1
|
Jeyabalan J, Veluchamy A, Narayanasamy S. Production optimization, characterization, and application of a novel thermo- and pH-stable laccase from Bacillus drentensis 2E for bioremediation of industrial dyes. Int J Biol Macromol 2025; 308:142557. [PMID: 40158574 DOI: 10.1016/j.ijbiomac.2025.142557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Environmental pollution driven by rapid industrialization and urbanization, has become serious concern due to adverse health effects. Among various bioremediation strategies, laccase, an oxidoreductase enzyme with wide substrate range and high redox-potential (0.4-0.8 V) has garnered significant attention due to its ability to oxidize various organic pollutants into non-toxic products. However, its practical application is often limited due to susceptibility to extreme pH and inhibitory compounds present in wastewater. To overcome this challenge, bacterial laccase, also known as versatile laccases, offer superior stability under harsh environmental conditions making them ideal for bioremediation. Furthermore, isolating native bacterium from contaminated sites enhances their potential, as these organisms are naturally adapted to pollutant-rich environments with intrinsic degradation ability. In this study, Bacillus drentensis 2E was isolated from dye-effluent release site. Laccase production was systematically optimized by One-Factor-at-a-Time, Plackett-Burman Design, and Central Composite Design, yielding a 2.45-fold increase in activity compared to unoptimized condition. Optimized media composition is as follows (g/L): KNO3-5.034,Glucose-3, KH2PO4-0.3,MgSO4-0.3, NaCl-0.55, CaCl2-0.55, CuSO4-0.178 mM, inoculum volume-3.54 %. The enzyme was further characterized for kinetic properties against ABTS, guaiacol and syringaldazine. It demonstrated exceptional stability across a wide temperature (20 ± 1 °C-70 ± 1 °C) and pH range (3.0 ± 0.01-8.0 ± 0.01) with heavy metal tolerance to Ca2+, Mn2+, Mg2+,Zn2+,Cu2+,Co2+,Ni2+. Also, BDLaccase effectively degraded Acid Red-27 (99.76 ± 2.27 %) and Direct Blue-6 (67.43 ± 2.31 %) within 5 h, as confirmed using UV-Vis spectroscopy, FT-IR, and LC-MS. These findings suggests that, BDLaccase is a robust biocatalyst for bioremediation especially in treatment of dyes due to its broad stability and efficiency.
Collapse
Affiliation(s)
- Jothika Jeyabalan
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ajithkumar Veluchamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Selvaraju Narayanasamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
2
|
Guo E, Zhao L, Li Z, Chen L, Li J, Lu F, Wang F, Lu K, Liu Y. Biodegradation of bisphenol A by a Pichia pastoris whole-cell biocatalyst with overexpression of laccase from Bacillus pumilus and investigation of its potential degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134779. [PMID: 38850935 DOI: 10.1016/j.jhazmat.2024.134779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Bisphenol A (BPA), an endocrine disrupter with estrogen activity, can infiltrate animal and human bodies through the food chain. Enzymatic degradation of BPA holds promise as an environmentally friendly approach while it is limited due to lower stability and recycling challenges. In this study, laccase from Bacillus pumilus TCCC 11568 was expressed in Pichia pastoris (fLAC). The optimal catalytic conditions for fLAC were at pH 6.0 and 80 °C, with a half-life T1/2 of 120 min at 70 °C. fLAC achieved a 46 % degradation rate of BPA, and possible degradation pathways were proposed based on identified products and reported intermediates of BPA degradation. To improve its stability and degradation capacity, a whole-cell biocatalyst (WCB) was developed by displaying LAC (dLAC) on the surface of P. pastoris GS115. The functionally displayed LAC demonstrated enhanced thermostability and pH stability along with an improved BPA degradation ability, achieving a 91 % degradation rate. Additionally, dLAC maintained a degradation rate of over 50 % after the fourth successive cycles. This work provides a powerful catalyst for degrading BPA, which might decontaminate endocrine disruptor-contaminated water through nine possible pathways.
