1
|
Kwiatkowska KM, Garagnani P, Bonafé M, Bacalini MG, Sala C, Castellani G, Gentilini D, Calzari L, Ziegler D, Gerrits MM, Faber CG, Malik RA, Marchi M, Salvi E, Lauria G, Pirazzini C. High-Resolution Whole-Genome DNA Methylation Revealed Unique Signatures of Painful Diabetic Neuropathy. Diabetes 2025; 74:640-650. [PMID: 39774670 PMCID: PMC11926268 DOI: 10.2337/db24-0930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
ARTICLE HIGHLIGHTS Approximately one out of two patients with diabetes develops diabetic neuropathy; of these, 20% experience neuropathic pain. Risk factors for neuropathic pain are largely unknown; however, DNA methylation was recently associated with neuropathies and degeneration of nerve fibers. The aim of this work was to describe the DNA methylation signature and identify genes associated with neuropathic pain in type 2 diabetes mellitus (T2DM). We discovered distinct DNA methylation signatures that differentiate painful and painless neuropathy phenotypes associated with T2DM and identified genes with potential as therapeutic targets for neuropathic pain, such as GCH1, MYT1L, and MED16. This work can serve as reference hallmark for future studies on painful diabetic neuropathy and other chronic pain conditions.
Collapse
Affiliation(s)
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Massimiliano Bonafé
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maria G. Bacalini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Sala
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Gastone Castellani
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Luciano Calzari
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Monique M. Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Catharina G. Faber
- Department of Neurology, Institute of Mental Health and Neuroscience, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Rayaz A. Malik
- Institute of Cardiovascular Sciences, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K
- Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Margherita Marchi
- Neuroalgology Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Erika Salvi
- Neuroalgology Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Giuseppe Lauria
- Neuroalgology Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Chiara Pirazzini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Brum ES, Landini L, Souza Monteiro de Araújo D, Marini M, Geppetti P, Nassini R, De Logu F, Oliveira SM. Characterisation of periorbital mechanical allodynia in the reserpine-induced fibromyalgia model in mice: The role of the Schwann cell TRPA1/NOX1 signalling pathway. Free Radic Biol Med 2025; 229:289-299. [PMID: 39842732 DOI: 10.1016/j.freeradbiomed.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Fibromyalgia (FM) is a complex and multifaceted condition characterized by a range of clinical symptoms, including widespread pain and a strong association with migraine headaches. Recent findings have underscored the role of oxidative stress and transient receptor potential ankyrin 1 (TRPA1) channel in migraine and FM. However, the precise mechanisms underlying the comorbidity between migraine and FM are unclear. Periorbital mechanical allodynia (PMA), which recapitulates one of the major symptoms of migraine, and the feed-forward mechanism driven by reactive oxygen species and TRPA1, were investigated in a reserpine-induced FM model in C57BL/6J mice, employing pharmacological interventions and genetic approaches. Reserpine-treated mice developed PMA (which was alleviated by antimigraine drugs) and increased endoneurial macrophages and oxidative stress markers in the trigeminal nerve tissues (neuroinflammation). These responses were absent upon macrophage depletion and by pharmacological inhibition or global genetic deletion of the TRPA1 channel. Furthermore, selective silencing of TRPA1 in Schwann cells attenuated both reserpine-induced PMA and neuroinflammation, while selective silencing of TRPA1 in sensory neurons reduced PMA but not neuroinflammation. In reserpine-treated mice, Schwann cell TRPA1 promoted NADPH oxidase 1-mediated reactive oxygen species generation and macrophage density increase in the mouse trigeminal nerve, which sustains PMA. Targeting TRPA1 channels in Schwann cells could offer a novel therapeutic strategy for FM-related headaches.
Collapse
Affiliation(s)
- Evelyne Silva Brum
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, 90035-003, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | | | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy.
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
3
|
Quodling N, Groves S, Hoffman N, Carrick FR, Jemni M. Trauma-Based Sexually Dimorphic Changes in the Connectome and Its Association with Central Sensitization Syndromes-A Systematic Review. Brain Sci 2024; 14:1105. [PMID: 39595868 PMCID: PMC11592111 DOI: 10.3390/brainsci14111105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Chronic pain syndromes pose a significant global health challenge to patients and physicians with a complex relationship of biological and psychosocial factors that are only partly understood. Emerging research suggests an association between prenatal and childhood adversity and the development of somatic syndromes, particularly in females. This study aims to explore the relationship between sexual dimorphic epigenetic changes in the connectome and prenatal and early life adversity (ELA). METHODS A review of the existing literature was conducted, examining studies utilizing MRI to identify critical periods of environmental influence on neural phenotypes. RESULTS The findings indicate a significant association between prenatal and childhood adversity and the emergence of central sensitization syndromes, particularly among females. Notably, alterations in grey matter volume and neural connectivity patterns were observed, suggesting that early adverse experiences can influence pain signaling mechanisms. CONCLUSIONS Understanding the role of sex differences in brain circuitry is crucial for developing personalized pain management strategies. This study highlights the importance of considering both biological and psychosocial factors in addressing chronic pain, as interventions based predominantly on male subjects may be less effective for females. Further research is warranted to explore these differences and refine therapeutic approaches.
