1
|
Sherif MA, Carter WG, Mellor IR. Chlorpyrifos Acts as a Positive Modulator and an Agonist of N-Methyl-d-Aspartate (NMDA) Receptors: A Novel Mechanism of Chlorpyrifos-Induced Neurotoxicity. J Xenobiot 2025; 15:12. [PMID: 39846544 PMCID: PMC11755529 DOI: 10.3390/jox15010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Chlorpyrifos (CPF) is a broad-spectrum organophosphate insecticide. Long-term exposure to low levels of CPF is associated with neurodevelopmental and neurodegenerative disorders. The mechanisms leading to these effects are still not fully understood. Normal NMDA receptor (NMDAR) function is essential for neuronal development and higher brain functionality, while its inappropriate stimulation results in neurological deficits. Thus, the current study aimed to investigate the role of NMDARs in CPF-induced neurotoxicity. We show that NMDARs mediate CPF-induced excitotoxicity in differentiated human fetal cortical neuronal ReNcell CX stem cells. In addition, by using two-electrode voltage clamp electrophysiology of Xenopus oocytes expressing NMDARs, we show CPF potentiation of both GluN1-1a/GluN2A (EC50 ≈ 40 nM) and GluN1-1a/GluN2B (EC50 ≈ 55 nM) receptors, as well as reductions (approximately halved) in the NMDA EC50s and direct activation by 10 μM CPF of both receptor types. In silico molecular docking validated CPF's association with NMDARs through relatively high affinity binding (-8.82 kcal/mol) to a modulator site at the GluN1-GluN2A interface of the ligand-binding domains.
Collapse
Affiliation(s)
- Mahmoud Awad Sherif
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Wayne G. Carter
- Clinical Toxicology Research Group, School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK;
| | - Ian R. Mellor
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
2
|
Andersen RE, Alkuraya IF, Ajeesh A, Sakamoto T, Mena EL, Amr SS, Romi H, Kenna MA, Robson CD, Wilch ES, Nalbandian K, Piña-Aguilar R, Walsh CA, Morton CC. Chromosomal structural rearrangements implicate long non-coding RNAs in rare germline disorders. Hum Genet 2024; 143:921-938. [PMID: 39060644 PMCID: PMC11294402 DOI: 10.1007/s00439-024-02693-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
In recent years, there has been increased focus on exploring the role the non-protein-coding genome plays in Mendelian disorders. One class of particular interest is long non-coding RNAs (lncRNAs), which has recently been implicated in the regulation of diverse molecular processes. However, because lncRNAs do not encode protein, there is uncertainty regarding what constitutes a pathogenic lncRNA variant, and thus annotating such elements is challenging. The Developmental Genome Anatomy Project (DGAP) and similar projects recruit individuals with apparently balanced chromosomal abnormalities (BCAs) that disrupt or dysregulate genes in order to annotate the human genome. We hypothesized that rearrangements disrupting lncRNAs could be the underlying genetic etiology for the phenotypes of a subset of these individuals. Thus, we assessed 279 cases with BCAs and selected 191 cases with simple BCAs (breakpoints at only two genomic locations) for further analysis of lncRNA disruptions. From these, we identified 66 cases in which the chromosomal rearrangements directly disrupt lncRNAs. In 30 cases, no genes of any other class aside from lncRNAs are directly disrupted, consistent with the hypothesis that lncRNA disruptions could underly the phenotypes of these individuals. Strikingly, the lncRNAs MEF2C-AS1 and ENSG00000257522 are each disrupted in two unrelated cases. Furthermore, we experimentally tested the lncRNAs TBX2-AS1 and MEF2C-AS1 and found that knockdown of these lncRNAs resulted in decreased expression of the neighboring transcription factors TBX2 and MEF2C, respectively. To showcase the power of this genomic approach for annotating lncRNAs, here we focus on clinical reports and genetic analysis of seven individuals with likely developmental etiologies due to lncRNA disruptions.
