1
|
Wang N, Li S, Yang L. DNA methylation patterns and predictive models for metabolic disease risk in offspring of gestational diabetes mellitus. Diabetol Metab Syndr 2025; 17:147. [PMID: 40312441 PMCID: PMC12046688 DOI: 10.1186/s13098-025-01707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/18/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a common pregnancy complication with far-reaching implications for maternal and offspring health, strongly tied to epigenetic modifications, particularly DNA methylation. However, the precise molecular mechanisms by which GDM increases long-term metabolic disease risk in offspring remain insufficiently understood. METHODS We integrated multiple publicly available whole-genome methylation datasets focusing on neonates born to mothers with GDM. Using differentially methylated positions (DMPs) identified in these datasets, we developed a machine learning model to predict GDM-associated epigenetic changes, then validated its performance in a clinical target cohort. RESULTS In the public datasets, we identified DMPs corresponding to genes involved in glucose homeostasis and insulin sensitivity, with marked enrichment in insulin signaling, AMPK activation, and adipocytokine signaling pathways. The predictive model exhibited strong performance in public data (AUC = 0.89) and moderate performance in the clinical cohort (AUC = 0.82). Although CpG sites in the PPARG and INS genes displayed similar methylation trends in both datasets, the small validation cohort did not yield statistically significant differences. CONCLUSIONS By integrating robust public data with a targeted validation cohort, this study provides a comprehensive epigenetic profile of GDM-exposed offspring. Owing to the limited sample size and lack of statistical significance, definitive conclusions cannot yet be drawn; however, the observed directional consistency suggests promising avenues for future research. Larger and more diverse cohorts are warranted to confirm these preliminary findings, clarify their clinical implications, and enhance early risk assessment for metabolic disorders in children born to GDM mothers.
Collapse
Affiliation(s)
- Na Wang
- Department of Internal Medicine, Jiaxing Maternity and Child Health Care Hospital, Jiaxing Zhejiang, 314051, China
| | - Suping Li
- Fetal Medicine Center, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, 314051, Zhejiang, China
| | - Li Yang
- School of Life Sciences and Technology , Tongji University, Shanghai, 200092, Shanghai, China.
- Fetal Medicine Center, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, 314051, Zhejiang, China.
| |
Collapse
|
2
|
Baetens M, Van Gaever B, Deblaere S, De Koker A, Meuris L, Callewaert N, Janssens S, Roelens K, Roets E, Van Dorpe J, Dehaene I, Menten B. Advancing diagnosis and early risk assessment of preeclampsia through noninvasive cell-free DNA methylation profiling. Clin Epigenetics 2024; 16:182. [PMID: 39695764 DOI: 10.1186/s13148-024-01798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Aberrant embryo implantation and suboptimal placentation can lead to (severe) complications such as preeclampsia and fetal growth restriction later in pregnancy. Current identification of high-risk pregnancies relies on a combination of risk factors, biomarkers, and ultrasound examinations, a relatively inaccurate approach. Previously, aberrant DNA methylation due to placental hypoxia has been identified as a potential marker of placental insufficiency and, hence, potential (future) pregnancy complications. The goal of the Early Prediction of prEgnancy Complications Testing, or the ExPECT study, is to validate a genome-wide, cell-free DNA (cfDNA) methylation strategy to diagnose preeclampsia accurately. More importantly, the predictive potential of this strategy is also explored to reliably identify high-risk pregnancies early in gestation. Furthermore, a longitudinal study was conducted, including sequential blood samples from pregnant individuals experiencing both uneventful and complicated gestations, to assess the methylation dynamics of cfDNA throughout these pregnancies. A significant strength of this study is its enzymatic digest, which enriches CpG-rich regions across the genome without the need for proprietary reagents or prior selection of regions of interest. This makes it useful for the cost-effective discovery of novel markers. RESULTS Investigation of methylation patterns throughout pregnancy showed different methylation trends between unaffected and affected pregnancies. We detected differentially methylated regions (DMRs) in pregnancies complicated with preeclampsia as early as 12 weeks of gestation, with distinct differences in the methylation profile between early and late pregnancy. Two classification models were developed to diagnose and predict preeclampsia, demonstrating promising results on a small set of validation samples. CONCLUSIONS This study offers valuable insights into methylation changes at specific genomic regions throughout pregnancy, revealing critical differences between normal and complicated pregnancies. The power of noninvasive cfDNA methylation profiling was successfully proven, suggesting the potential to integrate this noninvasive approach into routine prenatal care.