Collapse
Affiliation(s)
- Nicole Quodling
- Department of Neurology, Carrick Institute, Cape Canaveral, FL 32920, USA; (S.G.); (N.H.); (F.R.C.); (M.J.)
| | - Shad Groves
- Department of Neurology, Carrick Institute, Cape Canaveral, FL 32920, USA; (S.G.); (N.H.); (F.R.C.); (M.J.)
| | - Norman Hoffman
- Department of Neurology, Carrick Institute, Cape Canaveral, FL 32920, USA; (S.G.); (N.H.); (F.R.C.); (M.J.)
| | - Frederick R. Carrick
- Department of Neurology, Carrick Institute, Cape Canaveral, FL 32920, USA; (S.G.); (N.H.); (F.R.C.); (M.J.)
- Centre for Mental Health Research in Association with the University of Cambridge, Cambridge CB2 1TN, UK
- Neurology, University of Central Florida College of Medicine, Orlando, FL 23816, USA
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL 32827, USA
- MGH Institute for Health Professions, Boston, MA 02129, USA
| | - Monèm Jemni
- Department of Neurology, Carrick Institute, Cape Canaveral, FL 32920, USA; (S.G.); (N.H.); (F.R.C.); (M.J.)
- Centre for Mental Health Research in Association with the University of Cambridge, Cambridge CB2 1TN, UK
- Faculty of Physical Education, Ningbo University, Ningbo 315000, China
| |
Collapse
|
4
|
Karst M. Overview: Chronic Pain and Cannabis-Based Medicines. PHARMACOPSYCHIATRY 2024; 57:152-159. [PMID: 38198809 PMCID: PMC11076105 DOI: 10.1055/a-2231-6630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
Chronic pain is primarily conceptualized as a disease in its own right when it is associated with emotional distress and functional impairment. Pathophysiologically, dysfunction of the cortico-mesolimbic connectome is of major importance, with overlapping signals in the nociceptive and stress systems. The endocannabinoid system plays an important role in the central processing of nociceptive signals and regulates the central stress response. Clinically, there is moderate evidence that cannabis-based medicines (CBM) can contribute to a significant reduction in pain, especially the associated pain affect, and improvement in physical function and sleep quality in a proportion of patients with chronic pain. The analgesic effect appears to be largely independent of the cause of pain. In this context, CBM preferentially regulates stress-associated pain processing.
Collapse
Affiliation(s)
- Matthias Karst
- Anesthesiology, Pain Clinic, Hannover Medical School, Hannover,
Germany
| |
Collapse
|
5
|
Vlachova V, Barvik I, Zimova L. Human Transient Receptor Potential Ankyrin 1 Channel: Structure, Function, and Physiology. Subcell Biochem 2024; 104:207-244. [PMID: 38963489 DOI: 10.1007/978-3-031-58843-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The transient receptor potential ion channel TRPA1 is a Ca2+-permeable nonselective cation channel widely expressed in sensory neurons, but also in many nonneuronal tissues typically possessing barrier functions, such as the skin, joint synoviocytes, cornea, and the respiratory and intestinal tracts. Here, the primary role of TRPA1 is to detect potential danger stimuli that may threaten the tissue homeostasis and the health of the organism. The ability to directly recognize signals of different modalities, including chemical irritants, extreme temperatures, or osmotic changes resides in the characteristic properties of the ion channel protein complex. Recent advances in cryo-electron microscopy have provided an important framework for understanding the molecular basis of TRPA1 function and have suggested novel directions in the search for its pharmacological regulation. This chapter summarizes the current knowledge of human TRPA1 from a structural and functional perspective and discusses the complex allosteric mechanisms of activation and modulation that play important roles under physiological or pathophysiological conditions. In this context, major challenges for future research on TRPA1 are outlined.
Collapse
Affiliation(s)
- Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Ivan Barvik
- Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| | - Lucie Zimova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
6
|
Przybylowicz PK, Sokolowska KE, Rola H, Wojdacz TK. DNA Methylation Changes in Blood Cells of Fibromyalgia and Chronic Fatigue Syndrome Patients. J Pain Res 2023; 16:4025-4036. [PMID: 38054109 PMCID: PMC10695140 DOI: 10.2147/jpr.s439412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
Purpose Fibromyalgia (FM) and Chronic Fatigue Syndrome (CFS) affect 0.4% and 1% of society, respectively, and the prevalence of these pain syndromes is increasing. To date, no strong association between these syndromes and the genetic background of affected individuals has been shown. Therefore, it is plausible that epigenetic changes might play a role in the development of these syndromes. Patients and Methods Three previous studies have attempted to elaborate the involvement of genome-wide methylation changes in blood cells in the development of fibromyalgia and chronic fatigue syndrome. These studies included 22 patients with fibromyalgia and 127 patients with CFS, and the results of the studies were largely discrepant. Contradicting results of those studies may be attributed to differences in the omics data analysis approaches used in each study. We reanalyzed the data collected in these studies using an updated and coherent data-analysis framework. Results Overall, the methylation changes that we observed overlapped with previous results only to some extent. However, the gene set enrichment analyses based on genes annotated to methylation changes identified in each of the analyzed datasets were surprisingly coherent and uniformly associated with the physiological processes that, when affected, may result in symptoms characteristic of fibromyalgia and chronic fatigue syndrome. Conclusion Methylomes of the blood cells of patients with FM and CFS in three independent studies have shown methylation changes that appear to be implicated in the pathogenesis of these syndromes.
