1
|
Spahiu L, Behluli E, Grajçevci-Uka V, Liehr T, Temaj G. Joubert syndrome: Molecular basis and treatment. JOURNAL OF MOTHER AND CHILD 2022; 26:118-123. [PMID: 36803942 PMCID: PMC10032320 DOI: 10.34763/jmotherandchild.20222601.d-22-00034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/30/2022] [Indexed: 02/23/2023]
Abstract
Joubert syndrome (JS; MIM PS213300) is a rare genetic autosomal recessive disease characterized by cerebellar vermis hypoplasia, a distinctive malformation of the cerebellum and the so-called "molar tooth sign." Other characteristic features are hypotonia with lateral ataxia, intellectual disability/mental retardation, oculomotor apraxia, retinal dystrophy, abnormalities in the respiratory system, renal cysts, hepatic fibrosis, and skeletal changes. Such pleiotropic characteristics are typical of many disorders involving primary cilium aberrations, providing a significant overlap between JS and other ciliopathies such as nephronophthisis, Meckel syndrome, and Bardet-Biedl syndrome. This review will describe some characteristics of JS associated with changes in 35 genes, and will also address subtypes of JS, clinical diagnosis, and the future of therapeutic developments.
Collapse
Affiliation(s)
- Lidvana Spahiu
- Department of Pediatrics, University of Prishtina, Prishtina, Kosovo
| | - Emir Behluli
- Department of Pediatrics, University of Prishtina, Prishtina, Kosovo
| | | | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, Friedrich Schiller Universität, Jena, Germany
| | - Gazmend Temaj
- Human Genetics, College UBT, Faculty of Pharmacy Prishtina, PrishtinaKosovo
| |
Collapse
|
2
|
Karamzade A, Babaei M, Saberi M, Golchin N, Khalil Nejad Sani Banaei A, Eshaghkhani Y, Golchehre Z, Keramatipour M. Identification of a novel truncating variant in AHI1 gene and a brief review on mutations spectrum. Mol Biol Rep 2021; 48:5339-5345. [PMID: 34191236 DOI: 10.1007/s11033-021-06508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Joubert syndrome (JS) is a rare inherited neurodevelopmental condition characterized by hypotonia, ataxia, developmental delay, abnormal eye movements, neonatal respiratory disturbance and unique midbrain-hindbrain malformation, known as the molar tooth sign. JS is a genetically heterogeneous disorder with nearly 35 ciliary genes are implicated in its pathogenesis. AHI1 gene is one of the most frequently mutated gene in JS patients which is accounted for 8-11% of cases, particularly in Arab population. AHI1 encodes a cilium-localized protein with a significant role in mediating vesicle trafficking, ciliogenesis and cell polarity. Here, we report a novel pathogenic variant in AHI1 gene and review previously published mutations in AHI1 gene briefly. Whole exome sequencing was employed to determine the causative mutation in an Iranian Arab family with JS from southwestern Iran. Segregation analysis of the candidate variant in the family members was performed using PCR-Sanger sequencing. This approach found a novel homozygous nonsense variant c.832C > T (p.Gln278Ter) in AHI1. Segregation analysis was consistent with individual's phenotype and an autosomal recessive pattern in the family. The variant residing in a relatively highly conserved region and fulfilled the criteria required to be classified as a pathogenic variant based on American College of Medical Genetics and Genomics guidelines. This study confirms the diagnosis of JS in this family and highlights the efficiency of next-generation sequencing-based technique to identify the genetic causes of hereditary disorders with locus heterogeneity.
Collapse
Affiliation(s)
- Arezou Karamzade
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Watson Genetic Laboratory, North Kargar street, Tehran, Iran
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Saberi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Golchin
- Watson Genetic Laboratory, North Kargar street, Tehran, Iran
| | | | - Yeganeh Eshaghkhani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Golchehre
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Watson Genetic Laboratory, North Kargar street, Tehran, Iran.