Collapse
Affiliation(s)
- Rebecca E Andersen
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ibrahim F Alkuraya
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Abna Ajeesh
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tyler Sakamoto
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Elijah L Mena
- Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Sami S Amr
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Hila Romi
- Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Margaret A Kenna
- Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
| | - Caroline D Robson
- Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| | - Ellen S Wilch
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Katarena Nalbandian
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Raul Piña-Aguilar
- Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Cynthia C Morton
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- University of Manchester, Manchester Center for Audiology and Deafness, Manchester, UK.
| |
Collapse
|
3
|
Nie L, Yao D, Chen S, Wang J, Pan C, Wu D, Liu N, Tang Z. Directional induction of neural stem cells, a new therapy for neurodegenerative diseases and ischemic stroke. Cell Death Discov 2023; 9:215. [PMID: 37393356 DOI: 10.1038/s41420-023-01532-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Due to the limited capacity of the adult mammalian brain to self-repair and regenerate, neurological diseases, especially neurodegenerative disorders and stroke, characterized by irreversible cellular damage are often considered as refractory diseases. Neural stem cells (NSCs) play a unique role in the treatment of neurological diseases for their abilities to self-renew and form different neural lineage cells, such as neurons and glial cells. With the increasing understanding of neurodevelopment and advances in stem cell technology, NSCs can be obtained from different sources and directed to differentiate into a specific neural lineage cell phenotype purposefully, making it possible to replace specific cells lost in some neurological diseases, which provides new approaches to treat neurodegenerative diseases as well as stroke. In this review, we outline the advances in generating several neuronal lineage subtypes from different sources of NSCs. We further summarize the therapeutic effects and possible therapeutic mechanisms of these fated specific NSCs in neurological disease models, with special emphasis on Parkinson's disease and ischemic stroke. Finally, from the perspective of clinical translation, we compare the strengths and weaknesses of different sources of NSCs and different methods of directed differentiation, and propose future research directions for directed differentiation of NSCs in regenerative medicine.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dabao Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, 430030, China
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, 430030, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
4
|
Gatford NJF, Deans PJM, Duarte RRR, Chennell G, Sellers KJ, Raval P, Srivastava DP. Neuroligin-3 and neuroligin-4X form nanoscopic clusters and regulate growth cone organization and size. Hum Mol Genet 2022; 31:674-691. [PMID: 34542148 PMCID: PMC8895740 DOI: 10.1093/hmg/ddab277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/25/2021] [Accepted: 09/13/2021] [Indexed: 12/01/2022] Open
Abstract
The cell-adhesion proteins neuroligin-3 and neuroligin-4X (NLGN3/4X) have well described roles in synapse formation. NLGN3/4X are also expressed highly during neurodevelopment. However, the role these proteins play during this period is unknown. Here we show that NLGN3/4X localized to the leading edge of growth cones where it promoted neuritogenesis in immature human neurons. Super-resolution microscopy revealed that NLGN3/4X clustering induced growth cone enlargement and influenced actin filament organization. Critically, these morphological effects were not induced by autism spectrum disorder (ASD)-associated NLGN3/4X variants. Finally, actin regulators p21-activated kinase 1 and cofilin were found to be activated by NLGN3/4X and involved in mediating the effects of these adhesion proteins on actin filaments, growth cones and neuritogenesis. These data reveal a novel role for NLGN3 and NLGN4X in the development of neuronal architecture, which may be altered in the presence of ASD-associated variants.
Collapse
Affiliation(s)
- Nicholas J F Gatford
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - P J Michael Deans
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Rodrigo R R Duarte
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | - George Chennell
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | - Katherine J Sellers
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
5
|
Xie J, Wettschurack K, Yuan C. Review: In vitro Cell Platform for Understanding Developmental Toxicity. Front Genet 2020; 11:623117. [PMID: 33424939 PMCID: PMC7785584 DOI: 10.3389/fgene.2020.623117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/03/2020] [Indexed: 12/30/2022] Open
Abstract
Developmental toxicity and its affiliation to long-term health, particularly neurodegenerative disease (ND) has attracted significant attentions in recent years. There is, however, a significant gap in current models to track longitudinal changes arising from developmental toxicity. The advent of induced pluripotent stem cell (iPSC) derived neuronal culture has allowed for more complex and functionally active in vitro neuronal models. Coupled with recent progress in the detection of ND biomarkers, we are equipped with promising new tools to understand neurotoxicity arising from developmental exposure. This review provides a brief overview of current progress in neuronal culture derived from iPSC and in ND markers.
