1
|
Kleven BDC, Chien LC, Cross CL, Labus B, Bernick C. Traumatic Encephalopathy Syndrome: Head Impact Exposure and Blood Biomarkers in Professional Combat Athletes. J Head Trauma Rehabil 2025:00001199-990000000-00244. [PMID: 39998558 DOI: 10.1097/htr.0000000000001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
OBJECTIVE This study aimed to (1) determine whether there was an association between a diagnosis of traumatic encephalopathy syndrome (TES) and changes in three specific serum biomarkers, and (2) determine head impact exposure thresholds among both TES+ and TES- groups. SETTING Data were collected from Cleveland Clinic's Professional Athletes Brain Health Study (PABHS). PARTICIPANTS This study included 192 professional combat athletes, 35 years of age and older. Athletes must be actively fighting or retired with a minimum of 10 professional fights over their careers. DESIGN/INTERVENTION This was a retrospective observational study of the PABHS longitudinal cohort. MAIN MEASURES The generalized linear model with the generalized estimating equation for repeated measurements was used to compare various biomarkers between both active and retired TES- and TES+ groups. RESULTS The odds ratio for TES diagnosis was 5.44 (95% CI = 2.48, 11.94; P < .0001) among active fighters and 10.75 (95% CI = 3.52, 32.85; P < .0001) among retired fighters, indicating the odds for a TES diagnosis were over 5 times greater for active fighters with every fight completed at or beyond 30 professional fights. Retired fighters had 10 times greater odds of TES diagnosis with every fight completed at or beyond 15 professional fights. Likewise, the odds of a TES diagnosis were 2.0% (95% CI = 0.3, 3.1; P = 0.0039) greater with each pg/mL increase of glial fibrillary acidic protein (GFAP). No relationship was observed between a TES diagnosis and neurofilament light chain or P-tau231. CONCLUSION This study provides preliminary evidence that progressively elevated levels of the GFAP blood biomarker increase the odds of a TES diagnosis among retired professional fighters. Further evaluation is required to improve clarity and understanding of the relationship between progressive changes in the GFAP blood biomarker and a TES diagnosis, specifically evaluating the duration of chronicity and exposure thresholds.
Collapse
Affiliation(s)
- Brooke D Conway Kleven
- Author Affiliations: Sports Innovation Institute (Dr Kleven), Department of Brain Health, Kirk Kerkorian School of Medicine (Dr Kleven), Department of Epidemiology and Biostatistics, School of Public Health (Dr Chien, Dr Cross, and Dr Labus), University of Nevada, Las Vegas, Las Vegas, Nevada; and Cleveland Clinic Lou Ruvo Center for Brain Health (Dr Bernick), Las Vegas, Nevada
| | | | | | | | | |
Collapse
|
2
|
Ly MT, Altaras C, Tripodis Y, Adler CH, Balcer LJ, Bernick C, Zetterberg H, Blennow K, Peskind ER, Banks SJ, Barr WB, Wethe JV, Lenio S, Bondi MW, Delano-Wood LM, Cantu RC, Coleman MJ, Dodick DW, Mez J, Daneshvar DH, Palmisano JN, Martin B, Lin AP, Koerte IK, Bouix S, Cummings JL, Reiman EM, Shenton ME, Stern RA, Alosco ML. Single- versus two-test criteria for cognitive impairment: associations with CSF and imaging markers in former American football players. Clin Neuropsychol 2025:1-25. [PMID: 39834028 DOI: 10.1080/13854046.2025.2451828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Objective: Cognitive impairment is a core feature of traumatic encephalopathy syndrome (TES), the putative clinical syndrome of chronic traumatic encephalopathy-a neuropathological disease associated with repetitive head impacts (RHI). Careful operationalization of cognitive impairment is essential to improving the diagnostic specificity and accuracy of TES criteria. We compared single- versus two-test criteria for cognitive impairment in their associations with CSF and imaging biomarkers in male former American football players. Method: 169 participants from the DIAGNOSE CTE Research Project completed neuropsychological tests of memory and executive functioning. Cognitive impairment was identified by single-test criteria (z≤-1.5 on one test) and two-test criteria (z<-1 on two tests within a domain). ANCOVAs adjusting for age, race, education, body mass index, word-reading score, and APOE ε4 status assessed whether single- or two-test criteria predicted CSF markers (Aβ1-42, p-tau181, p-tau181/Aβ1-42, total tau, neurofilament light [NfL], glial fibrillary acidic protein [GFAP]) and MRI markers (hippocampal volume, cortical thickness, white matter hyperintensities). Results: Ninety-nine participants met single-test criteria for cognitive impairment. Sixty-six met two-test criteria. Participants who met two-test criteria had greater exposure to RHI than those who did not (p=.04). Two-test criteria were -associated with higher CSF p-tau181/Aβ1-42 (q=.02) and CSF NfL (q=.02). The association between two-test criteria and CSF NfL remained after excluding amyloid-positive participants (q=.04). Single-test criteria were not associated with any biomarkers (q's>.05). Conclusions: Two-test but not single-test criteria for cognitive impairment were associated with markers of neurodegeneration. Future clinical research in TES may benefit from applying two-test criteria to operationalize cognitive impairment.
