1
|
Climer S. THOP1 Is Entailed in a Genetic Fingerprint Associated with Late-Onset Alzheimer's Disease. Biomolecules 2025; 15:337. [PMID: 40149871 PMCID: PMC11939865 DOI: 10.3390/biom15030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
In a systematic explorative study of genetic patterns on chromosome 19, we discovered a pattern comprising 23 SNP alleles that is significantly associated with late-onset Alzheimer's disease (AD). This association was validated using two independent datasets. The pattern includes thimet oligopeptidase (THOP1), which has a long and disputatious relationship with AD. It also spans solute carrier family 39 member 3 (SLC39A3) and small glutamine-rich tetratricopeptide repeat co-chaperone alpha (SGTA) and is upstream from DIRAS family GTPase 1 (DIRAS1). We utilized population data to observe the frequencies of this genetic pattern for 11 different ancestries and noted that it is highly common for Europeans and relatively infrequent for Africans. This research provides a distinct genetic signature for AD risk, as well as insights into the complicated relationship between this disease and THOP1.
Collapse
Affiliation(s)
- Sharlee Climer
- Alzheimer's Disease Neuroimaging Initiative (ADNI), University of Missouri-St. Louis, St. Louis, MO 63121, USA
| |
Collapse
|
2
|
Kiselev IS, Baulina NM, Favorova OO. Epigenetic Clock: DNA Methylation as a Marker of Biological Age and Age-Associated Diseases. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S356-S372. [PMID: 40164166 DOI: 10.1134/s0006297924602843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 04/02/2025]
Abstract
Age is one of the key criteria of human health used in practical medicine to predict the risk of common chronic diseases. However, biological age, which reflects the state of an individual organism, functional capabilities, social well-being, and risk of premature death from various causes, often does not coincide with chronological age. To determine biological age of a particular individuals and the rate of their aging, specific panels of DNA methylation markers called "epigenetic clock" (EC) were proposed. This review summarizes the data about the main types of ECs developed to date and their key characteristics. We described the results of works studying individual aging rates in common age-associated diseases and outlined main directions, development of which could expand application of ECs in fundamental and practical medicine. There is no doubt that revealing complex mechanisms underlying interaction between the rate of epigenetic aging and the risk of age-associated diseases could play a key role for prediction and early diagnosis, as well as for the development of preventive measures that could delay onset of the disease.
Collapse
Affiliation(s)
- Ivan S Kiselev
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia.
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117513, Russia
| | - Natalia M Baulina
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117513, Russia
| | - Olga O Favorova
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117513, Russia
| |
Collapse
|
3
|
Alves VC, Carro E, Figueiro-Silva J. Unveiling DNA methylation in Alzheimer's disease: a review of array-based human brain studies. Neural Regen Res 2024; 19:2365-2376. [PMID: 38526273 PMCID: PMC11090417 DOI: 10.4103/1673-5374.393106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/05/2023] [Indexed: 03/26/2024] Open
Abstract
The intricacies of Alzheimer's disease pathogenesis are being increasingly illuminated by the exploration of epigenetic mechanisms, particularly DNA methylation. This review comprehensively surveys recent human-centered studies that investigate whole genome DNA methylation in Alzheimer's disease neuropathology. The examination of various brain regions reveals distinctive DNA methylation patterns that associate with the Braak stage and Alzheimer's disease progression. The entorhinal cortex emerges as a focal point due to its early histological alterations and subsequent impact on downstream regions like the hippocampus. Notably, ANK1 hypermethylation, a protein implicated in neurofibrillary tangle formation, was recurrently identified in the entorhinal cortex. Further, the middle temporal gyrus and prefrontal cortex were shown to exhibit significant hypermethylation of genes like HOXA3, RHBDF2, and MCF2L, potentially influencing neuroinflammatory processes. The complex role of BIN1 in late-onset Alzheimer's disease is underscored by its association with altered methylation patterns. Despite the disparities across studies, these findings highlight the intricate interplay between epigenetic modifications and Alzheimer's disease pathology. Future research efforts should address methodological variations, incorporate diverse cohorts, and consider environmental factors to unravel the nuanced epigenetic landscape underlying Alzheimer's disease progression.