Collapse
Affiliation(s)
- Machteld Baetens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - Bram Van Gaever
- Department of Pathology, Ghent University, Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Stephanie Deblaere
- Department of Obstetrics and Gynaecology, Ghent University Hospital, Ghent, Belgium
| | - Andries De Koker
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Leander Meuris
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Nico Callewaert
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sandra Janssens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kristien Roelens
- Department of Obstetrics and Gynaecology, Ghent University Hospital, Ghent, Belgium
| | - Ellen Roets
- Department of Obstetrics and Gynaecology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University, Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Isabelle Dehaene
- Department of Obstetrics and Gynaecology, Ghent University Hospital, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Jia Y, Xie H, Wu S, Dong J, Ying H. Induction of FAM46C expression mediated by DNMT3A downregulation is involved in early-onset preeclampsia through gene body methylation. Cell Signal 2024; 125:111506. [PMID: 39532219 DOI: 10.1016/j.cellsig.2024.111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Aberrant methylation of genomic DNA has been found in preeclamptic placentas, which is characterized by elevated DNA methylation and hypermethylation of gene body regions, but the underlying mechanism is not yet fully understood. METHODS Global DNA methylation was assessed through ELISA and HPLC. The methylation sites were detected using the Illumina Human Methylation 450 K Microarray. The methylation level of FAM46C promoter and gene body was detected through the bisulfite sequencing. RNA-seq was utilized to investigate the mechanism by which DNMT3A and FAM46C mediate the migration and invasion of trophoblast cells. RESULTS We discovered that DNMT3A knockdown led to elevated levels of gene body methylation and FAM46C transcription. FAM46C downregulation completely rescued the suppressive effects caused by DNMT3A knockdown on the migration and invasion of trophoblast cells. Mechanistically, DNMT3A reduction led to an increase in the enrichment of DNMT3B and DNMT1 in the gene body region of FAM46C. The results of transcriptome sequencing showed that DNMT3A and FAM46C regulate the adhesion of trophoblast cells. Elevated expression of FAM46C and increased methylation levels within its gene body region were observed in extravillous trophoblast cells of early-onset preeclamptic placentas. CONCLUSIONS DNMT3A-mediated aberrant FAM46C gene body methylation is relevant to the development of early-onset preeclampsia.
Collapse
Affiliation(s)
- Yuanhui Jia
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han Xie
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengyu Wu
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqi Dong
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Ying
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China..
| |
Collapse
|
4
|
Lim JH, Lim JM, Lee HM, Lee HJ, Kwak DW, Han YJ, Kim MY, Jung SH, Kim YR, Ryu HM, Kim KP. Systematic Proteome Profiling of Maternal Plasma for Development of Preeclampsia Biomarkers. Mol Cell Proteomics 2024; 23:100826. [PMID: 39111712 PMCID: PMC11405801 DOI: 10.1016/j.mcpro.2024.100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 09/08/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder of pregnancy with various clinical symptoms. However, traditional markers for the disease including high blood pressure and proteinuria are poor indicators of the related adverse outcomes. Here, we performed systematic proteome profiling of plasma samples obtained from pregnant women with PE to identify clinically effective diagnostic biomarkers. Proteome profiling was performed using TMT-based liquid chromatography-mass spectrometry (LC-MS/MS) followed by subsequent verification by multiple reaction monitoring (MRM) analysis on normal and PE maternal plasma samples. Functional annotations of differentially expressed proteins (DEPs) in PE were predicted using bioinformatic tools. The diagnostic accuracies of the biomarkers for PE were estimated according to the area under the receiver-operating characteristics curve (AUC). A total of 1307 proteins were identified, and 870 proteins of them were quantified from plasma samples. Significant differences were evident in 138 DEPs, including 71 upregulated DEPs and 67 downregulated DEPs in the PE group, compared with those in the control group. Upregulated proteins were significantly associated with biological processes including platelet degranulation, proteolysis, lipoprotein metabolism, and cholesterol efflux. Biological processes including blood coagulation and acute-phase response were enriched for down-regulated proteins. Of these, 40 proteins were subsequently validated in an independent cohort of 26 PE patients and 29 healthy controls. APOM, LCN2, and QSOX1 showed high diagnostic accuracies for PE detection (AUC >0.9 and p < 0.001, for all) as validated by MRM and ELISA. Our data demonstrate that three plasma biomarkers, identified by systematic proteomic profiling, present a possibility for the assessment of PE, independent of the clinical characteristics of pregnant women.