Collapse
Affiliation(s)
- Monica T Ly
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Boston, MA, USA
| | - Caroline Altaras
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Boston, MA, USA
| | - Yorghos Tripodis
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Laura J Balcer
- Departments of Neurology, Population Health and Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, UCL Institute of Neurology, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elaine R Peskind
- VA Northwest Mental Illness Research, Education, and Clinical Center, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Sarah J Banks
- Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - William B Barr
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jennifer V Wethe
- Department of Psychiatry and Psychology, Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Steve Lenio
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Boston, MA, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Lisa M Delano-Wood
- Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Robert C Cantu
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Boston, MA, USA
| | - Michael J Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - David W Dodick
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Atria Academy of Science and Medicine, New York, NY, USA
| | - Jesse Mez
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Mass General Brigham-Spaulding Rehabilitation, Charlestown, MA, USA
| | - Joseph N Palmisano
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Alexander P Lin
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Department of Software Engineering and Information Technology, École de technologie supérieure, Université du Québec, Montréal, QC, Canada
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Phoenix, AZ, USA
- Translational Genomics Research Institute, Phoenix, AZ, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert A Stern
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy & Neurobiology and Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Boston, MA, USA
| |
Collapse
|
3
|
Asken BM, Brett BL, Barr WB, Banks S, Wethe JV, Dams-O'Connor K, Stern RA, Alosco ML. Chronic traumatic encephalopathy: State-of-the-science update and narrative review. Clin Neuropsychol 2025:1-25. [PMID: 39834035 DOI: 10.1080/13854046.2025.2454047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE The long-recognized association of brain injury with increased risk of dementia has undergone significant refinement and more detailed study in recent decades. Chronic traumatic encephalopathy (CTE) is a specific neurodegenerative tauopathy related to prior exposure to repetitive head impacts (RHI). We aim to contextualize CTE within a historical perspective and among emerging data which highlights the scientific and conceptual evolution of CTE-related research in parallel with the broader field of neurodegenerative disease and dementia. METHODS We provide a narrative state-of-the-science update on CTE neuropathology, clinical manifestations, biomarkers, different types and patterns of head impact exposure relevant for CTE, and the complicated influence of neurodegenerative co-pathology on symptoms. CONCLUSIONS Now almost 20 years since the initial case report of CTE in a former American football player, the field of CTE continues evolving with increasing clarity but also several ongoing controversies. Our understanding of CTE neuropathology outpaces that of disease-specific clinical correlates or the development of in-vivo biomarkers. Diagnostic criteria for symptoms attributable to CTE are still being validated, but leveraging increasingly available biomarkers for other conditions like Alzheimer's disease may be helpful for informing the CTE differential diagnosis. As diagnostic refinement efforts advance, clinicians should provide care and/or referrals to providers best suited to treat an individual patient's clinical symptoms, many of which have evidence-based behavioral treatment options that are etiologically agnostic. Several ongoing research initiatives and the gradual accrual of gold standard clinico-pathological data will pay dividends for advancing the many existing gaps in the field of CTE.