Collapse
Affiliation(s)
- Victoria Cunha Alves
- Neurodegenerative Diseases Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
- Neurotraumatology and Subarachnoid Hemorrhage Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Eva Carro
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Neurobiology of Alzheimer's Disease Unit, Functional Unit for Research Into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Joana Figueiro-Silva
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Smith RG, Pishva E, Kouhsar M, Imm J, Dobricic V, Johannsen P, Wittig M, Franke A, Vandenberghe R, Schaeverbeke J, Freund‐Levi Y, Frölich L, Scheltens P, Teunissen CE, Frisoni G, Blin O, Richardson JC, Bordet R, Engelborghs S, de Roeck E, Martinez‐Lage P, Altuna M, Tainta M, Lleó A, Sala I, Popp J, Peyratout G, Winchester L, Nevado‐Holgado A, Verhey F, Tsolaki M, Andreasson U, Blennow K, Zetterberg H, Streffer J, Vos SJB, Lovestone S, Visser PJ, Bertram L, Lunnon K. Blood DNA methylomic signatures associated with CSF biomarkers of Alzheimer's disease in the EMIF-AD study. Alzheimers Dement 2024; 20:6722-6739. [PMID: 39193893 PMCID: PMC11485320 DOI: 10.1002/alz.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION We investigated blood DNA methylation patterns associated with 15 well-established cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) pathophysiology, neuroinflammation, and neurodegeneration. METHODS We assessed DNA methylation in 885 blood samples from the European Medical Information Framework for Alzheimer's Disease (EMIF-AD) study using the EPIC array. RESULTS We identified Bonferroni-significant differential methylation associated with CSF YKL-40 (five loci) and neurofilament light chain (NfL; seven loci) levels, with two of the loci associated with CSF YKL-40 levels correlating with plasma YKL-40 levels. A co-localization analysis showed shared genetic variants underlying YKL-40 DNA methylation and CSF protein levels, with evidence that DNA methylation mediates the association between genotype and protein levels. Weighted gene correlation network analysis identified two modules of co-methylated loci correlated with several amyloid measures and enriched in pathways associated with lipoproteins and development. DISCUSSION We conducted the most comprehensive epigenome-wide association study (EWAS) of AD-relevant CSF biomarkers to date. Future work should explore the relationship between YKL-40 genotype, DNA methylation, and protein levels in the brain. HIGHLIGHTS Blood DNA methylation was assessed in the EMIF-AD MBD study. Epigenome-wide association studies (EWASs) were performed for 15 Alzheimer's disease (AD)-relevant cerebrospinal fluid (CSF) biomarker measures. Five Bonferroni-significant loci were associated with YKL-40 levels and seven with neurofilament light chain (NfL). DNA methylation in YKL-40 co-localized with previously reported genetic variation. DNA methylation potentially mediates the effect of single-nucleotide polymorphisms (SNPs) in YKL-40 on CSF protein levels.
Collapse
Affiliation(s)
- Rebecca G. Smith
- Department of Clinical and Biomedical SciencesFaculty of Health and Life SciencesUniversity of ExeterExeterDevonUK
| | - Ehsan Pishva
- Department of Clinical and Biomedical SciencesFaculty of Health and Life SciencesUniversity of ExeterExeterDevonUK
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML)Maastricht UniversityMaastrichtThe Netherlands
| | - Morteza Kouhsar
- Department of Clinical and Biomedical SciencesFaculty of Health and Life SciencesUniversity of ExeterExeterDevonUK
| | - Jennifer Imm
- Department of Clinical and Biomedical SciencesFaculty of Health and Life SciencesUniversity of ExeterExeterDevonUK
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA)University of LübeckLübeckGermany
| | - Peter Johannsen
- Danish Dementia Research Centre, RigshospitaletCopenhagenDenmark
| | - Michael Wittig
- Institute of Clinical Molecular BiologyChristian‐Albrechts‐University of KielKielGermany
| | - Andre Franke
- Institute of Clinical Molecular BiologyChristian‐Albrechts‐University of KielKielGermany
| | - Rik Vandenberghe
- Laboratory for Cognitive NeurologyKU Leuven, Leuven Brain InstituteLeuvenBelgium
| | - Jolien Schaeverbeke
- Laboratory for Cognitive NeurologyKU Leuven, Leuven Brain InstituteLeuvenBelgium
| | - Yvonne Freund‐Levi
- Department of Clinical Science and EducationSödersjukhuset, Karolinska InstitutetStockholmSweden
- School of Medical SciencesÖrebro UniversityÖrebroSweden
- Department of GeriatricsSödertälje HospitalSödertäljeSweden
| | - Lutz Frölich
- Department of Geriatric PsychiatryCentral Institut of Mental HealthMedical Faculty Mannheim/Heidelberg UniversityMannheimGermany