Collapse
Affiliation(s)
| | | | - Hubert Rola
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, Szczecin, Poland
| | | |
Collapse
|
7
|
Fila M, Pawlowska E, Szczepanska J, Blasiak J. Epigenetic Connections of the TRPA1 Ion Channel in Pain Transmission and Neurogenic Inflammation - a Therapeutic Perspective in Migraine? Mol Neurobiol 2023; 60:5578-5591. [PMID: 37326902 PMCID: PMC10471718 DOI: 10.1007/s12035-023-03428-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Persistent reprogramming of epigenetic pattern leads to changes in gene expression observed in many neurological disorders. Transient receptor potential cation channel subfamily A member 1 (TRPA1), a member of the TRP channels superfamily, is activated by many migraine triggers and expressed in trigeminal neurons and brain regions that are important in migraine pathogenesis. TRP channels change noxious stimuli into pain signals with the involvement of epigenetic regulation. The expression of the TRPA1 encoding gene, TRPA1, is modulated in pain-related syndromes by epigenetic alterations, including DNA methylation, histone modifications, and effects of non-coding RNAs: micro RNAs (miRNAs), long non-coding RNAs, and circular RNAs. TRPA1 may change epigenetic profile of many pain-related genes as it may modify enzymes responsible for epigenetic modifications and expression of non-coding RNAs. TRPA1 may induce the release of calcitonin gene related peptide (CGRP), from trigeminal neurons and dural tissue. Therefore, epigenetic regulation of TRPA1 may play a role in efficacy and safety of anti-migraine therapies targeting TRP channels and CGRP. TRPA1 is also involved in neurogenic inflammation, important in migraine pathogenesis. The fundamental role of TRPA1 in inflammatory pain transmission may be epigenetically regulated. In conclusion, epigenetic connections of TRPA1 may play a role in efficacy and safety of anti-migraine therapy targeting TRP channels or CGRP and they should be further explored for efficient and safe antimigraine treatment. This narrative/perspective review presents information on the structure and functions of TRPA1 as well as role of its epigenetic connections in pain transmission and potential in migraine therapy.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, 90-236, Lodz, Poland.
| |
Collapse
|
8
|
Duff IT, Krolick KN, Mahmoud HM, Chidambaran V. Current Evidence for Biological Biomarkers and Mechanisms Underlying Acute to Chronic Pain Transition across the Pediatric Age Spectrum. J Clin Med 2023; 12:5176. [PMID: 37629218 PMCID: PMC10455285 DOI: 10.3390/jcm12165176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic pain is highly prevalent in the pediatric population. Many factors are involved in the transition from acute to chronic pain. Currently, there are conceptual models proposed, but they lack a mechanistically sound integrated theory considering the stages of child development. Objective biomarkers are critically needed for the diagnosis, risk stratification, and prognosis of the pathological stages of pain chronification. In this article, we summarize the current evidence on mechanisms and biomarkers of acute to chronic pain transitions in infants and children through the developmental lens. The goal is to identify gaps and outline future directions for basic and clinical research toward a developmentally informed theory of pain chronification in the pediatric population. At the outset, the importance of objective biomarkers for chronification of pain in children is outlined, followed by a summary of the current evidence on the mechanisms of acute to chronic pain transition in adults, in order to contrast with the developmental mechanisms of pain chronification in the pediatric population. Evidence is presented to show that chronic pain may have its origin from insults early in life, which prime the child for the development of chronic pain in later life. Furthermore, available genetic, epigenetic, psychophysical, electrophysiological, neuroimaging, neuroimmune, and sex mechanisms are described in infants and older children. In conclusion, future directions are discussed with a focus on research gaps, translational and clinical implications. Utilization of developmental mechanisms framework to inform clinical decision-making and strategies for prevention and management of acute to chronic pain transitions in children, is highlighted.
Collapse
Affiliation(s)
- Irina T. Duff
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Kristen N. Krolick
- Department of Anesthesia, Cincinnati Children’s Hospital, Cincinnati, OH 45242, USA; (K.N.K.); (H.M.M.)
| | - Hana Mohamed Mahmoud
- Department of Anesthesia, Cincinnati Children’s Hospital, Cincinnati, OH 45242, USA; (K.N.K.); (H.M.M.)
| | - Vidya Chidambaran
- Department of Anesthesia, Cincinnati Children’s Hospital, Cincinnati, OH 45242, USA; (K.N.K.); (H.M.M.)
| |
Collapse
|
9
|
Spagnolo PA, Johnson K, Hodgkinson C, Goldman D, Hallett M. Methylome changes associated with functional movement/conversion disorder: Influence of biological sex and childhood abuse exposure. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110756. [PMID: 36958667 PMCID: PMC10205664 DOI: 10.1016/j.pnpbp.2023.110756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
Epigenetic changes, such as DNA methylation (DNAm), may represent an important mechanism implicated in the etiopathogenesis of functional movement/conversion disorder (FMD). Here, we aimed to identify methylomic variations in a case-control cohort of FMD and to uncover specific epigenetic signatures associated with female sex and childhood abuse, two key risk factors for FMD and other functional neurological disorders. Genome-wide DNAm analysis was performed from peripheral blood in 57 patients with FMD and 47 healthy controls with and without childhood abuse. Using principal component analysis, we examined the association of principal components with FMD status in abused and non-abused individuals, in the entire study sample and in female subjects only. Next, we used enrichment pathway analysis to investigate the biological significance of DNAm changes and explored differences in methylation levels of genes annotated to the top enriched biological pathways shared across comparisons. We found that FMD was associated with DNAm variation across the genome and identified a common epigenetic 'signature' enriched for biological pathways implicated in chronic stress and chronic pain. However, methylation levels of genes included in the top two shared pathways hardly overlapped, suggesting that transcriptional profiles may differ as a function of childhood abuse exposure and sex among subjects with FMD. This study is unique in providing genome-wide evidence of DNAm changes in FMD and in indicating a potential mechanism linking childhood abuse exposure and female sex to differences in FMD pathophysiology. Future studies are needed to replicate our findings in independent cohorts.