Collapse
Affiliation(s)
- Breton M Asken
- Department of Clinical and Health Psychology, University of Florida, 1Florida Alzheimer's Disease Research Center, Gainesville, FL, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WS, USA
| | - William B Barr
- Department of Neurology, New York University Langone Health Medical Center, New York, NY, USA
| | - Sarah Banks
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Jennifer V Wethe
- Departments of Psychiatry and Psychology, Mayo Clinic, Phoenix, AZ, USA
| | - Kristen Dams-O'Connor
- Departments of Rehabilitation Medicine and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert A Stern
- Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University CTE and Alzheimer's Disease Research Centers, Boston, MA, USA
| | - Michael L Alosco
- Departments of Neurology and Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University CTE and Alzheimer's Disease Research Centers, Boston, MA, USA
| |
Collapse
|
4
|
Brett BL, Sullivan ME, Asken BM, Terry DP, Meier TB, McCrea MA. Long-term neurobehavioral and neuroimaging outcomes in athletes with prior concussion(s) and head impact exposure. Clin Neuropsychol 2025:1-29. [PMID: 39797596 DOI: 10.1080/13854046.2024.2442427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
Objective: The long-term health of former athletes with a history of multiple concussions and/or repetitive head impact (RHI) exposure has been of growing interest among the public. The true proportion of dementia cases attributable to neurotrauma and the neurobehavioral profile/sequelae of multiple concussion and RHI exposure among athletes has been difficult to determine. Methods: Across three exposure paradigms (i.e. group comparisons of athletes vs. controls, number of prior concussions, and level of RHI exposure), this review characterizes the prevalence of neurodegenerative/neurological disease, changes in cognitive and psychiatric function, and alterations on neuroimaging. We highlight sources of variability across studies and provide suggested directions for future investigations. Results: The most robust finding reported in the literature suggests a higher level of symptom endorsement (general, psychiatric, and cognitive) among those with a greater history of sport-related concussion from adolescence to older adulthood. Pathological processes (e.g. atrophy, tau deposition, and hypometabolism) may be more likely to occur within select regions (frontal and temporal cortices) and structures (thalamus and hippocampus). However, studies examining concussion(s) and RHI exposure with imaging outcomes have yet to identify consistent associations or evidence of a dose-response relationship or a threshold at which associations are observed. Discussion: Studies have not observed a simple dose-response relationship between multiple concussions and/or RHI exposure with cognitive, psychiatric, or in vivo neurobiological outcomes, particularly at lower levels of play. The relationship between prior concussion and RHI exposure with long-term outcomes in former athletes is complex and likely influenced by -several non-injury-related factors.
Collapse
Affiliation(s)
- Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mikaela E Sullivan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Breton M Asken
- Department of Clinical and Health Psychology, University of Florida, 1Florida Alzheimer's Disease Research Center, Gainesville, FL, USA
| | - Douglas P Terry
- Department of Neurological Surgery, Vanderbilt Sports Concussion Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
5
|
Varga B, Grolmusz V. New Graphs at the braingraph.org Website for Studying the Aging Brain Circuitry. ARXIV 2024:arXiv:2412.01418v1. [PMID: 39679268 PMCID: PMC11643219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Human braingraphs or connectomes are widely studied in the last decade to understand the structural and functional properties of our brain. In the last several years our research group has computed and deposited thousands of human braingraphs to the braingraph.org site, by applying public structural (diffusion) MRI data from young and healthy subjects. Here we describe a recent addition to the braingraph.org site, which contains connectomes from healthy and demented subjects between 42 and 95 years of age, based on the public release of the OASIS-3 dataset. The diffusion MRI data was processed with the Connectome Mapper Toolkit v.3.1. We believe that the new addition to the braingraph.org site will become a useful resource for enlightening the aging circuitry of the human brain in healthy and diseased subjects, including those with Alzheimer's disease in several stages.