Collapse
Affiliation(s)
- Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - Kyle Wettschurack
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
Duarte RR, Bachtel ND, Côtel MC, Lee SH, Selvackadunco S, Watson IA, Hovsepian GA, Troakes C, Breen GD, Nixon DF, Murray RM, Bray NJ, Eleftherianos I, Vernon AC, Powell TR, Srivastava DP. The Psychiatric Risk Gene NT5C2 Regulates Adenosine Monophosphate-Activated Protein Kinase Signaling and Protein Translation in Human Neural Progenitor Cells. Biol Psychiatry 2019; 86:120-130. [PMID: 31097295 PMCID: PMC6614717 DOI: 10.1016/j.biopsych.2019.03.977] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/12/2019] [Accepted: 03/11/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND The 5'-nucleotidase, cytosolic II gene (NT5C2, cN-II) is associated with disorders characterized by psychiatric and psychomotor disturbances. Common psychiatric risk alleles at the NT5C2 locus reduce expression of this gene in the fetal and adult brain, but downstream biological risk mechanisms remain elusive. METHODS Distribution of the NT5C2 protein in the human dorsolateral prefrontal cortex and cortical human neural progenitor cells (hNPCs) was determined using immunostaining, publicly available expression data, and reverse transcriptase quantitative polymerase chain reaction. Phosphorylation quantification of adenosine monophosphate-activated protein kinase (AMPK) alpha (Thr172) and ribosomal protein S6 (Ser235/Ser236) was performed using Western blotting to infer the degree of activation of AMPK signaling and the rate of protein translation. Knockdowns were induced in hNPCs and Drosophila melanogaster using RNA interference. Transcriptomic profiling of hNPCs was performed using microarrays, and motility behavior was assessed in flies using the climbing assay. RESULTS Expression of NT5C2 was higher during neurodevelopment and was neuronally enriched in the adult human cortex. Knockdown in hNPCs affected AMPK signaling, a major nutrient-sensing mechanism involved in energy homeostasis, and protein translation. Transcriptional changes implicated in protein translation were observed in knockdown hNPCs, and expression changes to genes related to AMPK signaling and protein translation were confirmed using reverse transcriptase quantitative polymerase chain reaction. The knockdown in Drosophila was associated with drastic climbing impairment. CONCLUSIONS We provide an extensive neurobiological characterization of the psychiatric risk gene NT5C2, describing its previously unknown role in the regulation of AMPK signaling and protein translation in neural stem cells and its association with Drosophila melanogaster motility behavior.
Collapse
Affiliation(s)
- Rodrigo R.R. Duarte
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Nathaniel D. Bachtel
- Department of Biological Sciences, Columbian College of Arts and Sciences, George Washington University, Washington, DC
| | - Marie-Caroline Côtel
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Sang H. Lee
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Sashika Selvackadunco
- Medical Research Council London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Iain A. Watson
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Gary A. Hovsepian
- Department of Biological Sciences, Columbian College of Arts and Sciences, George Washington University, Washington, DC
| | - Claire Troakes
- Medical Research Council London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Gerome D. Breen
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Douglas F. Nixon
- Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, New York
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Nicholas J. Bray
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Ioannis Eleftherianos
- Department of Biological Sciences, Columbian College of Arts and Sciences, George Washington University, Washington, DC
| | - Anthony C. Vernon
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Timothy R. Powell
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom,Address correspondence to Deepak P. Srivastava, Ph.D., Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RX, United Kingdom.
| |
Collapse
|
7
|
Structure Elucidation and Biological Evaluation of Maitotoxin-3, a Homologue of Gambierone, from Gambierdiscus belizeanus. Toxins (Basel) 2019; 11:toxins11020079. [PMID: 30717108 PMCID: PMC6409949 DOI: 10.3390/toxins11020079] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/15/2023] Open
Abstract
Gambierdiscus species are the producers of the marine toxins ciguatoxins and maitotoxins which cause worldwide human intoxications recognized as Ciguatera Fish Poisoning. A deep chemical investigation of a cultured strain of G. belizeanus, collected in the Caribbean Sea, led to the identification of a structural homologue of the recently described gambierone isolated from the same strain. The structure was elucidated mainly by comparison of NMR and MS data with those of gambierone and ascertained by 2D NMR data analyses. Gratifyingly, a close inspection of the MS data of the new 44-methylgambierone suggests that this toxin would actually correspond to the structure of maitotoxin-3 (MTX3, m/z 1039.4957 for the protonated adduct) detected in 1994 in a Pacific strain of Gambierdiscus and recently shown in routine monitoring programs. Therefore, this work provides for the first time the chemical identification of the MTX3 molecule by NMR. Furthermore, biological data confirmed the similar activities of both gambierone and 44-methylgambierone. Both gambierone and MTX3 induced a small increase in the cytosolic calcium concentration but only MTX3 caused cell cytotoxicity at micromolar concentrations. Moreover, chronic exposure of human cortical neurons to either gambierone or MTX3 altered the expression of ionotropic glutamate receptors, an effect already described before for the synthetic ciguatoxin CTX3C. However, even when gambierone and MTX3 affected glutamate receptor expression in a similar manner their effect on receptor expression differed from that of CTX3C, since both toxins decreased AMPA receptor levels while increasing N-methyl-d-aspartate (NMDA) receptor protein. Thus, further studies should be pursued to clarify the similarities and differences in the biological activity between the known ciguatoxins and the new identified molecule as well as its contribution to the neurological symptoms of ciguatera.