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam NeuroscienceVrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Laboratory Medicine, Amsterdam NeuroscienceVrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Giovanni Frisoni
- Memory centerGeneva University and University Hospitals; on behalf of the AMYPAD consortiumGenevaSwitzerland
| | | | - Jill C. Richardson
- Neuroscience Therapeutic Area, GlaxoSmithKline R&DStevenageHertfordshireUK
| | | | - Sebastiaan Engelborghs
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB), JetteBrusselsBelgium
| | - Ellen de Roeck
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Pablo Martinez‐Lage
- Center for Research and Advanced TherapiesFundación CITA‐Alzhéimer FundazioaSan SebastianGipuzkoaSpain
| | - Miren Altuna
- Center for Research and Advanced TherapiesFundación CITA‐Alzhéimer FundazioaSan SebastianGipuzkoaSpain
| | - Mikel Tainta
- Center for Research and Advanced TherapiesFundación CITA‐Alzhéimer FundazioaSan SebastianGipuzkoaSpain
| | - Alberto Lleó
- Servicio de Neurología, Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED)Hospital Sant PauBarcelonaSpain
| | - Isabel Sala
- Servicio de Neurología, Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED)Hospital Sant PauBarcelonaSpain
| | - Julius Popp
- University Hospital of Psychiatry Zürich, University of ZürichZürichSwitzerland
| | - Gwendoline Peyratout
- Department of PsychiatryUniversity Hospital of Lausanne (CHUV)LausanneSwitzerland
| | | | | | - Frans Verhey
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML)Maastricht UniversityMaastrichtThe Netherlands
| | - Magda Tsolaki
- 1st Department of NeurologySchool of MedicineLaboratory of Neurodegenerative DiseasesCenter for Interdisciplinary Research and InnovationAristotle University of Thessaloniki, and Alzheimer HellasThessalonikiGreece
| | - Ulf Andreasson
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Kaj Blennow
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at University of GothenburgGöteborgSweden
- Paris Brain InstituteICM, Pitié‐Salpêtrière HospitalSorbonne UniversityParisFrance
- Neurodegenerative Disorder Research CenterDivision of Life Sciences and Medicineand Department of NeurologyInstitute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiPR China
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at University of GothenburgGöteborgSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative Diseases, N.T.ShatinHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public Health, University of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Stephanie J. B. Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML)Maastricht UniversityMaastrichtThe Netherlands
| | - Simon Lovestone
- Department of PsychiatryUniversity Hospital of Lausanne (CHUV)LausanneSwitzerland
- Currently at: Johnson & Johnson Innovative MedicinesBeerseBelgium
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML)Maastricht UniversityMaastrichtThe Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam NeuroscienceVrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA)University of LübeckLübeckGermany
| | - Katie Lunnon
- Department of Clinical and Biomedical SciencesFaculty of Health and Life SciencesUniversity of ExeterExeterDevonUK
| |
Collapse
|
5
|
Griñán-Ferré C, Bellver-Sanchis A, Guerrero A, Pallàs M. Advancing personalized medicine in neurodegenerative diseases: The role of epigenetics and pharmacoepigenomics in pharmacotherapy. Pharmacol Res 2024; 205:107247. [PMID: 38834164 DOI: 10.1016/j.phrs.2024.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
About 80 % of brain disorders have a genetic basis. The pathogenesis of most neurodegenerative diseases is associated with a myriad of genetic defects, epigenetic alterations (DNA methylation, histone/chromatin remodeling, miRNA dysregulation), and environmental factors. The emergence of new sequencing technologies and tools to study the epigenome has led to identifying predictive biomarkers for earlier diagnosis, opening up the possibility of prophylactical interventions. As a result, advances in pharmacogenetics and pharmacoepigenomics now allow for personalized treatments based on the profile of each patient and the specific genetic and epigenetic mechanisms involved. This Review highlights the complexity of neurodegenerative diseases and the variability in patient responses to pharmacotherapy, emphasizing the influence of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of drugs used to treat those conditions. We specifically discuss the potential modulatory effect of several genetic polymorphisms associated with an increased risk of developing different neurodegenerative diseases. We explore genetic and genomic technologies and the potential of analyzing individual-specific drug metabolism to predict and influence drug response and associated clinical outcomes. We also provide insights into the mechanism of action of the drugs under investigation and their potential impact on disease-modifying pathways. Finally, the Review underscores the great potential of this field to enhance the effectiveness and safety of drug treatments through personalized medicine.