1
|
Qi Y, Zhao Y, Xia J, Hu B, Li X, Li Q, Yang Z, Yao W, Hao C. Jun and JunB members of the AP-1 complex are potential therapeutic targets for silicosis. Int J Biol Macromol 2024; 277:134024. [PMID: 39032899 DOI: 10.1016/j.ijbiomac.2024.134024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Silicosis is a systemic disease with predominantly diffuse fibrosis of the lungs due to prolonged inhalation of free SiO2 dust during the manufacturing process, for which there is no effective treatment. In this study, we used a combined epigenetic and transcriptomic approach to reveal the chromatin-opening features of silicosis and identify the key transcription factor activator protein 1 (AP-1) that responds to silicosis fibrosis. Therapeutic administration of an AP-1 inhibitor inhibits the PI3K/AKT signaling pathway, reduces fibrosis marker proteins, and significantly ameliorates lung fibrosis in a mouse model of silicosis. In addition, it was observed that the expression of Jun and JunB was significantly up-regulated in a TGF-β1-induced in vitro transdifferentiation model of NIH/3T3 cells, and Co-IP confirmed that a protein complex could be formed between Jun and JunB. Mechanistically, silencing of Jun and JunB expression reversed the activation of the PI3K/AKT signaling pathway and the upregulation of fibrosis marker proteins in NIH/3 T3 cells after TGF-β1 stimulation. Taken together, Jun/JunB is expected to be a potential therapeutic target for silicosis fibrosis.
Collapse
Affiliation(s)
- Yuanmeng Qi
- Department of Occupational and Environment Health, College of Public Health, Zhengzhou University, 450001, Henan, China
| | - YouLiang Zhao
- Department of Occupational and Environment Health, College of Public Health, Zhengzhou University, 450001, Henan, China
| | - JiaRui Xia
- Department of Occupational and Environment Health, College of Public Health, Zhengzhou University, 450001, Henan, China
| | - Botao Hu
- Department of Occupational and Environment Health, College of Public Health, Zhengzhou University, 450001, Henan, China
| | - Xiaoying Li
- Department of Occupational and Environment Health, College of Public Health, Zhengzhou University, 450001, Henan, China
| | - Qimeng Li
- Department of Occupational and Environment Health, College of Public Health, Zhengzhou University, 450001, Henan, China
| | - Zhenzhen Yang
- Department of Occupational and Environment Health, College of Public Health, Zhengzhou University, 450001, Henan, China
| | - Wu Yao
- Department of Occupational and Environment Health, College of Public Health, Zhengzhou University, 450001, Henan, China.
| | - Changfu Hao
- Department of Child and Adolescence Health, College of Public Health, Zhengzhou University, 450001, Henan, China.
| |
Collapse
|
2
|
Cheng D, Lian W, Wang T, Xi S, Jia X, Li Z, Xiong H, Wang Y, Sun W, Zhou S, Peng L, Han L, Liu Y, Ni C. The interplay of Cxcl10 +/Mmp14 + monocytes and Ccl3 + neutrophils proactively mediates silica-induced pulmonary fibrosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133713. [PMID: 38335607 DOI: 10.1016/j.jhazmat.2024.133713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
As a fatal occupational disease with limited therapeutic options, molecular mechanisms underpinning silicosis are still undefined. Herein, single-cell RNA sequencing of the lung tissue of silicosis mice identified two monocyte subsets, which were characterized by Cxcl10 and Mmp14 and enriched in fibrotic mouse lungs. Both Cxcl10+ and Mmp14+ monocyte subsets exhibited activation of inflammatory marker genes and positive regulation of cytokine production. Another fibrosis-unique neutrophil population characterized by Ccl3 appeared to be related to the pro-fibrotic process, specifically the "inflammatory response". Meanwhile, the proportion of monocytes and neutrophils was significantly higher in the serum of silicosis patients and slices of lung tissue from patients with silicosis further validated the over-expression of Cxcl10 and Mmp14 in monocytes, also Ccl3 in neutrophils, respectively. Mechanically, receptor-ligand interaction analysis identified the crosstalk of Cxcl10+/Mmp14+ monocytes with Ccl3+ neutrophils promoting fibrogenesis via coupling of HBEGF-CD44 and CSF1-CSF1R. In vivo, administration of clodronate liposomes, Cxcl10 or Mmp14 siRNA-loaded liposomes, Ccl3 receptor antagonist BX471, CD44 or CSF1R neutralizing antibodies significantly alleviated silica-induced lung fibrosis. Collectively, these results demonstrate that the newly defined Cxcl10+/Mmp14+ monocytes and Ccl3+ neutrophils participate in the silicosis process and highlight anti-receptor-ligand pair treatment as a potentially effective therapeutic strategy in managing silicosis.