| |
Collapse
|
3
|
Ma DJ, Lee HS, Kim K, Choi S, Jang I, Cho SH, Yoon CK, Lee EK, Yu HG. Whole-exome sequencing in 168 Korean patients with inherited retinal degeneration. BMC Med Genomics 2021; 14:74. [PMID: 33691693 PMCID: PMC7945660 DOI: 10.1186/s12920-021-00874-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To date, no genetic analysis of inherited retinal disease (IRD) using whole-exome sequencing (WES) has been conducted in a large-scale Korean cohort. The aim of this study was to characterise the genetic profile of IRD patients in Korea using WES. METHODS We performed comprehensive molecular testing in 168 unrelated Korean IRD patients using WES. The potential pathogenicity of candidate variants was assessed using the American College of Medical Genetics and Genomics and the Association for Molecular Pathology variant interpretation guidelines, in silico prediction tools, published literature, and compatibility with known phenotypes or inheritance patterns. RESULTS Causative variants were detected in 86/168 (51.2%) IRD patients, including 58/107 (54.2%) with retinitis pigmentosa, 7/15 (46.7%) with cone and cone-rod dystrophy, 2/3 (66.6%) with Usher syndrome, 1/2 (50.0%) with congenital stationary night blindness, 2/2 (100.0%) with Leber congenital amaurosis, 1/1 (100.0%) with Bietti crystalline dystrophy, 1/1 (100.0%) with Joubert syndrome, 9/10 (90.0%) with Stargardt macular dystrophy, 1/10 (10.0%) with vitelliform macular dystrophy, 1/11 (9.1%) with other forms of macular dystrophy, and 3/4 (75.0%) with choroideraemia. USH2A, ABCA4, and EYS were the most common causative genes associated with IRD. For retinitis pigmentosa, variants of USH2A and EYS were the most common causative gene mutations. CONCLUSIONS This study demonstrated the distribution of causative genetic mutations in Korean IRD patients. The data will serve as a reference for future genetic screening and development of treatment modalities for Korean IRD patients.
Collapse
Affiliation(s)
- Dae Joong Ma
- Retinal Degeneration Research Lab, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Ophthalmology, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Hyun-Seob Lee
- Genomics Core Facility, Translational Research Institute, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seongmin Choi
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Insoon Jang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seo-Ho Cho
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang Ki Yoon
- Retinal Degeneration Research Lab, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun Kyoung Lee
- Retinal Degeneration Research Lab, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyeong Gon Yu
- Retinal Degeneration Research Lab, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Petrović D, Čulić V, Swinderek-Alsayed Z. Three Cases of Joubert Syndrome in a Consanguineous Syrian Family and a Interesting Case of Multinational Collaboration. J Pediatr Genet 2021; 12:167-170. [PMID: 37090835 PMCID: PMC10118711 DOI: 10.1055/s-0040-1721826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/15/2020] [Indexed: 10/22/2022]
Abstract
AbstractJoubert syndrome (JS) is a rare congenital, autosomal recessive disorder characterized by a distinctive brain malformation, developmental delay, ocular motor apraxia, breathing abnormalities, and high clinical and genetic heterogeneity. We are reporting three siblings with JS from consanguineous parents in Syria. Two of them had the same homozygous c.2172delA (p.Trp725Glyfs*) AHI1 mutation and the third was diagnosed prenatally with magnetic resonance imaging. This pathogenic variant is very rare and described in only a few cases in the literature. Multinational collaboration could be of benefit for the patients from undeveloped, low-income countries that have a low-quality health care system, especially for the diagnosis of rare diseases.
Collapse
Affiliation(s)
- Davor Petrović
- Department of Pediatrics, University Hospital of Split, Split, Croatia
- University of Split School of Medicine, Split, Croatia
| | - Vida Čulić
- Department of Pediatrics, University Hospital of Split, Split, Croatia
| | | |
Collapse
|
5
|
Loss of the neurodevelopmental Joubert syndrome causing protein, Ahi1, causes motor and muscle development delays independent of central nervous system involvement. Dev Biol 2019; 448:36-47. [PMID: 30695685 DOI: 10.1016/j.ydbio.2019.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022]
Abstract
Joubert syndrome (JBTS) is a predominantly autosomal recessive neurodevelopmental disorder that presents with characteristic malformations of the cerebellar vermis, superior cerebellar peduncles and midbrain in humans. Accompanying these malformations are a heterogeneous set of clinical symptoms, which frequently include deficits in motor and muscle function, such as hypotonia (low muscle tone) and ataxia (clumsiness). These symptoms are attributed to improper development of the hindbrain, but no direct evidence has been reported linking these in JBTS. Here, we describe muscle developmental defects in a mouse with a targeted deletion of the Abelson helper integration site 1 gene, Ahi1, one of the genes known to cause JBTS in humans. While FVB/NJ Ahi1-/- mice display no gross malformations of the cerebellum, deficits are observed in several measures of motor function, strength, and body development. Specifically, Ahi1-/- mice show delayed physical development, delays in surface reflex righting as neonates, and reductions in grip strength and spontaneous locomotor activity as adults. Additionally, Ahi1-/- mice showed evidence of muscle-specific contributions to this phenotype, such as reductions in 1) myoblast differentiation potential in vitro, 2) muscle desmin expression, and 3) overall muscle mass, myonuclear domain, and muscle fiber cross-sectional area. Together, these data suggest that loss of Ahi1 may cause abnormalities in the differentiation of myoblasts to mature muscle cells. Moreover, Ahi1 loss impacts muscle development directly, outside of any indirect impact of cerebellar malformations, revealing a novel myogenic cause for hypotonia in JBTS.