Collapse
Affiliation(s)
- Primavera A Spagnolo
- Mary Horrigan Connors Center for Women's Health and Gender Biology, USA; Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Kory Johnson
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Colin Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Schaffer J, Fogelman N, Seo D, Sinha R. Chronic pain, chronic stress and substance use: overlapping mechanisms and implications. FRONTIERS IN PAIN RESEARCH 2023; 4:1145934. [PMID: 37415830 PMCID: PMC10320206 DOI: 10.3389/fpain.2023.1145934] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Chronic pain is among the most common reasons adults in the U.S. seek medical care. Despite chronic pain's substantial impact on individuals' physical, emotional, and financial wellness, the biologic underpinnings of chronic pain remain incompletely understood. Such deleterious impact on an individuals' wellness is also manifested in the substantial co-occurrence of chronic stress with chronic pain. However, whether chronic stress and adversity and related alcohol and substance misuse increases risk of developing chronic pain, and, if so, what the overlapping psychobiological processes are, is not well understood. Individuals suffering with chronic pain find alleviation through prescription opioids as well as non-prescribed cannabis, alcohol, and other drugs to control pain, and use of these substances have grown significantly. Substance misuse also increases experience of chronic stress. Thus, given the evidence showing a strong correlation between chronic stress and chronic pain, we aim to review and identify overlapping factors and processes. We first explore the predisposing factors and psychologic features common to both conditions. This is followed by examining the overlapping neural circuitry of pain and stress in order to trace a common pathophysiologic processes for the development of chronic pain and its link to substance use. Based on the previous literature and our own findings, we propose a critical role for ventromedial prefrontal cortex dysfunction, an overlapping brain area associated with the regulation of both pain and stress that is also affected by substance use, as key in the risk of developing chronic pain. Finally, we identify the need for future research in exploring the role of medial prefrontal circuits in chronic pain pathology. Critically, in order to alleviate the enormous burden of chronic pain without exacerbating the co-occurring substance misuse crisis, we emphasize the need to find better approaches to treat and prevent chronic pain.
Collapse
Affiliation(s)
| | | | | | - R. Sinha
- Department of Psychiatry and the Yale Stress Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
11
|
Manuel J, Rudolph L, Beissner F, Neubert TA, Dusch M, Karst M. Traumatic Events, Posttraumatic Stress Disorder, and Central Sensitization in Chronic Pain Patients of a German University Outpatient Pain Clinic. Psychosom Med 2023; 85:351-357. [PMID: 36825929 PMCID: PMC10171308 DOI: 10.1097/psy.0000000000001181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/02/2022] [Indexed: 02/25/2023]
Abstract
OBJECTIVE Posttraumatic stress disorder (PTSD) and traumatic life events are often coupled to chronic pain, possibly linked by central sensitization. We wanted to assess the prevalence of traumatic events and PTSD in chronic pain patients of a German university hospital outpatient pain clinic. Moreover, we evaluated the extent of indicators and co-occurring traits of central sensitization in comorbid patients. METHODS We retrospectively divided 914 chronic pain patients into four groups depending on their trauma severity: no trauma, accidental trauma, interpersonal trauma, and PTSD. We collected electronic pain drawings focusing on pain area and widespreadness, as well as information about pain intensity, sleep impairment, disability, stress, anxiety, depression, and somatization. Differences between groups were calculated using Kruskal-Wallis with post-hoc Mann-Whitney tests. RESULTS Of 914 patients, 231 (25%) had no trauma, 210 (23%) had accidental traumas, 283 (31%) had interpersonal traumas, 99 (11%) had PTSD, and 91 (10%) could not be classified. We observed statistically significant differences between groups in pain area and widespreadness, as well as maximal pain, sleep impairment, disability, stress, anxiety, depression, and somatization. The severity of symptoms increased with trauma severity. CONCLUSIONS Traumatic life events and PTSD are frequent in chronic pain patients. The increased pain area and widespreadness, as well as the increased negative impact on co-occurring traits of sensory sensitivity (anxiety, depression, somatization), are compatible with central sensitization in comorbid patients. Therefore, a heightened awareness of the comorbidity between traumatic experiences and chronic pain is recommended.
Collapse
|
12
|
Babayeva M, Loewy ZG. Cannabis Pharmacogenomics: A Path to Personalized Medicine. Curr Issues Mol Biol 2023; 45:3479-3514. [PMID: 37185752 PMCID: PMC10137111 DOI: 10.3390/cimb45040228] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Cannabis and related compounds have created significant research interest as a promising therapy in many disorders. However, the individual therapeutic effects of cannabinoids and the incidence of side effects are still difficult to determine. Pharmacogenomics may provide the answers to many questions and concerns regarding the cannabis/cannabinoid treatment and help us to understand the variability in individual responses and associated risks. Pharmacogenomics research has made meaningful progress in identifying genetic variations that play a critical role in interpatient variability in response to cannabis. This review classifies the current knowledge of pharmacogenomics associated with medical marijuana and related compounds and can assist in improving the outcomes of cannabinoid therapy and to minimize the adverse effects of cannabis use. Specific examples of pharmacogenomics informing pharmacotherapy as a path to personalized medicine are discussed.