Collapse
Affiliation(s)
- Bálint Varga
- PIT Bioinformatics Group, Eötvös University, H-1117
Budapest, Hungary
| | - Vince Grolmusz
- PIT Bioinformatics Group, Eötvös University, H-1117
Budapest, Hungary
- Uratim Ltd., H-1118 Budapest, Hungary
| |
Collapse
|
6
|
Miner AE, Groh JR, Tripodis Y, Adler CH, Balcer LJ, Bernick C, Zetterberg H, Blennow K, Peskind E, Ashton NJ, Gaudet CE, Martin B, Palmisano JN, Banks SJ, Barr WB, Wethe JV, Cantu RC, Dodick DW, Katz DI, Mez J, van Amerongen S, Cummings JL, Shenton ME, Reiman EM, Stern RA, Alosco ML. Examination of plasma biomarkers of amyloid, tau, neurodegeneration, and neuroinflammation in former elite American football players. Alzheimers Dement 2024; 20:7529-7546. [PMID: 39351900 PMCID: PMC11567811 DOI: 10.1002/alz.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Blood-based biomarkers offer a promising approach for the detection of neuropathologies from repetitive head impacts (RHI). We evaluated plasma biomarkers of amyloid, tau, neurodegeneration, and inflammation in former football players. METHODS The sample included 180 former football players and 60 asymptomatic, unexposed male participants (aged 45-74). Plasma assays were conducted for beta-amyloid (Aβ) 40, Aβ42, hyper-phosphorylated tau (p-tau) 181+231, total tau (t-tau), neurofilament light (NfL), glial fibrillary acidic protein (GFAP), interleukin-6 (IL-6), Aβ42/p-tau181 and Aβ42/Aβ40 ratios. We evaluated their ability to differentiate the groups and associations with RHI proxies and traumatic encephalopathy syndrome (TES). RESULTS P-tau181 and p-tau231(padj = 0.016) were higher and Aβ42/p-tau181 was lower(padj = 0.004) in football players compared to controls. Discrimination accuracy for p-tau was modest (area under the curve [AUC] = 0.742). Effects were not attributable to AD-related pathology. Younger age of first exposure (AFE) correlated with higher NfL (padj = 0.03) and GFAP (padj = 0.033). Plasma GFAP was higher in TES-chronic traumatic encephalopathy (TES-CTE) Possible/Probable (padj = 0.008). DISCUSSION Plasma p-tau181 and p-tau231, GFAP, and NfL may offer some usefulness for the characterization of RHI-related neuropathologies. HIGHLIGHTS Former football players had higher plasma p-tau181 and p-tau231 and lower Aβ42/ptau-181 compared to asymptomatic, unexposed men. Younger age of first exposure was associated with increased plasma NfL and GFAP in older but not younger participants. Plasma GFAP was higher in participants with TES-CTE possible/probable compared to TES-CTE no/suggestive.