Collapse
Affiliation(s)
- Enping Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ziyuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jingwen Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Kui Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
3
|
Abdi Dezfouli R, Esmaeilidezfouli E. Optimizing laccase selection for enhanced outcomes: a comprehensive review. 3 Biotech 2024; 14:165. [PMID: 38817737 PMCID: PMC11133268 DOI: 10.1007/s13205-024-04015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Despite their widespread applications in sectors such as pulp and paper, textile, food and beverage, pharmaceuticals, and biofuel production, laccases encounter challenges related to their activity and stability under varying reaction conditions. This review accumulates data on the complex interplay between laccase characteristics and reaction conditions for maximizing their efficacy in diverse biotechnological processes. Benefits of organic media such as improved substrate selectivity and reaction control, and their risks such as enzyme denaturation and reduced activity are reported. Additionally, the effect of reaction conditions such as pH and temperature on laccase activity and stability are gathered and reported. Sources like Bacillus pumilus, Alcaligenes faecalis, Bacillus clausii, and Bacillus tequilensis SN4 are producing laccases that are both thermo-active and alkali-active. Additionally, changes induced by the presence of various substances within reaction media such as metals, inhibitors, and organic solvents are also reported. Bacillus pumilus and Bacillus licheniformis LS04 produce the most resistant laccases in this case. Finally, the remarkable laccases have been highlighted and the proper laccase source for each industrial application is suggested. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04015-5.
Collapse
Affiliation(s)
- Ramin Abdi Dezfouli
- Pharmaceutical Biotechnology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, 1411413137, Iran
| | - Ensieh Esmaeilidezfouli
- Microbial Biotechnology Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Wang J, Bai H, Zhang R, Ding G, Cai X, Wang W, Zhu G, Zhou P, Zhang Y. Effect of a Bacterial Laccase on the Quality and Micro-Structure of Whole Wheat Bread. J Microbiol Biotechnol 2023; 33:1671-1680. [PMID: 37915231 PMCID: PMC10772560 DOI: 10.4014/jmb.2305.05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/18/2023] [Accepted: 07/18/2023] [Indexed: 11/03/2023]
Abstract
The gluten protein content in whole-wheat flour is low, which affects the elasticity and viscosity of the dough. Enzymatic modification of the protein may result in a network that mimics gluten, which plays an important role in the processing of whole-wheat foods. In this study, the effects of Halomonas alkaliantartica laccase (LacHa) on the quality parameters of whole-wheat bread were investigated. The optimum dosage of LacHa was 4 U/100 g of whole-wheat flour. At this dosage, whole-wheat bread exhibited the best specific volume and optimum texture parameters. Laccase also extended the storage duration of whole-wheat bread. We analyzed the micro-structure of the dough to determine its gluten-free protein extractable rate and free sulfhydryl group content, and verify that LacHa mediates cross-linking of gluten-free proteins. The results demonstrated that the cross-linking of gluten-free protein by LacHa improves the texture of whole-wheat bread. As a flour improver, LacHa has great developmental and application potential in baked-food production.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
- Department of Life Science, Anhui University, Hefei 230061, P.R. China
| | - Han Bai
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
| | - Ran Zhang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
- Department of Life Science, Anhui University, Hefei 230061, P.R. China
| | - Guoao Ding
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
- Department of Life Science, Anhui University, Hefei 230061, P.R. China
| | - Xuran Cai
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
| | - Wei Wang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
| | - Guilan Zhu
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
| | - Peng Zhou
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
| | - Yan Zhang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
- Department of Life Science, Anhui University, Hefei 230061, P.R. China
| |
Collapse
|
5
|
da Rosa DF, Macedo AJ. The genus Anoxybacillus: an emerging and versatile source of valuable biotechnological products. Extremophiles 2023; 27:22. [PMID: 37584877 DOI: 10.1007/s00792-023-01305-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023]
Abstract
Thermophilic and alkaliphilic microorganisms are unique organisms that possess remarkable survival strategies, enabling them to thrive on a diverse range of substrates. Anoxybacillus, a genus of thermophilic and alkaliphilic bacteria, encompasses 24 species and 2 subspecies. In recent years, extensive research has unveiled the diverse array of thermostable enzymes within this relatively new genus, holding significant potential for industrial and environmental applications. The biomass of Anoxybacillus has demonstrated promising results in bioremediation techniques, while the recently discovered metabolites have exhibited potential in medicinal experiments. This review aims to provide an overview of the key experimental findings related to the biotechnological applications utilizing bacteria from the Anoxybacillus genus.
