinoma cells treated with monoclonal antibodies (CD-137, CTLA-4, PD-1, and CD-19, N = 9/group) and non-treated control animals. Results: Compared to non-treated cancer mice, in tumors of monoclonal-treated animals, tumor area and weight and ki-67 were significantly reduced, while T cell counts, oxidative stress, apoptosis, autophagy, activated p65, and sirtuin-1 markers were increased. Conclusions: Immunomodulators elicited a reduction in tumor burden (reduced tumor size and weight) through decreased tumor proliferation and increased oxidative stress, apoptosis, autophagy, and signaling markers, which may have interfered with the immune profile of the tumor microenvironment. Future research should be devoted to the elucidation of the specific contribution of each biological mechanism to the reduced tumor burden.
Collapse
|
16
|
Veerappan I, Sankareswaran SK, Palanisamy R. Morin Protects Human Respiratory Cells from PM 2.5 Induced Genotoxicity by Mitigating ROS and Reverting Altered miRNA Expression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2389. [PMID: 31284452 PMCID: PMC6651735 DOI: 10.3390/ijerph16132389] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
Chronic fine particulate matter (PM2.5) exposure causes oxidative stress and leads to many diseases in human like respiratory and cardiovascular disorders, and lung cancer. It is known that toxic responses elicited by PM2.5 particles depend on its physical and chemical characteristics that are greatly influenced by the source. Dietary polyphenolic compounds that possess antioxidant and free radical scavenging properties could be used for therapeutic or preventive approaches against air pollution related health hazards. This study evaluates characteristics and toxicity of PM2.5 collected from rural, urban, industrial, and traffic regions in and around Coimbatore City, Tamilnadu, India. Traffic PM2.5 particles contained higher amounts of metals and polycyclic aromatic hydrocarbons (PAHs). It also possessed higher levels of oxidative potential, induced more intracellular reactive oxygen species (ROS), and caused more levels of cell death and DNA damage in human respiratory cells. Its exposure up regulated DNA damage response related miR222, miR210, miR101, miR34a, and miR93 and MycN and suppressed Rad52. Pre-treatment with morin significantly decreased the PM2.5 induced toxicity and conferred protection against PM2.5 induced altered miRNA expression. Results of this study showed that cytoprotective effect of morin is due to its antioxidative and free radical scavenging activity.
Collapse
Affiliation(s)
- Indhumathi Veerappan
- Department of Biotechnology, Anna University, BIT Campus, Tiruchirappalli 620 024, India
| | | | - Rajaguru Palanisamy
- Department of Biotechnology, Anna University, BIT Campus, Tiruchirappalli 620 024, India.
| |
Collapse
|
17
|
Elfiky AM, Ahmed Mahmoud A, Zeidan HM, Mostafa Soliman M. Association between circulating microRNA-126 expression level and tumour necrosis factor alpha in healthy smokers. Biomarkers 2019; 24:469-477. [PMID: 31018714 DOI: 10.1080/1354750x.2019.1610497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Smoking contributes to the death of a million people worldwide each year. Smokers experience an alteration in tumour necrosis factor-alpha (TNF-α), and the risk of expected lung cancer. The study aimed at investigating the expression levels of mir-126 and mir-124, as well as TNF-α as possible biomarkers of expected smoking-related diseases. Methods: Twenty-five male smokers' age and sex-matched with 25 non-smokers were recruited for the present study. Plasma expression levels of mir-126 and mir-124 were evaluated using quantitative real-time PCR. Lipid profile, TNF-α, interleukin-6 and C-reactive protein were assessed in plasma of each participant. Results: Plasma miR-126 was statistically down-regulated in smokers relative to non-smokers; however, mir-124 did not show any significant changes between groups. Among the measured parameters, mir-126 and tumour necrosis factor alpha (TNF-α) displayed a good discrimination and sensitivity between smokers and non-smokers (AUC = 0.809 (95% CI: 0.668-0.95; p < 0.001) and 0.742(95% CI: 0.584-0.9; p < 0.01), respectively. Also, the combined evaluation of miR-126 and TNF-α levels showed high discrimination (AUC= 0.889 (95% CI: 0.779-1.00; p < 0.0001), sensitivity = 85%, and specificity = 80% in the diagnosis of smokers with non-smokers. Conclusions: MiR-126 and TNF-α are potential biomarkers of smoking-related diseases and are important in assessing the expected tobacco-related harm.
Collapse
Affiliation(s)
- Asmaa M Elfiky
- a Division of Environmental Research, Department of Environmental and Occupational Medicine , National Research Centre , Cairo , Egypt
| | - Asmaa Ahmed Mahmoud
- b Department of Zoology, Faculty of Science , Ain Shams University , Cairo , Egypt
| | - Hala M Zeidan
- c Division of Medical Research, Department of Research on Children with Special Needs , National Research Centre , Cairo , Egypt
| | - Mohamed Mostafa Soliman
- b Department of Zoology, Faculty of Science , Ain Shams University , Cairo , Egypt.,d Department of Biology, Faculty of Science , Jazan University , KSA
| |
Collapse
|
18
|
Zakarya R, Adcock I, Oliver BG. Epigenetic impacts of maternal tobacco and e-vapour exposure on the offspring lung. Clin Epigenetics 2019; 11:32. [PMID: 30782202 PMCID: PMC6381655 DOI: 10.1186/s13148-019-0631-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
In utero exposure to tobacco products, whether maternal or environmental, have harmful effects on first neonatal and later adult respiratory outcomes. These effects have been shown to persist across subsequent generations, regardless of the offsprings' smoking habits. Established epigenetic modifications induced by in utero exposure are postulated as the mechanism underlying the inherited poor respiratory outcomes. As e-cigarette use is on the rise, their potential to induce similar functional respiratory deficits underpinned by an alteration in the foetal epigenome needs to be explored. This review will focus on the functional and epigenetic impact of in utero exposure to maternal cigarette smoke, maternal environmental tobacco smoke, environmental tobacco smoke and e-cigarette vapour on foetal respiratory outcomes.
Collapse
Affiliation(s)
- Razia Zakarya
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Ian Adcock
- Airway Diseases Section, National Heart and Lung Institute, Imperial College London, London, UK
- Biomedical Research Unit, Section of Respiratory Diseases, Royal Brompton and Harefield NHS Trust, London, UK
| | - Brian G Oliver
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia.
- School of Life Sciences, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|