Collapse
Affiliation(s)
- Mariana Babayeva
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
| | - Zvi G Loewy
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
13
|
Celsi F, Peri F, Cavasin J, Zupin L, Cozzi G, Barbi E, Crovella S. Transient Receptor Potential Ankyrin 1 (TRPA1) Methylation and Chronic Pain: A Systematic Review. Genes (Basel) 2023; 14:411. [PMID: 36833338 PMCID: PMC9957263 DOI: 10.3390/genes14020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Chronic pain represents a major global health issue in terms of psycho-physiological, therapeutic, and economic burden, not limited to adults but also to the pediatric age. Despite its great impact, its molecular mechanisms have still not been completely unraveled. Focusing on the impact of epigenetics in the pain complex trait, we assessed the association between chronic pain and the methylation pattern of TRPA1, a key gene related to pain sensitivity. METHODS We conducted a systematic review retrieving articles from three different databases. After deduplication, 431 items were subjected to manual screening, and then 61 articles were selected and screened again. Of these, only six were maintained for meta-analysis and analyzed using specific R packages. RESULTS Six articles were divided into two groups (group 1: comparison of mean methylation levels between healthy subjects and patients with chronic pain; group 2: correlation between mean methylation levels and pain sensation). A non-significant mean difference was obtained from the analysis of group 1 with a value of 3.97 (95% C.I. -7.79; 15.73). Analysis of group 2 showed a high level of variability between studies (correlation = 0.35, 95% C.I. -0.12; 0.82) due to their heterogeneity (I2 = 97%, p < 0.01). CONCLUSIONS Despite the high variability observed in the different studies analyzed, our results suggest that hypermethylation and increased pain sensitivity could be connected, possibly due to the variation of TRPA1 expression.
Collapse
Affiliation(s)
- Fulvio Celsi
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Francesca Peri
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Julia Cavasin
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Luisa Zupin
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Giorgio Cozzi
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Egidio Barbi
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
14
|
Konkoly J, Kormos V, Gaszner B, Correia P, Berta G, Biró-Sütő T, Zelena D, Pintér E. Transient receptor potential ankyrin 1 ion channel expressed by the Edinger-Westphal nucleus contributes to stress adaptation in murine model of posttraumatic stress disorder. Front Cell Dev Biol 2022; 10:1059073. [PMID: 36561364 PMCID: PMC9763580 DOI: 10.3389/fcell.2022.1059073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The centrally projecting Edinger-Westphal nucleus (EWcp) is involved in stress adaptation. Transient receptor potential ankyrin 1 (TRPA1) mRNA was previously shown to be expressed abundantly in mouse and human EWcp urocortin 1 (UCN1) positive neurons and reacted to chronic stress. Since UCN1 neurons are deeply implicated in stress-related disorders, we hypothesized that TRPA1/UCN1 neurons are also affected in posttraumatic stress disorder (PTSD). We examined male Trpa1 wild type (WT) and gene-deficient (KO) mice in the single prolonged stress (SPS) model of PTSD. Two weeks later the behavioral changes were monitored by forced swim test (FST) and restraint. The Trpa1 and Ucn1 mRNA expression and the UCN1 peptide content were assessed by RNAscope in situ hybridization technique combined with immunofluorescence labeling in the EWcp. SPS-induced immobility was lower in Trpa1 KO compared to WT animals, both in the FST and restraint, corresponding to diminished depression-like behavior. The copy number of Trpa1 mRNA decreased significantly in EWcp of WT animals in response to SPS. Higher basal Ucn1 mRNA expression was observed in the EWcp of KO animals, that was not affected by SPS exposure. EWcp neurons of WT animals responded to SPS with substantially increased amount of UCN1 peptide content compared to control animals, whereas such changes were not observable in KO mice. The decreased Trpa1 mRNA expression in the SPS model of PTSD associated with increased neuronal UCN1 peptide content suggests that this cation channel might be involved in the regulation of stress adaptation and may contribute to the pathomechanism of PTSD.