Collapse
Affiliation(s)
- Deisiane Fernanda da Rosa
- Laboratório de Diversidade Microbiana (LABDIM), Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
| | - Alexandre José Macedo
- Laboratório de Diversidade Microbiana (LABDIM), Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
6
|
Adigüzel AO, Könen-Adigüzel S, Cilmeli S, Mazmancı B, Yabalak E, Üstün-Odabaşı S, Kaya NG, Mazmancı MA. Heterologous expression, purification, and characterization of thermo- and alkali-tolerant laccase-like multicopper oxidase from Bacillus mojavensis TH309 and determination of its antibiotic removal potential. Arch Microbiol 2023; 205:287. [PMID: 37454356 DOI: 10.1007/s00203-023-03626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Laccases or laccase-like multicopper oxidases have great potential in bioremediation to oxidase phenolic or non-phenolic substrates. However, their inability to maintain stability in harsh environmental conditions and against non-substrate compounds is one of the main reasons for their limited use. The gene (mco) encoding multicopper oxidase from Bacillus mojavensis TH309 were cloned into pET14b( +), expressed in Escherichia coli, and purified as histidine tagged enzyme (BmLMCO). The molecular weight of the enzyme was about 60 kDa. The enzyme exhibited laccase-like activity toward 2,6-dimethoxyphenol (2,6-DMP), syringaldazine (SGZ), and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The highest enzyme activity was recorded at 80 °C and pH 8. BmLMCO showed a half-life of ~ 305, 99, 50, 46, 36, and 20 min at 40, 50, 60, 70, 80, and 90 °C, respectively. It retained more than 60% of its activity after pre-incubation in the range of pH 5-12 for 60 min. The enzyme activity significantly increased in the presence of 1 mM of Cu2+. Moreover, BmLMCO tolerated various chemicals and showed excellent compatibility with organic solvents. The Michaelis constant (Km) and the maximum velocity (Vmax) values of BmLMCO were 0.98 mM and 93.45 µmol/min, respectively, with 2,6-DMP as the substrate. BmLMCO reduced the antibacterial activity of cefprozil, gentamycin, and erythromycin by 72.3 ± 1.5%, 79.6 ± 6.4%, and 19.7 ± 4.1%, respectively. This is the first revealing shows the recombinant production of laccase-like multicopper oxidase from any B. mojavensis strains, its biochemical properties, and potential for use in bioremediation.
Collapse
Affiliation(s)
- Ali Osman Adigüzel
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, Turkey.
| | | | - Sümeyye Cilmeli
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, Turkey
| | - Birgül Mazmancı
- Department of Biology, Faculty of Science, Mersin University, Mersin, Turkey
| | - Erdal Yabalak
- Department of Chemistry Technology, Vocational School of Technical Sciences, Mersin University, Mersin, Turkey
| | - Sevde Üstün-Odabaşı
- Department of Environmental Engineering, Ondokuz Mayıs University, Samsun, Turkey
| | - Nisa Gül Kaya
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, Turkey
| | | |
Collapse
|
7
|
Hao M, Huang A, Li B, Xin Y, Zhang L, Gu Z, Sun H, Li Y, Shi G. Preparation and characterization of a laccase-like enzyme from Thermomicrobium roseum. Int J Biol Macromol 2023; 242:124992. [PMID: 37211077 DOI: 10.1016/j.ijbiomac.2023.124992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
In this study, a laccase-like gene from Thermomicrobium roseum DSM 5159 (TrLac-like) (NCBI: WP_012642205.1) was recombinantly expressed in Bacillus subtilis WB600. The optimum temperature and pH for TrLac-like were 50 °C and 6.0, respectively. TrLac-like showed high tolerance to mixed systems of water and organic solvents, indicating its potential for large-scale application in various industries. It showed 36.81 % similarity with YlmD from Geobacillus stearothermophilus (PDB:6T1B) in sequence alignment; therefore, 6T1B was employed as the template for homology modeling. To improve catalytic efficiency, amino acid substitutions within 5 Å of the inosine ligand were simulated to reduce the binding energy and promote substrate affinity. Single and double substitutions (44 and 18, respectively) were prepared, and the catalytic efficiency of the mutant A248D was increased to approximately 110-fold that of the wild type, while the thermal stability was maintained. Bioinformatics analysis revealed that the significant improvement in catalytic efficiency could be attributed to the formation of new hydrogen bonds between the enzyme and substrate. With a further decrease in the binding energy, the catalytic efficiency of the multiple mutant H129N/A248D was approximately 14-fold higher than that of the wild type but lower than that of the single mutant A248D. This is possibly because kcat also decreased with the decrease of Km; consequently, the substrate could not be released in time owing to the enzyme with the combination mutation not being able to release the substrate at a high rate.