Collapse
|
8
|
Boente-Juncal A, Vale C, Alfonso A, Botana LM. Synergistic Effect of Transient Receptor Potential Antagonist and Amiloride against Maitotoxin Induced Calcium Increase and Cytotoxicity in Human Neuronal Stem Cells. ACS Chem Neurosci 2018; 9:2667-2678. [PMID: 29733572 DOI: 10.1021/acschemneuro.8b00128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Maitotoxins (MTX) are among the most potent marine toxins identified to date causing cell death trough massive calcium influx. However, the exact mechanism for the MTX-induced calcium entry and cytotoxicity is still unknown. In this work, the effect of MTX-1 on the cytosolic free calcium concentration and cellular viability of human neuronal stem cells was evaluated. MTX elicited a concentration-dependent decrease in cell viability which was already evident after 1 h of treatment with 0.25 nM MTX; however, at a concentration of 0.1 nM, the toxin did not cause cell death even after 14 days of exposure. Moreover, the toxin caused a concentration dependent rise in the cytosolic calcium concentration which was maximal at toxin concentrations of 1 nM and dependent on the presence of extracellular calcium on the bathing solution. Several pharmacological approaches were employed to evaluate the role of canonical transient potential receptor channels (TRPC) on the MTX effects. The results presented here lead to the identification of the TRPC4 channels as contributors to the MTX effects in human neuronal cells. Both, the calcium increase and the cytotoxicity of MTX were either fully (for the calcium increase) or partially (in the case of cytotoxicity) reverted by the blockade of canonical TRPC4 receptors with the selective antagonist ML204. Furthermore, the sodium proton exchanger blocker amiloride also partially inhibited the calcium rise and the cell death elicited by MTX while the combination of amiloride and ML204 fully prevented both the cytotoxicity and the calcium rise elicited by the toxin.
Collapse
Affiliation(s)
- Andrea Boente-Juncal
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Carmen Vale
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Amparo Alfonso
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Luis M. Botana
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
9
|
Boente-Juncal A, Méndez AG, Vale C, Vieytes MR, Botana LM. In Vitro Effects of Chronic Spirolide Treatment on Human Neuronal Stem Cell Differentiation and Cholinergic System Development. ACS Chem Neurosci 2018. [PMID: 29518322 DOI: 10.1021/acschemneuro.8b00036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spirolides (SPX) are marine toxins, produced by dinoflagellates that act as potent antagonists of nicotinic acetylcholine receptors. These compounds are not toxic for humans, and since there are no reports of human intoxications caused by this group of toxins they are not yet currently regulated in Europe. Currently 13-desmethyl spirolide C, 13,19-didesmethyl spirolide C, and 20-methyl spirolide G are commercially available as reference materials. Previous work in our laboratory has demonstrated that after 4 days of treatment of primary mice cortical neurons with 13-desmethyl spirolide C, the compound ameliorated the glutamate induced toxicity and increased acetylcholine levels and the expression of the acetylcholine synthesizing enzyme being useful both in vitro and in vivo to decrease the brain pathology associated with Alzheimer's disease. In this work, we aimed to extend the study of the neuronal effects of spirolides in human neuronal cells. To this end, human neuronal progenitor cells CTX0E16 were employed to evaluate the in vitro effect of spirolides on neuronal development. The results presented here indicate that long-term exposure (30 days) of human neuronal stem cells to SPX compounds, at concentrations up to 50 nM, ameliorated the MPP+-induced neurotoxicity and increased the expression of neuritic and dendritic markers, the levels of the choline acetyltransferase enzyme and the protein levels of the α7 subunit of nicotinic acetylcholine receptors. These effects are presumably due to the previously described interaction of these compounds with nicotinic receptors containing both α7 and α4 subunits. All together, these data emphasize the idea that SPX could be attractive lead molecules against neurodegenerative disorders.