Collapse
Affiliation(s)
- János Konkoly
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, University of Pécs, Medical School, Pécs, Hungary
| | - Pedro Correia
- Department of Physiology, University of Pécs, Medical School, Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology, University of Pécs, Medical School, Pécs, Hungary
- Signal Transduction Research Group, János Szentágothai Research Centre, Pécs, Hungary
| | - Tünde Biró-Sütő
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary
| | - Dóra Zelena
- Department of Physiology, University of Pécs, Medical School, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary
| |
Collapse
|
15
|
Nirvanie-Persaud L, Millis RM. Epigenetics and Pain: New Insights to an Old Problem. Cureus 2022; 14:e29353. [PMID: 36159345 PMCID: PMC9487372 DOI: 10.7759/cureus.29353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
Physicians and neuroscientists have long observed that factors such as thoughts, emotions, and expectations can influence the perception of pain. Pain can be described as an unpleasant sensation that causes physical discomfort and emotional distress. It alerts an individual to seek help and is the main complaint that brings individuals to physicians. Though it is associated with probable tissue damage, such damage may be subtle, sometimes involving the release of algesic chemicals, and also influenced by attitudes, beliefs, personality, and social factors. The perception of pain may vary due to a multitude of these factors influencing the ascending sensory impulse propagation to the primary somatosensory cortex. The genetics and epigenetics of pain modulators have been previously studied, but there is a lack of application in the everyday management and treatment of pain due to the paucity of valid evidence-based data. We used the PubMed database as our primary tool for researching current literature on this topic. The MeSH terms used included: gene modification, epigenetics, genes, pain, analgesia, “types of pain, and theories of pain. The results were filtered as follows: publications within the last 10 years, generalized pain studies regarding the biopsychosocial aspect of pain, pertinent genes, and epigenetic modulation of those genes; 52 publications were selected for review. By addressing the external factorial causes and the appropriate application of epigenetic principles which affect pain perception, it is hoped that this review will motivate future advancements in the management of acute and/or chronic pain.
Collapse
|
16
|
Buhck M, Achenbach J, Wiese B, Tran AT, Stuhrmann M, Jaeger B, Bernateck M, Schneider N, Karst M. The interplay of chronic stress and genetic traits discriminates between patients suffering from multisomatoform disorder with pain as the leading symptom and matched controls. J Affect Disord 2022; 308:466-472. [PMID: 35460735 DOI: 10.1016/j.jad.2022.04.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Somatoform disorders and functional somatic syndromes (FSS) with symptoms that are not sufficiently explained by physical or technical examination are among the most challenging underlying causes. Many different somatoform disorders and FSS have overlapping symptoms, often with pain as the most prevalent one, leading to a high burden of disease. The concept of multisomatoform disorder (MSD) has been developed to acknowledge that fact. We analyzed a group of 151 patients and 149 matched controls to identify interactions of genetic and environmental factors with a possible influence on the development of MSD. DESIGN In a retrospective case-control study, we performed a statistical analysis on 151 patients and 149 matched controls using logistic regression and a Classification and Regression Tree (CART) analysis. RESULTS The logistic regression analysis of genes and environmental factors demonstrated significant differences in the results of the Trier Inventory of Chronic Stress (TICS) questionnaire, the single nucleotide polymorphism rs1800955 of the dopamine receptor D4 and the single nucleotide polymorphism rs4818 of the enzyme catechol-O-methyltransferase between patients with MSD and healthy controls. The resulting decision tree of the CART analysis determined that the TICS questionnaire was able to differentiate patients and controls most accurately, followed by certain genotypes of the 5-hydroxytryptamine receptor 2A and a single nucleotide polymorphism of the enzyme catechol-O-methyltransferase. CONCLUSIONS The results of the statistical analysis identified a gene-environmental interaction possibly leading to MSD. The resulting identifiers could be used as a reference to inform diagnostic algorithms to easier identify patients suffering from MSD.
Collapse
Affiliation(s)
- M Buhck
- Department of Child and Adolescent Psychiatry, Children's Hospital Auf der Bult Hannover, 30173 Hannover, Germany
| | - J Achenbach
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine, and Pain Medicine, Nordstadt Krankenhaus Hannover, 30167 Hannover, Germany.
| | - B Wiese
- Institute for General Practice and Palliative Care, Hannover Medical School, 30625 Hannover, Germany
| | - A T Tran
- Department of Neurology und Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - M Stuhrmann
- Institute of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - B Jaeger
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, 30625 Hannover, Germany
| | - M Bernateck
- Center for Pain Medicine Hannover, 30159 Hannover, Germany
| | - N Schneider
- Institute for General Practice and Palliative Care, Hannover Medical School, 30625 Hannover, Germany
| | - M Karst
- Department of Anesthesiology and Intensive Care Medicine, Pain Clinic, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
17
|
Neurohumoral Profiles and Childhood Adversity of Patients with Multisomatoform Disorder and Pain as the Leading Bodily Symptom. DISEASE MARKERS 2022; 2022:7958375. [PMID: 35242246 PMCID: PMC8888045 DOI: 10.1155/2022/7958375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022]
Abstract
Objective Patients suffering from chronic pain often present with multifactorial underlying conditions, sometimes without concrete pathological physical findings. Functional somatic syndromes (FSS) and somatoform disorders show a high prevalence of 8-20% and are often associated with adverse childhood experiences (ACE) and chronic stress. As many different FSS have overlapping symptoms, the concept of multisomatoform disorder (MSD) has been introduced as an encompassing concept. We hypothesize that a common neurohumoral profile is present in patients with MSD that is distinct from gender- and age-matched controls and thus provides insight into possible common underlying mechanisms. Design In 151 patients with MSD (138 females) and 149 matched controls (131 females), we determined ACE by the Childhood Trauma Questionnaire (CTQ) and chronic stress by the Trier Inventory for Chronic Stress (TICS). Furthermore, the serum levels of leptin, FSH, LH, cortisol, DHEA-S, and IGF-1 have been assessed. Results There were significant differences in the levels of leptin, FSH, IGF-1, and cortisol between patients and controls, mainly driven by female participants. Levels of leptin were significantly correlated with BMI in patients, in controls, and in the female subgroup. This correlation was exaggerated in female patients when compared to female controls. Both CTQ and TICS predicted MSD directly and indirectly through the levels of leptin. Conclusion There is evidence of a distinct neurohumoral profile in female patients with MSD when compared to matched healthy controls, similar to what has been demonstrated in other chronic pain states. The observed profile can be taken as possible evidence for a dysregulated response to chronic stress and metabolic balance as well as a state of hypocortisolism and HPA-axis dysfunction. ACE and chronic stress play a major role in the development of MSD and altered neurohumoral profile.