Collapse
Grants
- ZEN-21-848495 Alzheimer's Association 2021 Zenith Award
- ALZ2022-0006 Hjärnfonden, Sweden
- U01 NS093334 NINDS NIH HHS
- ALFGBG-965240 Hjärnfonden, Sweden
- JPND2021-00694 European Union Joint Programme-Neurodegenerative Disease Research
- UKDRI-1003 UK Dementia Research Institute at UCL
- 2022-00732 UK Dementia Research Institute at UCL
- SG-23-1038904 QC Alzheimer's Association 2022-2025 Grant
- AF-939721 Swedish Alzheimer Foundation
- AF-930351 Swedish Alzheimer Foundation
- RF1 NS132290 NINDS NIH HHS
- AF-994551 Swedish Alzheimer Foundation
- ADSF-21-831381-C AD Strategic Fund and the Alzheimer's Association
- Bluefield Project, Cure Alzheimer's Fund
- JPND2019-466-236 European Union Joint Program for Neurodegenerative Disorders
- 2017-00915 UK Dementia Research Institute at UCL
- Olav Thon Foundation, the Erling-Persson Family Foundation
- FO2017-0243 Hjärnfonden, Sweden
- ADSF-21-831376-C AD Strategic Fund and the Alzheimer's Association
- European Union's Horizon 2020
- ADSF-24-1284328-C AD Strategic Fund and the Alzheimer's Association
- RF1NS132290 National Institute of Neurological Disorders and Stroke/National Institute on Aging
- Kirsten and Freddy Johansen Foundation, Copenhagen, Denmark
- ALFGBG-715986 Hjärnfonden, Sweden
- #ALFGBG-71320 Swedish State Support for Clinical Research
- AF-968270 Swedish Alzheimer Foundation
- ADSF-21-831377-C AD Strategic Fund and the Alzheimer's Association
- FO2022-0270 Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden
- 101053962 European Union's Horizon Europe
- 201809-2016862 Alzheimer Drug Discovery Foundation
- La Fondation Recherche Alzheimer
- U01NS093334 National Institute of Neurological Disorders and Stroke (NINDS)
- National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
Collapse
|
7
|
Asken BM, Bove JM, Bauer RM, Tanner JA, Casaletto KB, Staffaroni AM, VandeVrede L, Alosco ML, Mez JB, Stern RA, Miller BL, Grinberg LT, Boxer AL, Gorno-Tempini ML, Rosen HJ, Rabinovici GD, Kramer JH. Clinical implications of head trauma in frontotemporal dementia and primary progressive aphasia. Alzheimers Res Ther 2024; 16:193. [PMID: 39210451 PMCID: PMC11363650 DOI: 10.1186/s13195-024-01553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) and repetitive head impacts (RHI) have been linked to increased risk for multiple types of neurodegenerative disease, higher dementia risk, and earlier age of dementia symptom onset, suggesting transdiagnostic implications for later-life brain health. Frontotemporal dementia (FTD) and primary progressive aphasia (PPA) represent a spectrum of clinical phenotypes that are neuropathologically diverse. FTD/PPA diagnoses bring unique challenges due to complex cognitive and behavioral symptoms that disproportionately present as an early-onset dementia (before age 65). We performed a detailed characterization of lifetime head trauma exposure in individuals with FTD and PPA compared to healthy controls to examine frequency of lifetime TBI and RHI and associated clinical implications. METHODS We studied 132 FTD/PPA (age 68.9 ± 8.1, 65% male) and 132 sex-matched healthy controls (HC; age 73.4 ± 7.6). We compared rates of prior TBI and RHI (contact/collision sports) between FTD/PPA and HC (chi-square, logistic regression, analysis of variance). Within FTD/PPA, we evaluated associations with age of symptom onset (analysis of variance). Within behavioral variant FTD, we evaluated associations with cognitive function and neuropsychiatric symptoms (linear regression controlling for age, sex, and years of education). RESULTS Years of participation were greater in FTD/PPA than HC for any contact/collision sport (8.5 ± 6.7yrs vs. 5.3 ± 4.5yrs, p = .008) and for American football (6.2yrs ± 4.3yrs vs. 3.1 ± 2.4yrs; p = .003). Within FTD/PPA, there were dose-dependent associations with earlier age of symptom onset for TBI (0 TBI: 62.1 ± 8.1, 1 TBI: 59.9 ± 6.9, 2 + TBI: 57.3 ± 8.4; p = .03) and years of American football (0yrs: 62.2 ± 8.7, 1-4yrs: 59.7 ± 7.0, 5 + yrs: 55.9 ± 6.3; p = .009). Within bvFTD, those who played American football had worse memory (z-score: -2.4 ± 1.2 vs. -1.4 ± 1.6, p = .02, d = 1.1). CONCLUSIONS Lifetime head trauma may represent a preventable environmental risk factor for FTD/PPA. Dose-dependent exposure to TBI or RHI influences FTD/PPA symptom onset and memory function in bvFTD. Clinico-pathological studies are needed to better understand the neuropathological correlates linking RHI or TBI to FTD/PPA onset and symptoms.