Collapse
Affiliation(s)
- Ji Hyae Lim
- Smart MEC Healthcare R&D Center, CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam, Republic of Korea
| | - Jae Min Lim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
| | - Hyeong Min Lee
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
| | - Hyun Jung Lee
- Department of Obstetrics & Gynecology, CHA Ilsan Medical Center, CHA University, Gyeonggi-do, Republic of Korea
| | - Dong Wook Kwak
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Gyeonggi-do, Republic of Korea
| | - You Jung Han
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| | - Moon Young Kim
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| | - Sang Hee Jung
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| | - Hyun Mee Ryu
- Smart MEC Healthcare R&D Center, CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam, Republic of Korea; Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seoul, Republic of Korea.
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea; Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Raja Xavier JP, Okumura T, Apweiler M, Chacko NA, Singh Y, Brucker SY, Takeda S, Lang F, Salker MS. Placental growth factor mediates pathological uterine angiogenesis by activating the NFAT5-SGK1 signaling axis in the endometrium: implications for preeclampsia development. Biol Res 2024; 57:55. [PMID: 39152497 PMCID: PMC11330076 DOI: 10.1186/s40659-024-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 08/19/2024] Open
Abstract
After menstruation the uterine spiral arteries are repaired through angiogenesis. This process is tightly regulated by the paracrine communication between endometrial stromal cells (EnSCs) and endothelial cells. Any molecular aberration in these processes can lead to complications in pregnancy including miscarriage or preeclampsia (PE). Placental growth factor (PlGF) is a known contributing factor for pathological angiogenesis but the mechanisms remain poorly understood. In this study, we investigated whether PlGF contributes to pathological uterine angiogenesis by disrupting EnSCs and endothelial paracrine communication. We observed that PlGF mediates a tonicity-independent activation of nuclear factor of activated T cells 5 (NFAT5) in EnSCs. NFAT5 activated downstream targets including SGK1, HIF-1α and VEGF-A. In depth characterization of PlGF - conditioned medium (CM) from EnSCs using mass spectrometry and ELISA methods revealed low VEGF-A and an abundance of extracellular matrix organization associated proteins. Secreted factors in PlGF-CM impeded normal angiogenic cues in endothelial cells (HUVECs) by downregulating Notch-VEGF signaling. Interestingly, PlGF-CM failed to support human placental (BeWo) cell invasion through HUVEC monolayer. Inhibition of SGK1 in EnSCs improved angiogenic effects in HUVECs and promoted BeWo invasion, revealing SGK1 as a key intermediate player modulating PlGF mediated anti-angiogenic signaling. Taken together, perturbed PlGF-NFAT5-SGK1 signaling in the endometrium can contribute to pathological uterine angiogenesis by negatively regulating EnSCs-endothelial crosstalk resulting in poor quality vessels in the uterine microenvironment. Taken together the signaling may impact on normal trophoblast invasion and thus placentation and, may be associated with an increased risk of complications such as PE.