Collapse
|
6
|
Review of Ocular Manifestations of Joubert Syndrome. Genes (Basel) 2018; 9:genes9120605. [PMID: 30518138 PMCID: PMC6315342 DOI: 10.3390/genes9120605] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/13/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Joubert syndrome is a group of rare disorders that stem from defects in a sensory organelle, the primary cilia. Affected patients often present with disorders involving multiple organ systems, including the brain, eyes, and kidneys. Common symptoms include breathing abnormalities, mental developmental delays, loss of voluntary muscle coordination, and abnormal eye movements, with a diagnostic “molar tooth” sign observed by magnetic resonance imaging (MRI) of the midbrain. We reviewed the ocular phenotypes that can be found in patients with Joubert syndrome. Ocular motor apraxia is the most frequent (80% of patients), followed by strabismus (74%) and nystagmus (72%). A minority of patients also present with ptosis (43%), chorioretinal coloboma (30%), and optic nerve atrophy (22%). Although mutations in 34 genes have been found to be associated with Joubert syndrome, retinal degeneration has been reported in only 38% of patients. Mutations in AHI1 and CEP290, genes critical to primary cilia function, have been linked to retinal degeneration. In conclusion, Joubert syndrome is a rare pleiotropic group of disorders with variable ocular presentations.
Collapse
|
7
|
Novel OFD1 frameshift mutation in a Chinese boy with Joubert syndrome: a case report and literature review. Clin Dysmorphol 2017; 26:135-141. [PMID: 28505061 DOI: 10.1097/mcd.0000000000000183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Joubert syndrome (JBTS) is a clinically and genetically heterogeneous group of ciliopathy with a key diagnostic feature of 'molar tooth sign' in brain MRI. So far, over 20 causative genes have been identified, but only one gene (OFD1) results in X-linked Joubert syndrome 10 (JBTS10). Six mutations in the OFD1 gene have been found to cause JBTS10. In this study, we identified a novel OFD1 mutation of c.2843_2844 delAA (p.Lys948ArgfsX) in a 3-month-old boy with a 'molar tooth sign' and clinical features of JBTS using targeted exome next-generation sequencing. The de-novo OFD1 mutation in exon 21 leads to a frameshift mutation generating a prematurely truncated protein and is predicted to partly reduce the function of the OFD1 protein. Our study expands the genotype-phenotype spectrum in JBTS and will have applications in prenatal and early diagnosis of the disorder. This is the first report of the OFD1 mutation causing JBTS in a Chinese population.
Collapse
|
8
|
Physiotherapy and Rehabilitation in a Child with Joubert Syndrome. Case Rep Pediatr 2017; 2017:8076494. [PMID: 29138705 PMCID: PMC5613706 DOI: 10.1155/2017/8076494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/09/2017] [Accepted: 07/20/2017] [Indexed: 11/17/2022] Open
Abstract
Objective Joubert syndrome (JS) is a rare autosomal recessive genetic disorder characterized by brain malformation, hypotonia, breathing abnormalities, ataxia, oculomotor apraxia, and developmental delay. The purpose of this study was to report the efficiency of the physiotherapy and rehabilitation program in a child with JS. Materials and Methods Our case is a 19-month-old female child with mild clinical signs of JS. The pretreatment and posttreatment motor functioning level of the case was evaluated through the Gross Motor Function Measure (GMFM), whereas the independence level was evaluated through the Pediatric Functional Independence Measure (WeeFIM). The case was included in the rehabilitation program by the physiotherapist for one hour for five days a week throughout the period of 13 months in accordance with the neurodevelopmental treatment principles. Results The case was able to turn around from the supine position to the reverse direction by oneself, and she was able to rise on her forearms facedown and was able to sit, crawl, and walk independently. The GMFM score was 210, whereas WeeFIM score was 65. Discussion In the direction of those findings, in Joubert Syndrome, physiotherapy and rehabilitation can be effective in coping with the symptoms causing developmental delay.
Collapse
|