Collapse
Affiliation(s)
- Mengyao Hao
- Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Aimin Huang
- Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Bingjie Li
- Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Yu Xin
- Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China.
| | - Liang Zhang
- Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China.
| | - ZhengHua Gu
- Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Haiyan Sun
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Youran Li
- Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Benatti ALT, Polizeli MDLTDM. Lignocellulolytic Biocatalysts: The Main Players Involved in Multiple Biotechnological Processes for Biomass Valorization. Microorganisms 2023; 11:microorganisms11010162. [PMID: 36677454 PMCID: PMC9864444 DOI: 10.3390/microorganisms11010162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023] Open
Abstract
Human population growth, industrialization, and globalization have caused several pressures on the planet's natural resources, culminating in the severe climate and environmental crisis which we are facing. Aiming to remedy and mitigate the impact of human activities on the environment, the use of lignocellulolytic enzymes for biofuel production, food, bioremediation, and other various industries, is presented as a more sustainable alternative. These enzymes are characterized as a group of enzymes capable of breaking down lignocellulosic biomass into its different monomer units, making it accessible for bioconversion into various products and applications in the most diverse industries. Among all the organisms that produce lignocellulolytic enzymes, microorganisms are seen as the primary sources for obtaining them. Therefore, this review proposes to discuss the fundamental aspects of the enzymes forming lignocellulolytic systems and the main microorganisms used to obtain them. In addition, different possible industrial applications for these enzymes will be discussed, as well as information about their production modes and considerations about recent advances and future perspectives in research in pursuit of expanding lignocellulolytic enzyme uses at an industrial scale.
Collapse
|
9
|
Zhang S, An X, Gong J, Xu Z, Wang L, Xia X, Zhang Q. Molecular response of Anoxybacillus sp. PDR2 under azo dye stress: An integrated analysis of proteomics and metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129500. [PMID: 35792431 DOI: 10.1016/j.jhazmat.2022.129500] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Treating azo dye wastewater using thermophilic bacteria is considered a more efficient bioremediation strategy. In this study, a thermophilic bacterial strain, Anoxybacillus sp. PDR2, was regarded as the research target. This strain was characterized at different stages of azo dye degradation by using TMT quantitative proteomic and non-targeted metabolome technology. A total of 165 differentially expressed proteins (DEPs) and 439 differentially metabolites (DMs) were detected in comparisons between bacteria with and without azo dye. It was found that Anoxybacillus sp. PDR2 can degrade azo dye Direct Black G (DBG) through extracellular electron transfer with glucose serving as electron donors. Most proteins related to carbohydrate metabolism, including acetoacetate synthase, and malate synthase G, were overexpressed to provide energy. The bacterium can also self-synthesize riboflavin as a redox mediator of in vitro electron transport. These results lay a theoretical basis for industrial bioremediation of azo dye wastewater.
Collapse
Affiliation(s)
- Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiaming Gong
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zihang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Liuwei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiang Xia
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
10
|
Enzymatically triggered delignification through a novel stable laccase: A mixed in-silico /in-vitro exploration of a complex environmental microbiota. Int J Biol Macromol 2022; 211:328-341. [PMID: 35551951 DOI: 10.1016/j.ijbiomac.2022.05.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022]
Abstract
Laccases have been broadly applied as a multitasking biocatalyst in various industries, but their applications tend to be limited by easy deactivation, lack of adequate stability, and susceptibility under complex conditions. Identifying stable laccase as a green-biocatalyst is crucial for developing cost-effective biorefining processes. In this direction, we attempted in-silico screening a stable metagenome-derived laccase (PersiLac1) from tannery wastewater in a complex environment. The laccase exhibited high thermostability, retaining 53.19% activity after 180 min at 70 °C, and it was stable in a wide range of pH (4.0-9.0). After 33 days of storage at 50°C, pH 6.0, the enzyme retained 71.65% of its activity. Various metal ions, inhibitors, and organic solvents showed that PersiLac1 has a stable structure. The stable PersiLac1 could successfully remove lignin and phenolic from quinoa husk and rice straw. In the separate hydrolysis and fermentation process (SHF) after 72 h, hydrolysis was obtained 100% and 73.4% for quinoa husk and rice straw, and fermentation by the S. cerevisiae was be produced 41.46 g/L and 27.75g/L ethanol, respectively. Results signified that the novel lignin-degrading enzyme was confirmed to have great potential for industrial application as a green-biocatalyst based on enzymatically triggered to delignification and detoxify lignocellulosic biomass.