Collapse
Affiliation(s)
- Janet P Raja Xavier
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Toshiyuki Okumura
- Department of Obstetrics and Gynaecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Melina Apweiler
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Nirzari A Chacko
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Yogesh Singh
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sara Y Brucker
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Satoru Takeda
- Department of Obstetrics and Gynaecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Madhuri S Salker
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany.
| |
Collapse
|
6
|
Jia Y, Lu W, Xie H, Sheng Y, Wang L, Lv W, Ling L, Dong J, Jia X, Wu S, Liu W, Ying H. Upregulation of Siglec-6 induces mitochondrial dysfunction by promoting GPR20 expression in early-onset preeclampsia. J Transl Med 2024; 22:674. [PMID: 39039496 PMCID: PMC11265165 DOI: 10.1186/s12967-024-05505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Preeclampsia, especially early-onset preeclampsia (EO-PE), is a pregnancy complication that has serious consequences for the health of both the mother and the fetus. Although abnormal placentation due to mitochondrial dysfunction is speculated to contribute to the development of EO-PE, the underlying mechanisms have yet to be fully elucidated. METHODS The expression and localization of Siglec-6 in the placenta from normal pregnancies, preterm birth and EO-PE patients were examined by RT-qPCR, Western blot and IHC. Transwell assays were performed to evaluate the effect of Siglec-6 on trophoblast cell migration and invasion. Seahorse experiments were conducted to assess the impact of disrupting Siglec-6 expression on mitochondrial function. Co-IP assay was used to examine the interaction of Siglec-6 with SHP1/SHP2. RNA-seq was employed to investigate the mechanism by which Siglec-6 inhibits mitochondrial function in trophoblast cells. RESULTS The expression of Siglec-6 in extravillous trophoblasts is increased in placental tissues from EO-PE patients. Siglec-6 inhibits trophoblast cell migration and invasion and impairs mitochondrial function. Mechanismly, Siglec-6 inhibits the activation of NF-κB by recruiting SHP1/SHP2, leading to increased expression of GPR20. Notably, the importance of GPR20 function downstream of Siglec-6 in trophoblasts is supported by the observation that GPR20 downregulation rescues defects caused by Siglec-6 overexpression. Finally, overexpression of Siglec-6 in the placenta induces a preeclampsia-like phenotype in a pregnant mouse model. CONCLUSIONS This study indicates that the regulatory pathway Siglec-6/GPR20 has a crucial role in regulating trophoblast mitochondrial function, and we suggest that Siglec-6 and GPR20 could serve as potential markers and targets for the clinical diagnosis and therapy of EO-PE.
Collapse
Affiliation(s)
- Yuanhui Jia
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjing Lu
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han Xie
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yifan Sheng
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Luyao Wang
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenqi Lv
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lijun Ling
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqi Dong
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinrui Jia
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengyu Wu
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenqiang Liu
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Ying
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
7
|
Deng F, Lei J, Qiu J, Zhao C, Wang X, Li M, Sun M, Zhang M, Gao Q. DNA methylation landscape in pregnancy-induced hypertension: progress and challenges. Reprod Biol Endocrinol 2024; 22:77. [PMID: 38978060 PMCID: PMC11229300 DOI: 10.1186/s12958-024-01248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Gestational hypertension (PIH), especially pre-eclampsia (PE), is a common complication of pregnancy. This condition poses significant risks to the health of both the mother and the fetus. Emerging evidence suggests that epigenetic modifications, particularly DNA methylation, may play a role in initiating the earliest pathophysiology of PIH. This article describes the relationship between DNA methylation and placental trophoblast function, genes associated with the placental microenvironment, the placental vascular system, and maternal blood and vascular function, abnormalities of umbilical cord blood and vascular function in the onset and progression of PIH, as well as changes in DNA methylation in the progeny of PIH, in terms of maternal, fetal, and offspring. We also explore the latest research on DNA methylation-based early detection, diagnosis and potential therapeutic strategies for PIH. This will enable the field of DNA methylation research to continue to enhance our understanding of the epigenetic regulation of PIH genes and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Fengying Deng
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Jiahui Lei
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Junlan Qiu
- Department of Oncology and Hematology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, 215153, P.R. China
| | - Chenxuan Zhao
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Xietong Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Min Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Miao Sun
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.
| | - Meihua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| | - Qinqin Gao
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.