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Duda-Madej A, Stecko J, Szymańska N, Miętkiewicz A, Szandruk-Bender M. Amyloid, Crohn's disease, and Alzheimer's disease - are they linked? Front Cell Infect Microbiol 2024; 14:1393809. [PMID: 38779559 PMCID: PMC11109451 DOI: 10.3389/fcimb.2024.1393809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disease that most frequently affects part of the distal ileum, but it may affect any part of the gastrointestinal tract. CD may also be related to systemic inflammation and extraintestinal manifestations. Alzheimer's disease (AD) is the most common neurodegenerative disease, gradually worsening behavioral and cognitive functions. Despite the meaningful progress, both diseases are still incurable and have a not fully explained, heterogeneous pathomechanism that includes immunological, microbiological, genetic, and environmental factors. Recently, emerging evidence indicates that chronic inflammatory condition corresponds to an increased risk of neurodegenerative diseases, and intestinal inflammation, including CD, increases the risk of AD. Even though it is now known that CD increases the risk of AD, the exact pathways connecting these two seemingly unrelated diseases remain still unclear. One of the key postulates is the gut-brain axis. There is increasing evidence that the gut microbiota with its proteins, DNA, and metabolites influence several processes related to the etiology of AD, including β-amyloid abnormality, Tau phosphorylation, and neuroinflammation. Considering the role of microbiota in both CD and AD pathology, in this review, we want to shed light on bacterial amyloids and their potential to influence cerebral amyloid aggregation and neuroinflammation and provide an overview of the current literature on amyloids as a potential linker between AD and CD.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | | | | | - Marta Szandruk-Bender
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
7
|
Ohlei O, Paul K, Nielsen SS, Gmelin D, Dobricic V, Altmann V, Schilling M, Bronstein JM, Franke A, Wittig M, Parkkinen L, Hansen J, Checkoway H, Ritz B, Bertram L, Lill CM. Genome-wide meta-analysis of short-tandem repeats for Parkinson's disease risk using genotype imputation. Brain Commun 2024; 6:fcae146. [PMID: 38863574 PMCID: PMC11166220 DOI: 10.1093/braincomms/fcae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 06/13/2024] Open
Abstract
Idiopathic Parkinson's disease is determined by a combination of genetic and environmental factors. Recently, the first genome-wide association study on short-tandem repeats in Parkinson's disease reported on eight suggestive short-tandem repeat-based risk loci (α = 5.3 × 10-6), of which four were novel, i.e. they had not been implicated in Parkinson's disease risk by genome-wide association analyses of single-nucleotide polymorphisms before. Here, we tested these eight candidate short-tandem repeats in a large, independent Parkinson's disease case-control dataset (n = 4757). Furthermore, we combined the results from both studies by meta-analysis resulting in the largest Parkinson's disease genome-wide association study of short-tandem repeats to date (n = 43 844). Lastly, we investigated whether leading short-tandem repeat risk variants exert functional effects on gene expression regulation based on methylation quantitative trait locus data in human 'post-mortem' brain (n = 142). None of the eight previously reported short-tandem repeats were significantly associated with Parkinson's disease in our independent dataset after multiple testing correction (α = 6.25 × 10-3). However, we observed modest support for short-tandem repeats near CCAR2 and NCOR1 in the updated meta-analyses of all available data. While the genome-wide meta-analysis did not reveal additional study-wide significant (α = 6.3 × 10-7) short-tandem repeat signals, we identified seven novel suggestive Parkinson's disease short-tandem repeat risk loci (α = 5.3 × 10-6). Of these, especially a short-tandem repeat near MEIOSIN showed consistent evidence for association across datasets. CCAR2, NCOR1 and one novel suggestive locus identified here (LINC01012) emerged from colocalization analyses showing evidence for a shared causal short-tandem repeat variant affecting both Parkinson's disease risk and cis DNA methylation in brain. Larger studies, ideally using short-tandem repeats called from whole-sequencing data, are needed to more fully investigate their role in Parkinson's disease.