Collapse
|
11
|
El-Gendi H, Saleh AK, Badierah R, Redwan EM, El-Maradny YA, El-Fakharany EM. A Comprehensive Insight into Fungal Enzymes: Structure, Classification, and Their Role in Mankind's Challenges. J Fungi (Basel) 2021; 8:23. [PMID: 35049963 PMCID: PMC8778853 DOI: 10.3390/jof8010023] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 11/16/2022] Open
Abstract
Enzymes have played a crucial role in mankind's challenges to use different types of biological systems for a diversity of applications. They are proteins that break down and convert complicated compounds to produce simple products. Fungal enzymes are compatible, efficient, and proper products for many uses in medicinal requests, industrial processing, bioremediation purposes, and agricultural applications. Fungal enzymes have appropriate stability to give manufactured products suitable shelf life, affordable cost, and approved demands. Fungal enzymes have been used from ancient times to today in many industries, including baking, brewing, cheese making, antibiotics production, and commodities manufacturing, such as linen and leather. Furthermore, they also are used in other fields such as paper production, detergent, the textile industry, and in drinks and food technology in products manufacturing ranging from tea and coffee to fruit juice and wine. Recently, fungi have been used for the production of more than 50% of the needed enzymes. Fungi can produce different types of enzymes extracellularly, which gives a great chance for producing in large amounts with low cost and easy viability in purified forms using simple purification methods. In the present review, a comprehensive trial has been advanced to elaborate on the different types and structures of fungal enzymes as well as the current status of the uses of fungal enzymes in various applications.
Collapse
Affiliation(s)
- Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Institutes Zone, New Borg El-Arab, Alexandria 21934, Egypt;
| | - Ahmed K. Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki, Giza 12622, Egypt;
| | - Raied Badierah
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.M.R.)
- Medical Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.M.R.)
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt;
| | - Yousra A. El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt;
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt;
| |
Collapse
|
12
|
Moradi Z, Madadkar Haghjou M, Zarei M, Colville L, Raza A. Synergy of production of value-added bioplastic, astaxanthin and phycobilin co-products and Direct Green 6 textile dye remediation in Spirulina platensis. CHEMOSPHERE 2021; 280:130920. [PMID: 34162106 DOI: 10.1016/j.chemosphere.2021.130920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Phyco-remediation of dyestuffs in textile wastewaters is of economic, industrial, and environmental importance. We evaluated the remediation of the textile dye, Direct Green 6 (DG6), by Spirulina platensis, and investigated the novel possibility that DG6 treatment enhances production of the biopolymer, polyhydroxybutyrate (PHB). We showed that both live and dead cells of Spirulina were capable of DG6 remediation, but live cells could be re-used with no loss of remediation efficiency. Furthermore, DG6 remediation by live cells resulted in increased algal biomass and trichome lengths, and stimulated production of valuable metabolites, including PHB, antioxidants, carbohydrates and pigments (phycobilins and astaxanthin). We determined the optimal conditions for DG6 remediation and an artificial neural network (ANN) accurately modeled the experimental data and predicted the concentration of dye as the most and algal turbidity as the least important parameters for DG6 removal efficiency. A DG6 concentration of 60 mg L-1 resulted in the highest simultaneous co-production of PHB (12.7 ± 1.7% DW) and increase of astaxanthin (194%), carotenoids (50%), phenol (51%), carbohydrates (27%) total phycobilin (43%), together with the enhancement of biomass and trichome lengths (95%). Oxidative stress indices and enzyme activities such as peroxidases and laccase (involved in dye removal/antioxidant functions) were also increased by dye dosage. On the basis of our results, we propose that S. platensis may use DG6 dye as a nitrogen/carbon source for co-accumulation of valuable bioplastic and metabolites.