| |
Collapse
|
8
|
Eaves LA, Harrington CE, Fry RC. Epigenetic Responses to Nonchemical Stressors: Potential Molecular Links to Perinatal Health Outcomes. Curr Environ Health Rep 2024; 11:145-157. [PMID: 38580766 DOI: 10.1007/s40572-024-00435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 04/07/2024]
Abstract
PURPOSE OF REVIEW We summarize the recent literature investigating exposure to four nonchemical stressors (financial stress, racism, psychosocial stress, and trauma) and DNA methylation, miRNA expression, and mRNA expression. We also highlight the relationships between these epigenetic changes and six critical perinatal outcomes (preterm birth, low birth weight, preeclampsia, gestational diabetes, childhood allergic disease, and childhood neurocognition). RECENT FINDINGS Multiple studies have found financial stress, psychosocial stress, and trauma to be associated with DNA methylation and/or miRNA and mRNA expression. Fewer studies have investigated the effects of racism. The majority of studies assessed epigenetic or genomic changes in maternal blood, cord blood, or placenta. Several studies included multi-OMIC assessments in which DNA methylation and/or miRNA expression were associated with gene expression. There is strong evidence for the role of epigenetics in driving the health outcomes considered. A total of 22 biomarkers, including numerous HPA axis genes, were identified to be epigenetically altered by both stressors and outcomes. Epigenetic changes related to inflammation, the immune and endocrine systems, and cell growth and survival were highlighted across numerous studies. Maternal exposure to nonchemical stressors is associated with epigenetic and/or genomic changes in a tissue-specific manner among inflammatory, immune, endocrine, and cell growth-related pathways, which may act as mediating pathways to perinatal health outcomes. Future research can test the mediating role of the specific biomarkers identified as linked with both stressors and outcomes. Understanding underlying epigenetic mechanisms altered by nonchemical stressors can provide a better understanding of how chemical and nonchemical exposures interact.
Collapse
Affiliation(s)
- Lauren A Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Cailee E Harrington
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Vasilyeva OY, Tolmacheva EN, Dmitriev AE, Darkova YA, Sazhenova EA, Nikitina TV, Lebedev IN, Vasilyev SA. Aberrant methylation of placental development genes in chorionic villi of spontaneous abortions with trisomy 16. Vavilovskii Zhurnal Genet Selektsii 2024; 28:198-203. [PMID: 38680176 PMCID: PMC11043499 DOI: 10.18699/vjgb-24-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/18/2023] [Indexed: 05/01/2024] Open
Abstract
In humans, aneuploidy is incompatible with the birth of healthy children and mainly leads to the death of embryos in the early stages of development in the first trimester of pregnancy. Trisomy 16 is the most common aneuploidy among spontaneous abortions of the first trimester of pregnancy. However, the mechanisms leading to the death of embryos with trisomy 16 remain insufficiently investigated. One of these potential mechanisms is abnormal placental development, including aberrant remodeling of spiral arteries. Spiral artery remodeling involves the migration of trophoblast cells into the maternal spiral arteries, replacing their endothelium and remodeling to ensure a stable embryonic nutrition and oxygen supply. This is a complex process which depends on many factors from both the embryo and the mother. We analyzed the methylation level of seven genes (ADORA2B, NPR3, PRDM1, PSG2, PHTLH, SV2C, and TICAM2) involved in placental development in the chorionic villi of spontaneous abortions with trisomy 16 (n = 14), compared with spontaneous abortions with a normal karyotype (n = 31) and the control group of induced abortions (n = 10). To obtain sequencing libraries, targeted amplification of individual gene regions using designed oligonucleotide primers for bisulfite-converted DNA was used. The analysis was carried out using targeted bisulfite massive parallel sequencing. In the group of spontaneous abortions with trisomy 16, the level of methylation of the PRDM1 and PSG2 genes was significantly increased compared to induced abortions (p = 0.0004 and p = 0.0015, respectively). In the group of spontaneous abortions, there was no increase in the level of methylation of the PRDM1 and PSG2 genes, but the level of methylation of the ADORA2B gene was significantly increased compared to the induced abortions (p = 0.032). The results obtained indicate the potential mechanisms of the pathogenetic effect of trisomy 16 on the placental development with the participation of the studied genes.