Collapse
Affiliation(s)
- Breton M Asken
- Department of Clinical and Health Psychology, University of Florida, 1Florida Alzheimer's Disease Research Center, Fixel Institute for Neurological Diseases, PO Box 100165, Gainesville, FL, 32610, USA.
| | - Jessica M Bove
- Department of Clinical and Health Psychology, University of Florida, 1Florida Alzheimer's Disease Research Center, Fixel Institute for Neurological Diseases, PO Box 100165, Gainesville, FL, 32610, USA
| | - Russell M Bauer
- Department of Clinical and Health Psychology, University of Florida, 1Florida Alzheimer's Disease Research Center, Fixel Institute for Neurological Diseases, PO Box 100165, Gainesville, FL, 32610, USA
| | - Jeremy A Tanner
- Department of Neurology, Biggs Institute for Alzheimer's and Neurodegenerative Diseases South Texas Alzheimer's Disease Research Center, University of Texas Health - San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Kaitlin B Casaletto
- Department of Neurology, Weill Institute for Neurosciences Memory and Aging Center, University of California, San Francisco, UCSF Alzheimer's Disease Research Center, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Adam M Staffaroni
- Department of Neurology, Weill Institute for Neurosciences Memory and Aging Center, University of California, San Francisco, UCSF Alzheimer's Disease Research Center, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Lawren VandeVrede
- Department of Neurology, Weill Institute for Neurosciences Memory and Aging Center, University of California, San Francisco, UCSF Alzheimer's Disease Research Center, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Michael L Alosco
- Department of Neurology, Boston University, Boston University Alzheimer's Disease Research Center and CTE Center, 73 E. Concord Street, Boston, MA, 02118, USA
| | - Jesse B Mez
- Department of Neurology, Boston University, Boston University Alzheimer's Disease Research Center and CTE Center, 73 E. Concord Street, Boston, MA, 02118, USA
| | - Robert A Stern
- Department of Neurology, Boston University, Boston University Alzheimer's Disease Research Center and CTE Center, 73 E. Concord Street, Boston, MA, 02118, USA
| | - Bruce L Miller
- Department of Neurology, Weill Institute for Neurosciences Memory and Aging Center, University of California, San Francisco, UCSF Alzheimer's Disease Research Center, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Lea T Grinberg
- Department of Neurology, Weill Institute for Neurosciences Memory and Aging Center, University of California, San Francisco, UCSF Alzheimer's Disease Research Center, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Adam L Boxer
- Department of Neurology, Weill Institute for Neurosciences Memory and Aging Center, University of California, San Francisco, UCSF Alzheimer's Disease Research Center, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, Weill Institute for Neurosciences Memory and Aging Center, University of California, San Francisco, UCSF Alzheimer's Disease Research Center, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Howie J Rosen
- Department of Neurology, Weill Institute for Neurosciences Memory and Aging Center, University of California, San Francisco, UCSF Alzheimer's Disease Research Center, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Gil D Rabinovici
- Department of Neurology, Weill Institute for Neurosciences Memory and Aging Center, University of California, San Francisco, UCSF Alzheimer's Disease Research Center, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Joel H Kramer
- Department of Neurology, Weill Institute for Neurosciences Memory and Aging Center, University of California, San Francisco, UCSF Alzheimer's Disease Research Center, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| |
Collapse
|
8
|