Collapse
Affiliation(s)
- Andrea Boente-Juncal
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27001 Lugo, Spain
| | - Aida G. Méndez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27001 Lugo, Spain
| | - Carmen Vale
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27001 Lugo, Spain
| | - Mercedes R. Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27001 Lugo, Spain
| | - Luis M. Botana
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27001 Lugo, Spain
| |
Collapse
|
10
|
Deans PM, Raval P, Sellers KJ, Gatford NJ, Halai S, Duarte RR, Shum C, Warre-Cornish K, Kaplun VE, Cocks G, Hill M, Bray NJ, Price J, Srivastava DP. Psychosis Risk Candidate ZNF804A Localizes to Synapses and Regulates Neurite Formation and Dendritic Spine Structure. Biol Psychiatry 2017; 82:49-61. [PMID: 27837918 PMCID: PMC5482321 DOI: 10.1016/j.biopsych.2016.08.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Variation in the gene encoding zinc finger binding protein 804A (ZNF804A) is associated with schizophrenia and bipolar disorder. Evidence suggests that ZNF804A is a regulator of gene transcription and is present in nuclear and extranuclear compartments. However, a detailed examination of ZNF804A distribution and its neuronal functions has yet to be performed. METHODS The localization of ZNF804A protein was examined in neurons derived from human neural progenitor cells, human induced pluripotent stem cells, or in primary rat cortical neurons. In addition, small interfering RNA-mediated knockdown of ZNF804A was conducted to determine its role in neurite formation, maintenance of dendritic spine morphology, and responses to activity-dependent stimulations. RESULTS Endogenous ZNF804A protein localized to somatodendritic compartments and colocalized with the putative synaptic markers in young neurons derived from human neural progenitor cells and human induced pluripotent stem cells. In mature rat neurons, Zfp804A, the homolog of ZNF804A, was present in a subset of dendritic spines and colocalized with synaptic proteins in specific nanodomains, as determined by super-resolution microscopy. Interestingly, knockdown of ZNF804A attenuated neurite outgrowth in young neurons, an effect potentially mediated by reduced neuroligin-4 expression. Furthermore, knockdown of ZNF804A in mature neurons resulted in the loss of dendritic spine density and impaired responses to activity-dependent stimulation. CONCLUSIONS These data reveal a novel subcellular distribution for ZNF804A within somatodendritic compartments and a nanoscopic organization at excitatory synapses. Moreover, our results suggest that ZNF804A plays an active role in neurite formation, maintenance of dendritic spines, and activity-dependent structural plasticity.
Collapse
Affiliation(s)
- P.J. Michael Deans
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Katherine J. Sellers
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Nicholas J.F. Gatford
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Sanjay Halai
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Rodrigo R.R. Duarte
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Carole Shum
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Victoria E. Kaplun
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Graham Cocks
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Matthew Hill
- MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff, United Kingdom,Neuroscience and Mental Health Research Institute, College of Biomedical and Life Sciences, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Nicholas J. Bray
- MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff, United Kingdom
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London,MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London; United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London,MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London; United Kingdom,Address correspondence to: Deepak P. Srivastava, Ph.D., Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, SE5 9RT, United KingdomDepartment of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College LondonLondonSE5 9RTUnited Kingdom
| |
Collapse
|
11
|
Halliwell RF. Electrophysiological properties of neurons derived from human stem cells and iNeurons in vitro. Neurochem Int 2016; 106:37-47. [PMID: 27742467 DOI: 10.1016/j.neuint.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/22/2016] [Accepted: 10/10/2016] [Indexed: 01/24/2023]
Abstract
Functional studies of neurons have traditionally used nervous system tissues from a variety of non-human vertebrate and invertebrate species, even when the focus of much of this research has been directed at understanding human brain function. Over the last decade, the identification and isolation of human stem cells from embryonic, tissue (or adult) and induced pluripotent stem cells (iPSCs) has revolutionized the availability of human neurons for experimental studies in vitro. In addition, the direct conversion of terminally differentiated fibroblasts into Induced neurons (iN) has generated great excitement because of the likely value of such human stem cell derived neurons (hSCNs) and iN cells in drug discovery, neuropharmacology, neurotoxicology and regenerative medicine. This review addresses the current state of our knowledge of functional receptors and ion channels expressed in neurons derived from human stem cells and iNeurons and identifies gaps and questions that might be investigated in future studies; it focusses almost exclusively on what is known about the electrophysiological properties of neurons derived from human stem cells and iN cells in vitro with an emphasis on voltage and ligand gated ion channels, since these mediate synaptic signalling in the nervous system and they are at the heart of neuropharmacology.
Collapse
Affiliation(s)
- Robert F Halliwell
- Schools of Pharmacy & Dentistry, University of the Pacific, 751 Brookside Road, Stockton, CA, USA.
| |
Collapse
|