Collapse
Affiliation(s)
- Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenxiu Lian
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ting Wang
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Sichuan Xi
- Thoracic Epigenetics Section, Thoracic Surgery Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Xinying Jia
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ziwei Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Haojie Xiong
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yue Wang
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenqing Sun
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Siyun Zhou
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lan Peng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lei Han
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210028, China
| | - Yi Liu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Nanjing 211166, China.
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang 320700, China.
| |
Collapse
|
3
|
Yin H, Gu P, Xie Y, You X, Zhang Y, Yao Y, Yang S, Wang D, Chen W, Ma J. ALKBH5 mediates silica particles-induced pulmonary inflammation through increased m 6A modification of Slamf7 and autophagy dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132736. [PMID: 37827106 DOI: 10.1016/j.jhazmat.2023.132736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Silica particles are commonly encountered in natural and industrial activities. Long-term environmental exposure to silica can result in silicosis, which is characterized by chronic inflammation and abnormal tissue repair in lung. To uncover the role of m6A modification in silica-induced pulmonary inflammation, we conducted this study using established mouse and macrophage models. In this study, the aerodynamic diameter of silica particles was approximately 1-2 µm. We demonstrated that silica exposure in mice caused pulmonary inflammation and increased global m6A modification levels, the downregulation of alkB homolog 5 (ALKBH5) might contribute to this alteration. Besides, we found that F4/80, a macrophage-specific biomarker, was co-expressed with ALKBH5 through dual immunofluorescent staining. In vitro studies using MeRIP assays suggested that Slamf7 was a target gene regulated by m6A modification, and specific inhibition of ALKBH5 increased Slamf7 expression. Mechanistically, ALKBH5 promoted m6A modification of Slamf7, which decreased Slamf7 mRNA stability in an m6A-dependent manner, ultimately regulating Slamf7 expression. In addition, silica exposure activated PI3K/AKT and induced macrophage autophagy. Inhibition of Slamf7 promoted autophagy, reduced the secretion of pro-inflammatory cytokines, and improved silica-induced pulmonary inflammation. In summary, ALKBH5 can regulate silica-induced pulmonary inflammation by modulating Slamf7 m6A modification and affecting the function of macrophage autophagy.
Collapse
Affiliation(s)
- Haoyu Yin
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Pei Gu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojie You
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yingdie Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuxin Yao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shiyu Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
4
|
Li R, Kang H, Chen S. From Basic Research to Clinical Practice: Considerations for Treatment Drugs for Silicosis. Int J Mol Sci 2023; 24:ijms24098333. [PMID: 37176040 PMCID: PMC10179659 DOI: 10.3390/ijms24098333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Silicosis, characterized by irreversible pulmonary fibrosis, remains a major global public health problem. Nowadays, cumulative studies are focusing on elucidating the pathogenesis of silicosis in order to identify preventive or therapeutic antifibrotic agents. However, the existing research on the mechanism of silica-dust-induced pulmonary fibrosis is only the tip of the iceberg and lags far behind clinical needs. Idiopathic pulmonary fibrosis (IPF), as a pulmonary fibrosis disease, also has the same problem. In this study, we examined the relationship between silicosis and IPF from the perspective of their pathogenesis and fibrotic characteristics, further discussing current drug research and limitations of clinical application in silicosis. Overall, this review provided novel insights for clinical treatment of silicosis with the hope of bridging the gap between research and practice in silicosis.
Collapse
Affiliation(s)
- Rou Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Huimin Kang
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Shi Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China
| |
Collapse
|
5
|
Funamoto M, Imanishi M, Tsuchiya K, Ikeda Y. Roles of histone acetylation sites in cardiac hypertrophy and heart failure. Front Cardiovasc Med 2023; 10:1133611. [PMID: 37008337 PMCID: PMC10050342 DOI: 10.3389/fcvm.2023.1133611] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Heart failure results from various physiological and pathological stimuli that lead to cardiac hypertrophy. This pathological process is common in several cardiovascular diseases and ultimately leads to heart failure. The development of cardiac hypertrophy and heart failure involves reprogramming of gene expression, a process that is highly dependent on epigenetic regulation. Histone acetylation is dynamically regulated by cardiac stress. Histone acetyltransferases play an important role in epigenetic remodeling in cardiac hypertrophy and heart failure. The regulation of histone acetyltransferases serves as a bridge between signal transduction and downstream gene reprogramming. Investigating the changes in histone acetyltransferases and histone modification sites in cardiac hypertrophy and heart failure will provide new therapeutic strategies to treat these diseases. This review summarizes the association of histone acetylation sites and histone acetylases with cardiac hypertrophy and heart failure, with emphasis on histone acetylation sites.
Collapse
Affiliation(s)
- Masafumi Funamoto
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Correspondence: Masafumi Funamoto Yasumasa Ikeda
| | - Masaki Imanishi
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Correspondence: Masafumi Funamoto Yasumasa Ikeda
| |
Collapse
|