Collapse
|
18
|
Leptin promoter methylation in female patients with painful multisomatoform disorder and chronic widespread pain. Clin Epigenetics 2022; 14:13. [PMID: 35063029 PMCID: PMC8783406 DOI: 10.1186/s13148-022-01235-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/13/2022] [Indexed: 12/18/2022] Open
Abstract
Background Different functional somatic syndromes (FSS), fibromyalgia (FMS) and other unexplained painful conditions share many common clinical traits and are characterized by troubling and functionally disabling somatic symptoms. Chronic pain is most frequently reported and at the center of patients’ level of disease burden. The construct of multisomatoform disorder (MSD) allows to subsume severely impaired patients suffering from FSS, FMS and other unexplained painful conditions to be examined for common underlying processes. Altered leptin levels and a pathological response of the HPA-axis as a result of chronic stress and childhood trauma have been suggested as one of the driving factors of disease development and severity. Previous studies have demonstrated that methylation of the leptin promoter can play a regulatory role in addiction. In this study, we hypothesized that methylation of the leptin promoter is influenced by the degree of childhood traumatization and differs between patients with MSD and controls. A cohort of 151 patients with MSD and 149 matched healthy volunteers were evaluated using clinical and psychometric assessment while methylation level analysis of the leptin promoter was performed using DNA isolated from whole blood. Results In female controls, we found CpG C-167 to be negatively correlated with leptin levels, whereas in female patients CpG C-289, C-255, C-193, C-167 and methylation cluster (C-291 to C-167) at putative bindings sites for transcription factors Sp1 and c/EBPalpha were negatively correlated with leptin levels. Methylation levels were significantly lower in female patients CpG C-289 compared with controls. When looking at female patients with chronic widespread pain methylation levels were significantly lower at CpG C-289, C-255 and methylation cluster (C-291 to C-167). Conclusion Our findings support the hypothesis that epigenetic regulation of leptin plays a role in the regulation of leptin levels in patients with MSD. This effect is more pronounced in patients with chronic widespread pain. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01235-5.
Collapse
|
19
|
Wu S, Yang T, He Y, Cui X, Luo X, Liu J. Association Between Hyperactivity Symptoms and Somatic Complaints: Mediating and Moderating Mechanisms in Childhood Trauma and Life Events Among Chinese Male Adolescents. Front Psychiatry 2021; 12:630845. [PMID: 34646169 PMCID: PMC8504436 DOI: 10.3389/fpsyt.2021.630845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Prior research has found that attention deficit/hyperactivity disorder (ADHD) - particularly hyperactivity symptoms - is associated with various somatic complaints. The present study further tests the relationship between hyperactivity symptoms and somatic complaints in Chinese male adolescents and explores the underlying moderating and mediating mechanisms. Methods: Our sample included 1,586 males (age = 12-16) recruited as part of an epidemiological study of child and adolescent mental disorders from April to July, 2014. Hyperactivity symptoms and somatic complaints were assessed with Achenbach's Child Behavior Checklist (CBCL), and the Childhood Trauma Questionnaire Short Form (CTQ-SF) and Adolescent Life Events Scale (ASLEC) were used to assess exposure to childhood trauma and recent life events. Results: Adolescents with hyperactivity symptoms experienced more emotional abuse, physical abuse, life events, and reported more somatic complaints symptoms (p < 0.0083 or p < 0.05). Linear regression analysis showed that hyperactivity, total childhood trauma score/emotional abuse and sexual abuse and ASLEC score significantly predicted somatic complaints (all p < 0.05). Emotional abuse and life events mediated the relationship between hyperactivity symptoms and somatic complaints. Furthermore, childhood trauma moderated the path between hyperactivity symptoms and ASLEC in the moderation mediation model for predicting somatic complaints (p < 0.05). Conclusions: Hyperactivity symptoms had a significant impact on somatic complaints among Chinese male adolescents. Furthermore, childhood trauma and life events affected the relationship between hyperactivity symptoms and somatic complaints. Interventions for somatic complaints in male adolescents with hyperactivity symptoms should thus consider history of childhood trauma and life events.