van Amerongen S, Pulukuri SV, Tuz-Zahra F, Tripodis Y, Cherry JD, Bernick C, Geda YE, Wethe JV, Katz DI, Alosco ML, Adler CH, Balcer LJ, Ashton NJ, Blennow K, Zetterberg H, Daneshvar DH, Colasurdo EA, Iliff JJ, Li G, Peskind ER, Shenton ME, Reiman EM, Cummings JL, Stern RA. Inflammatory biomarkers for neurobehavioral dysregulation in former American football players: findings from the DIAGNOSE CTE Research Project. J Neuroinflammation 2024; 21:46. [PMID: 38336728 PMCID: PMC10854026 DOI: 10.1186/s12974-024-03034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Traumatic encephalopathy syndrome (TES) is defined as the clinical manifestation of the neuropathological entity chronic traumatic encephalopathy (CTE). A core feature of TES is neurobehavioral dysregulation (NBD), a neuropsychiatric syndrome in repetitive head impact (RHI)-exposed individuals, characterized by a poor regulation of emotions/behavior. To discover biological correlates for NBD, we investigated the association between biomarkers of inflammation (interleukin (IL)-1β, IL-6, IL-8, IL-10, C-reactive protein (CRP), tumor necrosis factor (TNF)-α) in cerebrospinal fluid (CSF) and NBD symptoms in former American football players and unexposed individuals. METHODS Our cohort consisted of former American football players, with (n = 104) or without (n = 76) NBD diagnosis, as well as asymptomatic unexposed individuals (n = 55) from the DIAGNOSE CTE Research Project. Specific measures for NBD were derived (i.e., explosivity, emotional dyscontrol, impulsivity, affective lability, and a total NBD score) from a factor analysis of multiple self-report neuropsychiatric measures. Analyses of covariance tested differences in biomarker concentrations between the three groups. Within former football players, multivariable linear regression models assessed relationships among log-transformed inflammatory biomarkers, proxies for RHI exposure (total years of football, cumulative head impact index), and NBD factor scores, adjusted for relevant confounding variables. Sensitivity analyses tested (1) differences in age subgroups (< 60, ≥ 60 years); (2) whether associations could be identified with plasma inflammatory biomarkers; (3) associations between neurodegeneration and NBD, using plasma neurofilament light (NfL) chain protein; and (4) associations between biomarkers and cognitive performance to explore broader clinical symptoms related to TES. RESULTS CSF IL-6 was higher in former American football players with NBD diagnosis compared to players without NBD. Furthermore, elevated levels of CSF IL-6 were significantly associated with higher emotional dyscontrol, affective lability, impulsivity, and total NBD scores. In older football players, plasma NfL was associated with higher emotional dyscontrol and impulsivity, but also with worse executive function and processing speed. Proxies for RHI exposure were not significantly associated with biomarker concentrations. CONCLUSION Specific NBD symptoms in former American football players may result from multiple factors, including neuroinflammation and neurodegeneration. Future studies need to unravel the exact link between NBD and RHI exposure, including the role of other pathophysiological pathways.
Collapse
Affiliation(s)
- Suzan van Amerongen
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Surya V Pulukuri
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Fatima Tuz-Zahra
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jonathan D Cherry
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Yonas E Geda
- Department of Neurology and the Franke Global Neuroscience Education Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Jennifer V Wethe
- Department of Psychiatry and Psychology, Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Douglas I Katz
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Brain Injury Program, Encompass Health Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Michael L Alosco
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Laura J Balcer
- Departments of Neurology, Population Health and Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Colasurdo
- Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center, Seattle, WA, USA
| | - Jeffrey J Iliff
- Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Gail Li
- Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System Geriatric Research, Seattle, WA, USA
| | - Elaine R Peskind
- Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Harvard Medical School, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Robert A Stern
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Departments of Neurosurgery, and Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|