Collapse
Affiliation(s)
- O Yu Vasilyeva
- Research Institute of Medical Genetics of the Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - E N Tolmacheva
- Research Institute of Medical Genetics of the Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - A E Dmitriev
- National Research Tomsk State University, Tomsk, Russia
| | - Ya A Darkova
- National Research Tomsk State University, Tomsk, Russia
| | - E A Sazhenova
- Research Institute of Medical Genetics of the Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - T V Nikitina
- Research Institute of Medical Genetics of the Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - I N Lebedev
- Research Institute of Medical Genetics of the Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - S A Vasilyev
- Research Institute of Medical Genetics of the Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
10
|
Fernández-Boyano I, Inkster AM, Yuan V, Robinson WP. eoPred: predicting the placental phenotype of early-onset preeclampsia using public DNA methylation data. Front Genet 2023; 14:1248088. [PMID: 37736302 PMCID: PMC10509376 DOI: 10.3389/fgene.2023.1248088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/08/2023] [Indexed: 09/23/2023] Open
Abstract
Background: A growing body of literature has reported molecular and histological changes in the human placenta in association with preeclampsia (PE). Placental DNA methylation (DNAme) and transcriptomic patterns have revealed molecular subgroups of PE that are associated with placental histopathology and clinical phenotypes of the disease. However, the clinical and molecular heterogeneity of PE both across and within subtypes complicates the study of this disease. PE is most strongly associated with placental pathology and adverse fetal and maternal outcomes when it develops early in pregnancy. We focused on placentae from pregnancies affected by preeclampsia that were delivered before 34 weeks of gestation to develop eoPred, a predictor of the DNAme signature associated with the placental phenotype of early-onset preeclampsia (EOPE). Results: Public data from 83 placental samples (HM450K), consisting of 42 EOPE and 41 normotensive preterm birth (nPTB) cases, was used to develop eoPred-a supervised model that relies on a highly discriminative 45 CpG DNAme signature of EOPE in the placenta. The performance of eoPred was assessed using cross-validation (AUC = 0.95) and tested in an independent validation cohort (n = 49, AUC = 0.725). A subset of fetal growth restriction (FGR) and late-PE cases showed a similar DNAme profile at the 45 predictive CpGs, consistent with the overlap in placental pathology between these conditions. The relationship between the EOPE probability generated by eoPred and various phenotypic variables was also assessed, revealing that it is associated with gestational age, and it is not driven by cell composition differences. Conclusion: eoPred relies on a 45-CpG DNAme signature to predict a homogeneous placental phenotype of EOPE in a discrete or continuous manner. Using this classifier should 1) aid in the study of placental insufficiency and improve the consistency of future placental DNAme studies of PE, 2) facilitate identifying the placental phenotype of EOPE in public data sets and 3) importantly, standardize the placental diagnosis of EOPE to allow better cross-cohort comparisons. Lastly, classification of cases with eoPred will be useful for investigating the relationship between placental pathology and genetic or environmental variables.