Collapse
Affiliation(s)
- Zahra Moradi
- Department of Biology, Plant Physiology, Faculty of Science, Lorestan University, Khoramabad-Tehran Road (5th K), Iran.
| | - Maryam Madadkar Haghjou
- Department of Biology, Plant Physiology, Faculty of Science, Lorestan University, Khoramabad-Tehran Road (5th K), Iran.
| | - Mahmoud Zarei
- Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Iran.
| | - Louise Colville
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wellcome Trust Millennium Building, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK.
| | - Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China.
| |
Collapse
|
13
|
Chauhan AK, Choudhury B. Synthetic dyes degradation using lignolytic enzymes produced from Halopiger aswanensis strain ABC_IITR by Solid State Fermentation. CHEMOSPHERE 2021; 273:129671. [PMID: 33517115 DOI: 10.1016/j.chemosphere.2021.129671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 11/01/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The present work focuses on studying the degradation of industrial synthetic dyes, which poses serious health hazards and a drastic impact on the environment. Currently available enzymatic processes have higher production and operational costs. However, most enzymes are active at acidic pH, which limits its application in textile dye degradation. This problem can be overcome by lignolytic enzymes obtained from halo-alkaliphile through Solid State Fermentation (SSF) using wheat bran (agro-byproduct) as a substrate. The major lignolytic enzymes studied were Lignin Peroxidase (LiP), Manganese Peroxidase (MnP), and laccase. The results demonstrated the highest activity of 215.4 ± 1.57 of LiP, 36.8 ± 2.38 of MnP, and 8.34 ± 0.21 IU/gds of laccase. Crude enzymes were used to treat synthetic dyes (mainly azo dyes), and their potential for its degradation was confirmed by spectrophotometric, GC-MS, and HPLC analysis. The highest decolorization of 82-93% of Malachite Green (MG) was achieved in LiP and MnP mediated reaction system within 2 hours. The laccase reaction system showed degradation of 53.87% of methyl orange without adding any redox mediator. After obtaining these results, the crude LiP and MnP in the reaction system were further subjected to decolorization at a higher MG concentration of 100-600 mg/L without a redox mediator. As a result, both LiP and MnP decolorized MG by 72-89%. Further, GC-MS analysis of MG biodegradation products confirmed the formation of less toxic low molecular weight products such as benzaldehyde and methanone.
Collapse
Affiliation(s)
- Ajay Kumar Chauhan
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 24667, India
| | - Bijan Choudhury
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 24667, India.
| |
Collapse
|
14
|
Gallo G, Puopolo R, Carbonaro M, Maresca E, Fiorentino G. Extremophiles, a Nifty Tool to Face Environmental Pollution: From Exploitation of Metabolism to Genome Engineering. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5228. [PMID: 34069056 PMCID: PMC8157027 DOI: 10.3390/ijerph18105228] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022]
Abstract
Extremophiles are microorganisms that populate habitats considered inhospitable from an anthropocentric point of view and are able to tolerate harsh conditions such as high temperatures, extreme pHs, high concentrations of salts, toxic organic substances, and/or heavy metals. These microorganisms have been broadly studied in the last 30 years and represent precious sources of biomolecules and bioprocesses for many biotechnological applications; in this context, scientific efforts have been focused on the employment of extremophilic microbes and their metabolic pathways to develop biomonitoring and bioremediation strategies to face environmental pollution, as well as to improve biorefineries for the conversion of biomasses into various chemical compounds. This review gives an overview on the peculiar metabolic features of certain extremophilic microorganisms, with a main focus on thermophiles, which make them attractive for biotechnological applications in the field of environmental remediation; moreover, it sheds light on updated genetic systems (also those based on the CRISPR-Cas tool), which expand the potentialities of these microorganisms to be genetically manipulated for various biotechnological purposes.
Collapse
Affiliation(s)
- Giovanni Gallo
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
- Consiglio Nazionale delle Ricerche CNR, Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Rosanna Puopolo
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Miriam Carbonaro
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Emanuela Maresca
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Gabriella Fiorentino
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
- Consiglio Nazionale delle Ricerche CNR, Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| |
Collapse
|