Collapse
Affiliation(s)
- Olena Ohlei
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, 23562 Lübeck, Germany
| | - Kimberly Paul
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Susan Searles Nielsen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - David Gmelin
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, 23562 Lübeck, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, 23562 Lübeck, Germany
| | - Vivian Altmann
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, 23562 Lübeck, Germany
- Forensic Genetics Division, Instituto-Geral de Perícias do Rio Grande do Sul, Porto Alegre, RS 90230-010, Brazil
| | - Marcel Schilling
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, 23562 Lübeck, Germany
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 0890x, Spain
- Department of Epidemiology, University of California Los Angeles (UCLA), Fielding School of Public Health, Los Angeles, CA 90095, USA
| | - Jeff M Bronstein
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Laura Parkkinen
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford OX1 3PT, UK
| | - Johnni Hansen
- Danish Cancer Institute, Danish Cancer Society, 2100 Copenhagen, Denmark
| | - Harvey Checkoway
- Herbert Wertheim School of Public Health, University of California San Diego, La Jolla, CA 92093, USA
| | - Beate Ritz
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, 23562 Lübeck, Germany
| | - Christina M Lill
- Institute of Epidemiology and Social Medicine, University of Münster, 48149 Münster, Germany
- School of Public Health, Imperial College, Ageing Epidemiology Research Unit, London SW71, UK
| |
Collapse
|
8
|
Zafar S, Fatima SI, Schmitz M, Zerr I. Current Technologies Unraveling the Significance of Post-Translational Modifications (PTMs) as Crucial Players in Neurodegeneration. Biomolecules 2024; 14:118. [PMID: 38254718 PMCID: PMC10813409 DOI: 10.3390/biom14010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, and Huntington's disease, are identified and characterized by the progressive loss of neurons and neuronal dysfunction, resulting in cognitive and motor impairment. Recent research has shown the importance of PTMs, such as phosphorylation, acetylation, methylation, ubiquitination, sumoylation, nitration, truncation, O-GlcNAcylation, and hydroxylation, in the progression of neurodegenerative disorders. PTMs can alter protein structure and function, affecting protein stability, localization, interactions, and enzymatic activity. Aberrant PTMs can lead to protein misfolding and aggregation, impaired degradation, and clearance, and ultimately, to neuronal dysfunction and death. The main objective of this review is to provide an overview of the PTMs involved in neurodegeneration, their underlying mechanisms, methods to isolate PTMs, and the potential therapeutic targets for these disorders. The PTMs discussed in this article include tau phosphorylation, α-synuclein and Huntingtin ubiquitination, histone acetylation and methylation, and RNA modifications. Understanding the role of PTMs in neurodegenerative diseases may provide new therapeutic strategies for these devastating disorders.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, H-12, Islamabad 44000, Pakistan
| | - Shehzadi Irum Fatima
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Matthias Schmitz
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| |
Collapse
|
9
|
Nohesara S, Abdolmaleky HM, Thiagalingam S, Zhou JR. Gut microbiota defined epigenomes of Alzheimer's and Parkinson's diseases reveal novel targets for therapy. Epigenomics 2024; 16:57-77. [PMID: 38088063 PMCID: PMC10804213 DOI: 10.2217/epi-2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The origins of Alzheimer's disease (AD) and Parkinson's disease (PD) involve genetic mutations, epigenetic changes, neurotoxin exposure and gut microbiota dysregulation. The gut microbiota's dynamic composition and its metabolites influence intestinal and blood-brain barrier integrity, contributing to AD and PD development. This review explores protein misfolding, aggregation and epigenetic links in AD and PD pathogenesis. It also highlights the role of a leaky gut and the microbiota-gut-brain axis in promoting these diseases through inflammation-induced epigenetic alterations. In addition, we investigate the potential of diet, probiotics and microbiota transplantation for preventing and treating AD and PD via epigenetic modifications, along with a discussion related to current challenges and future considerations. These approaches offer promise for translating research findings into practical clinical applications.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Surgery, Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| |
Collapse
|