Collapse
Affiliation(s)
- I. Fernández-Boyano
- BC Children’s Hospital Research Institute (BCCHR), Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - A. M. Inkster
- BC Children’s Hospital Research Institute (BCCHR), Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - V. Yuan
- BC Children’s Hospital Research Institute (BCCHR), Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - W. P. Robinson
- BC Children’s Hospital Research Institute (BCCHR), Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Mas-Parés B, Xargay-Torrent S, Gómez-Vilarrubla A, Carreras-Badosa G, Prats-Puig A, De Zegher F, Ibáñez L, Bassols J, López-Bermejo A. Gestational Weight Gain Relates to DNA Methylation in Umbilical Cord, Which, In Turn, Associates with Offspring Obesity-Related Parameters. Nutrients 2023; 15:3175. [PMID: 37513594 PMCID: PMC10386148 DOI: 10.3390/nu15143175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Excessive gestational weight gain (GWG) has a negative impact on offspring's health. Epigenetic modifications mediate these associations by causing changes in gene expression. We studied the association between GWG and DNA methylation in umbilical cord tissue; and determined whether the DNA methylation and the expression of corresponding annotated genes were associated with obesity-related parameters in offspring at 6 years of age. The methylated CpG sites (CpGs) associated with GWG were identified in umbilical cord tissue by genome-wide DNA methylation (n = 24). Twelve top CpGs were validated in a wider sample by pyrosequencing (n = 87), and the expression of their 5 annotated genes (SETD8, TMEM214, SLIT3, RPTOR, and HOXC8) was assessed by RT-PCR. Pyrosequencing results validated the association of SETD8, SLIT3, and RPTOR methylation with GWG and showed that higher levels of SETD8 and RPTOR methylation and lower levels of SLIT3 methylation relate to a higher risk of obesity in the offspring. The association of SETD8 and SLIT3 gene expression with offspring outcomes paralleled the association of methylation levels in opposite directions. Epigenetic changes in the umbilical cord tissue could explain, in part, the relationship between GWG and offspring obesity risk and be early biomarkers for the prevention of overweight and obesity in childhood.
Collapse
Affiliation(s)
- Berta Mas-Parés
- Pediatric Endocrinology Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Sílvia Xargay-Torrent
- Pediatric Endocrinology Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Ariadna Gómez-Vilarrubla
- Materno-Fetal Metabolic Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Anna Prats-Puig
- University School of Health and Sport (EUSES), University of Girona, 17190 Salt, Spain
| | - Francis De Zegher
- Department of Development & Regeneration, University of Leuven, 3000 Leuven, Belgium
| | - Lourdes Ibáñez
- Endocrinology Department, Research Institute Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Judit Bassols
- Materno-Fetal Metabolic Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
- Department of Pediatrics, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Department of Medical Sciences, University of Girona, 17003 Girona, Spain
| |
Collapse
|
12
|
Zheng X, Lian Y, Zhou J, Zhou Q, Zhu Y, Tang C, Zhang P, Zhao X. Placental ischemia disrupts DNA methylation patterns in distal regulatory regions in rats. Life Sci 2023; 321:121623. [PMID: 37001402 DOI: 10.1016/j.lfs.2023.121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Preeclampsia (PE) is a leading cause of maternal and fetal morbidity and mortality worldwide. However, the impact of PE on the organization of the functional architecture of the placental methylome remains largely unknown. We performed whole-genome bisulfite sequencing of placental DNA and applied a Hidden Markov Model to investigate epigenome-wide alterations in functional structures, including partially methylated domains (PMDs), low-methylated regions (LMRs), and unmethylated regions (UMRs), in a reduced uterine perfusion pressure (RUPP) rat model of PE. The remarkable similarity we observed between the rat and human placental DNA methylomes suggests that the RUPP rat model is appropriate to elucidate the epigenetic mechanisms underlying human PE. The notable changes in PMDs indicate RUPP-induced perturbation of the stressed placental methylome. This was probably regulated via modulation of the epigenetic modifier expression, including significant downregulation of Dnmt1 and Dnmt3a and upregulation of Tet2. More importantly, changes in RUPP-induced DNA methylation occurred predominately in LMRs (80 %), which represent active enhancers, rather than in canonical UMRs (3 %), which represent promoters, suggesting that placental ischemia disrupts enhancer DNA methylation. Our findings emphasize the role of enhancer methylation in response to PE, corroborating discoveries in human PE studies. We suggest paying more attention to enhancer regions in future studies on PE.