Collapse
Affiliation(s)
- Shuxian Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Technology Institute on Mental Disorders, Changsha, China
| | - Tingyu Yang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Technology Institute on Mental Disorders, Changsha, China
| | - Yuqiong He
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Technology Institute on Mental Disorders, Changsha, China
| | - Xilong Cui
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Technology Institute on Mental Disorders, Changsha, China
| | - Xuerong Luo
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Technology Institute on Mental Disorders, Changsha, China
| | - Jianbo Liu
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, School of Mental Health, Shenzhen University, Shenzhen, China
| |
Collapse
|
20
|
Møller Johansen L, Gerra MC, Arendt-Nielsen L. Time course of DNA methylation in pain conditions: From experimental models to humans. Eur J Pain 2020; 25:296-312. [PMID: 33063322 DOI: 10.1002/ejp.1674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Throughout the last decade, research has uncovered associations between pain and epigenetic alterations caused by environmental factors. Specifically, studies have demonstrated correlations between pain conditions and altered DNA methylation patterns. Thus, DNA methylation has been revealed as a possible modulator or contributor to pain conditions, providing a potential therapeutic target for treatment by DNA methylation modification. To develop such treatments, it is necessary to clarify a wide number of aspects on how DNA methylation affects pain perception; first and foremost, the temporal dynamics. The objective of the present review is to provide an overview of current knowledge on temporal dynamics of DNA methylation in response to pain, and to investigate if a timeframe can be established based on the data of currently published studies. DATABASES AND DATA TREATMENT PubMed, MEDLINE, Google Scholar and Embase were searched comprehensively for studies of DNA methylation in neuropathic, inflammatory and alternative animal pain models, and in chronic pain patients including Complex Regional Pain Syndrome, chronic postsurgical pain, chronic widespread pain, fibromyalgia and Crohn's disease. RESULTS We identified 34 articles highlighting variations in temporal dynamics of DNA methylation across species and between different types of pain. These studies represent a starting point to uncover new insights in the DNA methylation time course in pain. CONCLUSIONS No timeframe can currently be made for the DNA methylation response to pain in any of the reviewed conditions, highlighting an important focus area for future research.
Collapse
Affiliation(s)
- Lonnie Møller Johansen
- Department of Health Science and Technology, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Maria Carla Gerra
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
21
|
Souza Monteiro de Araujo D, Nassini R, Geppetti P, De Logu F. TRPA1 as a therapeutic target for nociceptive pain. Expert Opin Ther Targets 2020; 24:997-1008. [PMID: 32838583 PMCID: PMC7610834 DOI: 10.1080/14728222.2020.1815191] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction Chronic pain affects approximatively 30–50% of the population globally. Pathologies such as migraine, diabetic neuropathy, nerve injury and treatment with chemotherapeutic agents, can induce chronic pain. Members of the transient receptor potential (TRP) channels, including the TRP ankyrin 1 (TRPA1), have a major role in pain. Areas covered We focus on TRPA1 as a therapeutic target for pain relief. The structure, localization, and activation of the channel and its implication in different pathways to signal pain are described. This paper underlines the role of pharmacological interventions on TRPA1 to reduce pain in numerous pain conditions. We conducted a literature search in PubMed up to and including July 2020. Expert opinion Our understanding of the molecular mechanisms underlying the sensitization of central and peripheral nociceptive pathways is limited. Preclinical evidence indicates that, in murine models of pain diseases, numerous mechanisms converge on the pathway that encompasses oxidative stress and Schwann cell TRPA1 to sustain chronic pain. Programs to identify and develop treatments to attenuate TRPA1-mediated chronic pain have emerged from this knowledge. Antagonists explored as a novel class of analgesics have a new and promising target in the TRPA1 expressed by peripheral glial cells.
Collapse
Affiliation(s)
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence , Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence , Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence , Florence, Italy
| |
Collapse
|
22
|
Martinez-Lavin M. Is there a gender difference in maltreatment-associated fibromyalgia? EClinicalMedicine 2020; 25:100468. [PMID: 32743488 PMCID: PMC7385447 DOI: 10.1016/j.eclinm.2020.100468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 11/30/2022] Open
|
23
|
Neurotoxicity of nanoparticles entering the brain via sensory nerve-to-brain pathways: injuries and mechanisms. Arch Toxicol 2020; 94:1479-1495. [DOI: 10.1007/s00204-020-02701-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022]
|
24
|
Takenaka S, Sukenaga N, Ohmuraya M, Matsuki Y, Maeda L, Takao Y, Hirose M. Association between neuropathic pain characteristics and DNA methylation of transient receptor potential ankyrin 1 in human peripheral blood. Medicine (Baltimore) 2020; 99:e19325. [PMID: 32080151 PMCID: PMC7034692 DOI: 10.1097/md.0000000000019325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Elucidation of epigenetic mechanisms correlating with neuropathic pain in humans is crucial for the prevention and treatment of this treatment-resistant pain state. In the present study, associations between neuropathic pain characteristics and DNA methylation of the transient receptor potential ankyrin 1 (TRPA1) gene were evaluated in chronic pain patients and preoperative patients. Pain and psychological states were prospectively assessed in patients who suffered chronic pain or were scheduled for thoracic surgery. Neuropathic characteristics were assessed using the Douleur Neuropathique 4 (DN4) questionnaire. DNA methylation levels of the CpG islands in the TRPA1 gene were examined using whole blood. Forty-eight adult patients were enrolled in this study. Increases in DNA methylation rates at CpG -51 showed positive correlations with increases in the DN4 score both in preoperative and chronic pain patients. Combined methylation rates at CpG -51 in these patients also significantly increased together with increase in DN4 scores. Neuropathic pain characteristics are likely associated with methylation rates at the promoter region of the TRPA1 gene in human peripheral blood.
Collapse
Affiliation(s)
| | | | | | - Yuka Matsuki
- Department of Anesthesiology and Reanimatology, Faculty of Medicine Sciences, University of Fukui, Fukui
| | - Lynn Maeda
- Department of Anesthesiology and Pain Management, Nishinomiya Municipal Central Hospital, Hyogo, Japan
| | | | | |
Collapse
|