Collapse
Affiliation(s)
- Xiaoguo Zheng
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Yahan Lian
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Jing Zhou
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Qian Zhou
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yu Zhu
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Chunhua Tang
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Ping Zhang
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Xinzhi Zhao
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| |
Collapse
|
13
|
Norton C, Clarke D, Holmstrom J, Stirland I, Reynolds PR, Jenkins TG, Arroyo JA. Altered Epigenetic Profiles in the Placenta of Preeclamptic and Intrauterine Growth Restriction Patients. Cells 2023; 12:1130. [PMID: 37190039 PMCID: PMC10136447 DOI: 10.3390/cells12081130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Intrauterine growth restriction (IUGR) and preeclampsia (PE) are placental pathologies known to complicate pregnancy and cause neonatal disorders. To date, there is a limited number of studies on the genetic similarity of these conditions. DNA methylation is a heritable epigenetic process that can regulate placental development. Our objective was to identify methylation patterns in placental DNA from normal, PE and IUGR-affected pregnancies. DNA was extracted, and bisulfite was converted, prior to being hybridized for the methylation array. Methylation data were SWAN normalized and differently methylated regions were identified using applications within the USEQ program. UCSC's Genome browser and Stanford's GREAT analysis were used to identify gene promoters. The commonality among affected genes was confirmed by Western blot. We observed nine significantly hypomethylated regions, two being significantly hypomethylated for both PE and IGUR. Western blot confirmed differential protein expression of commonly regulated genes. We conclude that despite the uniqueness of methylation profiles for PE and IUGR, the similarity of some methylation alterations in pathologies could explain the clinical similarities observed with these obstetric complications. These results also provide insight into the genetic similarity between PE and IUGR and suggest possible gene candidates plausibly involved in the onset of both conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juan A. Arroyo
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
14
|
Wei L, Ying X, Zhai M, Li J, Liu D, Liu X, Yu B, Yan H. The association between peritraumatic distress, perceived stress, depression in pregnancy, and NR3C1 DNA methylation among Chinese pregnant women who experienced COVID-19 lockdown. Front Immunol 2022; 13:966522. [PMID: 36091061 PMCID: PMC9453447 DOI: 10.3389/fimmu.2022.966522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Prenatal stress can affect pregnant women in an epigenetic way during the critical period of conception of their offspring. The study aims to investigate the relationship between peritraumatic distress, prenatal perceived stress, depression, and glucocorticoid receptor (NR3C1) DNA methylation among pregnant women who experienced COVID-19 lockdown in China. Study data were collected from 30 pregnant women in Wuhan and Huanggang, China. The Peritraumatic Distress Inventory was used to measure peritraumatic distress, the Edinburgh Postnatal Depression Scale was used to measure depressive symptoms, and the Perceived Stress Scale was used to measure perceived stress. DNA methylation in the exon 1F promoter region of NR3C1 gene from the venous blood mononuclear cell genome was characterized by bisulfite sequencing. Correlation and linear regression were used for data analysis. The mean level of peritraumatic distress, perceived stress, and depression was 6.30 (SD = 5.09), 6.50 (SD = 5.41), and 6.60 (SD = 4.85), respectively, with 23.33% of pregnant women being depressed. The mean NR3C1 methylation was 0.65 (SD = 0.22). Prenatal depression was positively correlated with the degree of methylation in venous blood from the mother (r = 0.59, p = 0.001), and depression predicted methylation of NR3C1 gene at the CpG 8 site (β = 0.05, p = 0.03). No association was found between peritraumatic distress as well as perceived stress and methylation of NR3C1. NR3C1 gene was susceptible to epigenetic modification of DNA methylation in the context of prenatal stress, and maternal depression was associated with increased NR3C1 methylation among women who experienced COVID-19 lockdown.
Collapse
Affiliation(s)
- Liqing Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Wuhan University, Wuhan, China
| | - Xiaohong Ying
- Department of Epidemiology and Health Statistics, School of Public Health, Wuhan University, Wuhan, China
| | - Mengxi Zhai
- Department of Epidemiology and Health Statistics, School of Public Health, Wuhan University, Wuhan, China
| | - Jiayu Li
- Department of Epidemiology and Health Statistics, School of Public Health, Wuhan University, Wuhan, China
| | - Dan Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Wuhan University, Wuhan, China
| | - Xin Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Wuhan University, Wuhan, China
| | - Bin Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Wuhan University, Wuhan, China
- Population and Health Research Center, Wuhan University, Wuhan, China
| | - Hong Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Park J, Lee Y, Won CW. CEND1 and MIR885 methylation changes associated with successful cognitive aging in community-dwelling older adults. Exp Gerontol 2022; 160:111704. [DOI: 10.1016/j.exger.2022.111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
|